
Building Switching Hybrid Recommender

System Using Machine Learning Classifiers and

Collaborative Filtering

Mustansar Ali Ghazanfar and Adam Prügel-Bennett ∗

Abstract— Recommender systems apply machine

learning and data mining techniques for filtering un-

seen information and can predict whether a user

would like a given resource. To date a number of rec-

ommendation algorithms have been proposed, where

collaborative filtering and content-based filtering are

the two most famous and adopted recommendation

techniques. Collaborative filtering recommender sys-

tems recommend items by identifying other users

with similar taste and use their opinions for rec-

ommendation; whereas content-based recommender

systems recommend items based on the content in-

formation of the items. Moreover, machine learn-

ing classifiers can be used for recommendation by

training them on content information. These sys-

tems suffer from scalability, data sparsity, over spe-

cialization, and cold-start problems resulting in poor

quality recommendations and reduced coverage. Hy-

brid recommender systems combine individual sys-

tems to avoid certain aforementioned limitations of

these systems. In this paper, we proposed unique

generalized switching hybrid recommendation algo-

rithms that combine machine learning classifiers with

the collaborative filtering recommender systems. Ex-

perimental results on two different data sets, show

that the proposed algorithms are scalable and pro-

vide better performance—in terms of accuracy and

coverage—than other algorithms while at the same

time eliminate some recorded problems with the rec-

ommender systems.

Keywords: Hybrid Recommender Systems; Collabora-

tive Filtering; Content-Based Filtering; Classifier.

1 Introduction

There has been an exponential increase in the volume of
available digital information, electronic sources, and on-
line services in recent years. This information overload
has created a potential problem, which is how to filter and
efficiently deliver relevant information to a user. Further-
more, information needs to be prioritized for a user rather
than just filtering the right information, which can create

∗Both authors are with School of Electronics and Computer Sci-
ence, University of Southampton, Highfield Campus, SO17 1BJ,
United Kingdom Email: {mag208r, adp}@ecs.soton.ac.uk Phone:
+44 (023) 80594473; fax: +44 (023) 80594498

information overload problems. Search engines help in-
ternet users by filtering pages to match explicit queries,
but it is very difficult to specify what a user wants by
using simple keywords. The Semantic Web, also provides
some help to find useful information by allowing intelli-
gent search queries, however it depends on the extent the
web pages are annotated.

These problems highlight a need for information extrac-
tion systems that can filter unseen information and can
predict whether a user would like a given source. Such
systems are called recommender systems, and they mit-
igate the aforementioned problems to a great extent.
Given a new item (resource), recommender systems can
predict whether a user would like this item or not,
based on user preferences (likes—positive examples, and
dislikes—negative examples), observed behaviour, and in-
formation (demographic or content information) about
items [1, 2]1.

An example of the recommender system is the Amazon2

recommender engine [4], which can filter through millions
of available items based on the preferences or past brows-
ing behaviour of a user and can make personal recommen-
dations. Some other well-known examples are Youtube3

video recommender service and MovieLens4 movie rec-
ommender system, which recommend videos and movies
based on a person’s opinions. In these systems, a his-
tory of user’s interactions with the system is stored which
shape their preferences. The history of the user can be
gathered by explicit feedback, where the user rates some
items in some scale or by implicit feedback, where the
user’s interaction with the item is observed—for instance,
if a user purchases an item then this is a sign that they
like that item, their browsing behavior, etc.

There are two main types of recommender systems: col-
laborative filtering and content-based filtering recom-
mender systems. Collaborative filtering recommender
systems [5, 6, 7, 8] recommend items by taking into

1The work presented in this paper is the extended version of the
work published in [3].

2www.amazon.com
3www.youtube.com
4www.movielens.org

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

account the taste (in terms of preferences of items) of
users, under the assumption that users will be interested
in items that users similar to them have rated highly.
Collaborating filtering recommender systems are based
on the assumption that people who agreed in the past,
will agree in the future too. Examples of these systems
include GroupLens system [9], Ringo5, etc. Collabora-
tive filtering can be classified into two sub-categories:
memory-based CF and model-based CF. Memory-based
approaches [6] make a prediction by taking into account
the entire collection of previous rated items by a user,
examples include GroupLens recommender systems [9].
Model-based approaches [10] use rating patterns of users
in the training set, group users into different classes, and
use ratings of predefined classes to generate recommen-
dation for an active user6 on a target item7, examples
include item-based CF [11], Singular Value Decomposi-
tion (SVD) based models [12], Bayesian networks [13],
and clustering models [14].

Content-based filtering recommender systems [15] recom-
mend items based on the textual information of an item,
under the assumption that users will like similar items
to the ones they liked before. In these systems, an item
of interest is defined by its associated features, for in-
stance, NewsWeeder [16], a newsgroup filtering system
uses the words of text as features. The textual descrip-
tion of items is used to build item profiles. User pro-
files can be constructed by building a model of the users
preferences using the descriptions and types of the items
that a user is interested in, or a history of users interac-
tions with the system is stored (e.g. user purchase his-
tory, types of items they purchase together, their ratings,
etc.). The history of the user can be gathered by ex-
plicit feedback or implicit feedback. Explicit feedback is
noise free but the user is unlikely to rate many items,
whereas, implicit feedback is noisy (error prone), but can
collect a lot of training data [17]. In general, a trade-
off between implicit and explicit user feedback is used.
Creating and learning user profiles is a form of classifi-
cation problem, where training data can be divided into
two categories: items liked by a user, and item disliked by
a user. Furthermore, hybrid recommender systems have
been proposed [18, 19, 20, 21, 22], which combine indi-
vidual recommender systems to avoid certain limitations
of individual recommender systems.

Recommendations can be presented to an active user in
the followings two different ways: by predicting ratings
of items a user has not seen before and by constructing
a list of items ordered by their preferences. In the for-
mer case, an active user provides the prediction engine
with the list of items to be predicted, prediction engine
uses other user’s (or item’s) ratings or content informa-

5www.ringo.com
6The user for whom the recommendations are computed.
7The item a system wants to recommend.

tion, and then predicts how much the user would like the
given item in some numeric or binary scale. In the lat-
ter case, sometimes termed as top-N recommendations,
different heuristics are used for producing an ordered list
of items [12, 23]. For example, in collaborative filter-
ing recommender systems this list is produced by making
the rating predictions of all items an active user has not
yet rated, sorting the list, and then keeping the top-N
items the active user would like the most. In this paper,
we focused on the former case—predicting the ratings of
items—however a list of top-N items for each user can be
constructed by selecting highly predicted items.

1.1 Problem Statement

The continuous increase of the users and items demands
the following properties in a recommender system. First
is the scalability, that is its ability to generate predictions
quickly in user-item rating matrix consisting of millions
of users and items. Second is to find good items and
to ameliorate the quality of the recommendation for a
customer. If a customer trusts and leverages a recom-
mender system, and then discovers that they are unable
to find what they want then it is unlikely that they will
continue with that system. Consequently, the most im-
portant task for a recommender system is to accurately
predict the rating of the non-rated user/item combina-
tion and recommend items based on these predictions.
These two properties are in conflict, since the less time
an algorithm spends searching for neighbours, the more
scalable it will be, but produces worse quality recommen-
dations. Third its coverage should be maximum, i.e. it
should be able to produce recommendation for all the
existing items and users regardless of the cold-start prob-
lems. When a new item is added to a system, then it is
not possible to get rating for that item from significant
number of users, and consequently the CF recommender
systems would not be able to recommend that item. This
problem is called new item cold-start problem [10]. Simi-
larly the performance of the recommender systems suffer
when a new user enters the system. CF recommender
systems work by finding the similar users based on their
ratings, however it is not possible to get ratings from a
newly registered user. Therefore, the system cannot rec-
ommend any item to that user, a potential problem with
recommender systems called new user cold-start problem
[10]. Fourth, its performance should not degrade with
sparsity. As the user-item rating matrix is very sparse,
hence the system may be unable to make many product
recommendations for a particular user.

Collaborative filtering and content-based filtering suffer
from potential problems—such as over-specialization8,
sparsity, reduced coverage, scalability, and cold-start

8Pure content-based filtering systems only recommend items
that are the most similar to a users profile. In this way, a user
cannot find any recommendation that is different from the ones it
has already rated or seen.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

problems, which reduce the effectiveness of these sys-
tems. Hybrid recommender systems have been proposed
to overcome some of the aforementioned problems. In this
paper, we propose a switching hybrid recommender sys-
tem [19] using a classification approach and item-based
CF. A switching hybrid system is intelligent in a sense
that it can switch between recommendation techniques
using some criterion. The benefit of switching hybrid is
that it can make efficient use of strengths and weaknesses
of its constitutional recommender systems. We show
empirically that proposed recommender system outper-
form other recommender system algorithms in terms of
MAE, ROC-Sensitivity, and coverage, while at the same
time eliminates some recorded problems with the recom-
mender systems. We evaluate our algorithm on Movie-
Lens9 and FilmTrust10 datasets.

The rest of the paper has been organized as follows. Sec-
tion 2 discusses the related work. Section 3 presents some
background concepts relating to item-based CF, content-
based filtering, Naive Bayes and SVM classifiers. Section
4 outlines the proposed algorithms. Section 5 describes
the data set and metrics used in this work. Section 6 com-
pares the performance of the proposed algorithms with
the existing algorithms followed by the conclusion in sec-
tion 7.

2 Related Work

Various classification approaches have been used for rec-
ommender systems, for example in [24], the authors used
linear classifiers trained only on rating information for
recommendation. In [18], the authors proposed a hybrid
recommender framework to recommend movies to users.
In the content-based filtering part, they get extra infor-
mation about movies from the IMDB11 web site and view
each movie as a text document. A Naive Bayes classifier
is used for building user and item profiles, which can han-
dle vectors of bags-of-words. The Naive Bayes classifier
is used to approximate the missing entries in the user-
item rating matrix, and a user-based CF is applied over
this dense matrix. The problem with this approach is
that it is not scalable. Our work combines Naive Bayes
and collaborative filtering in a more scalable way than the
one proposed in [18] and uses synonym detection and fea-
ture selection algorithms that produce accurate profiles
of users resulting in improved predictions. The off-line
cost of our approach and that of proposed in [18] is the
same, i.e. the cost to train a Naive Bayes classifier. How-
ever, our on-line cost (in the worse case) is less than or
equal to the one proposed in [18]12. A similar approach
has been used in a book recommender system, LIBRA
[25]. LIBRA downloads content information about book

9www.grouplens.org/node/73
10www.filmtrust.com
11www.imdb.com
12See section 6.

(meta data) from Amazon and extracts features using
simple pattern-based information extraction system, and
builds user models using a Naive Bayes classifier. A user
can rate items using a numeric scale from 1 (lowest) to
10 (highest). It does not predict exact values, but rather
presents items to a user according to their preferences.

Demographic and feature informations of users and items
have been employed in [26, 27, 28], for example in [26, 27]
the authors used demographic information about users
and items for providing more accurate prediction for user-
based and item-based CF. They proposed hybrid rec-
ommender system (lying between cascading and feature
combination hybrid recommender systems [19]) in which
demographic correlation between two items (or users) is
applied over the candidate neighbours found after apply-
ing the rating correlation on the user-item rating matrix.
This refined set of neighbours are used for generating pre-
dictions. However they completely miss the features of
items for computing similarity. In [28], content-based fil-
tering using the Rocchio’s method is applied to maintain
a term vector model that describe the user’s area of in-
terest. This model is then used by collaborative filtering
to gather documents on basis of interest of community as
a whole. Pazzani [20] propose a hybrid recommendation
approach in which a content-based profile of each user is
used to find the similar users, which are used for making
predictions. The author used Winnow to extract features
from user’s home page to build the user content-based
profile. The problem with these approaches is that if the
content-based profile of a user is erroneous (may be due
to synonyms problems or others), then they would result
in poor recommendations. Another example of hybrid
systems is proposed in [21], where the author presented
an on-line hybrid recommender system for news recom-
mendation.

Content-based recommender systems have also been com-
bined with CF for reducing the sparsity of the dataset
and producing accurate recommendations, for example,
in [29], the authors proposed a unique cascading hy-
brid recommendation approach by combining the rat-
ing, feature, and demographic information about items,
and claimed that their approach outperforms other algo-
rithms in terms of accuracy and coverage under sparse
dataset and cold-start problems. Information filtering
agents have been integrated with CF in [30], where the
author proposed a framework for combining the CF with
content-based filtering agents. They used simple agents,
such as spell-checking, which analyze a new document in
the news domain and rate it to reduce the sparsity of
the dataset. These agents behave like users and can be
correlated with the actual users. They claimed that the
integration of content-based filtering agents with CF out-
performed the simple CF in terms of accuracy. A similar
approach that uses intelligent information filtering agents
has been proposed in [31]. The problem with these ap-

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

proaches is that, the recommendation quality would heav-
ily depend on the training of individual agents, which
may not be desired in certain cases, especially given lim-
ited resources.

3 Background

In this section, we give an overview of the background
concepts—item-based CF, feature extraction and selec-
tion, Naive Bayes classifier, and SVM classifier—used in
this work. We explain how we use and modify them for
our purpose.

Let M = { m1,m2, · · · ,mx } be the set of all users, N =
{ n1, n2, · · · , ny } be the set of all possible items that can
be recommended, Mninj

be the set of all users who have
co-rated item ni and nj , and rmi,nj

be the rating of user
mi on item nj .

3.1 Item-Based Collaborative Filtering

Item-based CF [11] builds a model of item similarities
using an off-line stage. Let us assume, we want to make
prediction for an item nt for an active user ma. There
are three main steps in this approach as follows:

• In the first step, all items rated by an active user are
retrieved.

• In the second step, target item’s similarity is com-
puted with the set of retrieved items. A set of K
most similar items n1, n2 · · ·nK with their similari-
ties are selected. Similarity sni,nj

, between two items
ni and nj , is computed by first isolating the users
who have rated these items (i.e. Mninj

), and then
applying the adjusted cosine similarity [11] as fol-
lows:

sni,nj
=

∑

m∈Mni,nj

r̂m,ni
r̂m,nj

√ ∑

m∈Mni,nj

(r̂m,ni
)2

∑

m∈Mni,nj

(r̂m,nj
)2
, (1)

where, r̂m,n = rm,n − rm, i.e. normalizing a rating
by subtracting the respective user average from the
rating, which helps in overcoming the discrepancies
in the user’s rating scale. In this work, we multi-
plied similarity weights with a significance weigthing
factor [32].

• In the last step, prediction for the target item is
made by computing the weighted average of the ac-
tive user’s rating on the K most similar items. Using
the adjusted weighted sum, the prediction Pma,nt

on
item nt for user ma is computed as follows:

Pma,nt
= rma +

K∑

i=1

(snt,i × r̂ma,i)

K∑

i=1

(|snt,i|)

. (2)

3.2 Content-Based Filtering

In content-based filtering, a model of the user’s prefer-
ences is built using the descriptions and types of the items
that a user is interested in. There are mainly four steps
in this approach, which are given below:

• In the first step, the system gathers information
about items, for example, in a movie recommender
system, movie title, genre, actors, producers, etc.
Information extraction and retrieval techniques are
used for extracting and retrieving this content in-
formation. Some applications use web crawlers to
collect data from the web.

• In the second step, a user is asked to rate some
items. Binary scales (in terms of their likes/dislikes)
or some numeric scales (e.g. 1 to 5, 1 to 10, etc.) are
used for capturing user ratings.

• In the third step, user profiles are built based on the
information gathered in the first step and the rating
provided in the second step. Different machine learn-
ing techniques (like Bayesian learning algorithms), or
information retrieval techniques (Term Frequency-
Inverse Document Frequency weighting scheme) are
used for this purpose. User profiles (which are long-
term models) update as more information about user
preferences is observed and highly depend on the
learning method employed.

• In the last step, the system matches the content of
un-rated items with the active’s user profile and as-
signs score to items based on the quality of match.
It then ranks items based on their respective score,
and recommends top ranked items to the active user
according to the order.

For example, in a movie recommender system, the system
finds movies (based on genre, specific actor, subject, etc.)
similar to the ones a user has rated high in the past and
then recommends the most similar movies to the user.

3.3 Feature Extraction and Selection

Feature extraction techniques aim at finding the specific
pieces of data in natural language documents [33], which
are used for building both users and items profiles. These
users and items profiles are then employed by a classifier
for recommending resources. The main steps in informa-
tion extraction techniques are discussed below:

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

3.3.1 Pre-Processing

In the pre-processing step, documents, which typically
are strings of characters, are transformed into a repre-
sentation suitable for machine learning algorithms [34].
The documents are first converted into tokens, sequence
of letters and digits, and then usually the following modi-
fications are performed: (1) HTML (and others) tags are
removed (2) stop words are removed and (3) stemming is
performed.

Stop words are frequently occurring words that carry
little information. They have nine syntactical classes:
conjunctions, articles, particles, prepositions, pronouns,
anomalous verbs, adjectives, and adverbs [35]. We used
Google’s stop word list13 (although, in general, one can
customize the list based on the domain and application).

Stemming removes the case and inflections information
from a word and maps it to the same stem. For ex-
ample, words recommender, recommending, recommenda-
tion, and recommended are all mapped to the same stem
recommend. The Porter stemmer and Lovis stemmer are
current two of the most popular algorithms used for this
task [17]. We used Porter stemmer algorithm for this
work. The next step is called indexing and is discussed
below.

3.3.2 Indexing

Each document is usually represented by a vector of n
weighted index terms. A vector space model is the most
commonly used document representation technique, in
which documents are represented by vectors of words14.
A word-by-document matrix A is used to represent a col-
lection of documents, where each entry symbolizes the
occurrence of a word in a document,

A = aiz. (3)

In equation 3, aiz is the weight of word i in document z.
This matrix is typically very sparse, as not every word
appears in every document. The numbers of rows are
very large; hence a major problem is high dimensionality
of the feature space that makes the efficient processing of
the matrix difficult.

Let X be the number of documents in a collection, Y

be the total number of words (after stop word removal
and stemming) in the collection, DF (i) be the number of
times word i occurs in the whole collection, and TF (i, z)
be the frequency of word i in document z. Different ap-
proaches are used for determining the weight aiz of word

13Google’s stop word list, www.ranks.nl/resources/stopwords.html
14This implies that two documents having similar contents will

have similar vectors.

i in document z, we used Term Frequency-Inverse Docu-
ment Frequency approach.

Term Frequency-Inverse Document Frequency (TF −
IDF) is a well-known approach and uses the frequency of
a word in a document as well as in the collection of docu-
ments for computing weights. The weight aiz of word i in
document z is computed as a combination of TF (i, z) and
IDF (i). Term Frequency, TF (i, z) treats all words, as
equally important when it comes to assessing relevancy of
a query. It is a potential problem, as in most of the cases;
certain terms have little or no discriminating power in
determining relevancy. For example, a collection of doc-
uments on the recommender systems industry is likely to
have the term ’recommender’ in almost every document.
Hence, there is a need for a mechanism, which attenuates
the effect of frequently occurring terms in a collection of
document. Inverse Document Frequency (IDF)15 for a
word, IDF (i), is used for this purpose and is calculated
from DF (i), Document Frequency as follows:

IDF (i) = log
(X

DF (i)

)
. (4)

Intuitively, the IDF of a word is high if it occurs in one
document and is low if it occurs in many documents. A
composite weight aiz for word i in document k is calcu-
lated by combining the TF and IDF as follows:

aiz = TF (i, z)× IDF (i). (5)

After indexing, the feature selection step is preformed,
which is discussed below.

3.3.3 Feature Selection

The feature space in a typical vector space model can be
very large, which can be reduced by feature selection pro-
cess. Feature selection process reduces the feature space
by eliminating useless noise words having little (or no)
discriminating power in a classifier, or having low signal-
to-noise ratio. Several approaches are used for feature
selection, such as DF-Thresholding, χ2 statistic, and in-
formation gain [34]. We used DF-Thresholding feature
selection technique.

3.4 Naive Bayes Classifier

The Naive Bayes classifier is based on the Bayes theo-
rem with strong (Naive) independence assumption, and
is suitable for the cases having high input dimensions.
Using the Bayes theorem, the probability of a document
d being in class Cj is calculated as follows:

15This has become the standard term, though it is very poorly
formed.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

P (Cj |d) =
P (Cj)P (d|Cj)

P (d)
, (6)

where P (Cj |d), P (Cj), P (d|Cj), and P (d) are called the
posterior, prior, likelihood, and evidence respectively.

The Naive assumption is that features are conditionally
independent, for instance in a document the occurrence
of words (features) do not depend upon each other16 [36].
Formally, if a document has a set of features F1, · · · , Fh

then we can express equation 6 as follows:

P (Cj |d) =

P (Cj)

h∏

i=1

P (Fi|Cj)

P (F1, · · · , Fh)
. (7)

An estimate P̂ (Cj) for P (Cj) can be calculated as:

P̂ (Cj) =
Aj

A
, (8)

where Aj is the total number of training documents that
belongs to category Cj and A is the total number of train-
ing documents. To classify a new document, Naive Bayes
calculates posteriors for each class, and assigns the doc-
ument to that particular class for which the posterior is
the greatest.

In our case, we used the approach proposed in [25] for
a book recommender system and in [37] for a movie rec-
ommender system, with the exception that we used DF-
Thresholding feature selection scheme for selecting the
most relevant features. We assume we have S possible
classes, i.e. C = {C1, C2, · · · , CS}, where S = 5 for
MovieLens and S = 10 for FilmTrust dataset. We have
T types of information about a movie—keywords, tags,
actors/actress, directors, plot, user comments, genre, and
synopsis. We constructed a vector of bags-of-words [34],
dt against each type. The posterior probability of a
movie, ny, is calculated as follows:

P (Cj |ny) =

P (Cj)

T∏

t=1

|dt|∏

i=1

P (wti|Cj , Tt)

Pny

, (9)

where, P (wti|Cj , Tt) is the probability of a word wti given
class Cj and type Tt.

We use Laplace smoothing [36] to avoid the zero proba-
bilities and log probabilities to avoid underflow.

3.5 Support Vector Machines (SVM)

Support vector machines are a set of related supervised
learning methods with a special property that they si-

16Due to this assumption, the Naive Bayes classifier can handle
high input dimension.

multaneously minimize the empirical classification error
and maximize the geometric margin; hence they are also
known as maximum margin classifiers. SVM works well
for classification and especially for text categorization
[36, 38]. Joachims [38] compared different text catego-
rization algorithms under the same experimental condi-
tions, and showed that SVM perform better than con-
ventional methods like Rocchio, C4.5, K-NN, etc. SVM
work well for text categorization problems, because (1)
they can cope with high dimension input space (2) they
assume that the input space contains few irrelevant fea-
tures and (3) they are suited for problems with sparse
instances.

If we consider a two-class, linearly separable classifica-
tion problem we can have many decision boundaries. In
SVM, the decision boundary should be as far away from
the data of both classes as possible. The training of the
SVM tries to maximize the distance between the train-
ing samples of the two classes. The SVM classifies a new
vector d′ into class by a following decision rule:

nsv∑

j=1

αjyjdjd
′ + b, (10)

where, nsv is the number of support vectors, αj are the
support vectors, yi ∈ { +1,−1 } are the class labels, and
dj are the training vectors. This decision rule classifies d′

as class +1 if the sum is positive and class -1 otherwise.

SVMs can also handle non-linear decision boundary us-
ing the kernel trick. The key idea is to transform the
input space into a high dimensional feature space. After
applying this transformation, the linear operation in the
feature space becomes equivalent to a non-linear opera-
tion in the input space. Hence it reduces complexity and
classification task becomes relatively easy. This transfor-
mation is denoted as:

φ : X 7→ F , (11)

where X is the input space and F is the feature space.
Many kernel functions can be used, for example, linear
kernel, polynomial kernel, and radial base kernel [39].

For recommender systems settings, vectors of features
(i.e. words) consisting of TF-IDF weights, are con-
structed against each class. Like Naive Bayes classi-
fier, we have 5 classes for MovieLens and 10 classes for
FilmTrust dataset respectively. We normalize the data
in scale of 0 − 1 and used LibSVM [40] for binary clas-
sification. We used linear kernel and trained the cost
parameter C using the training set. We used linear ker-
nel rather than radial basis function (RBF), as other re-
searchers have found that if the number of features are
very large compared to the number of instances, there is
no significant benefit of using RBF over linear kernel [39].

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

6.11

11.37

27.14

34.17

21.20

0

5

10

15

20

25

30

35

40

1 2 3 4 5

%
 a

g
e

 R
a

t
in

g
s

Ratings Scale

Figure 1: Distribution of MovieLens dataset (ML).

Furthermore, tuning parameters in RBF and polynomial
kernels is very computation intensive given a large fea-
ture size. For multi class problem, several methods have
been proposed, such as one-verse-one (1v1), one-verse-
all (1vR), Directed Acyclic Graph (DAG) [36]. We did
not find any significant difference between the results ob-
tained by 1v1 and 1vR and DAG, hence we show results
in case of 1v1 only.

4 Combining Item-Based CF and Classi-

fication approaches for Improved Rec-

ommendations

We gave a simple generalized algorithm for combining
the classification approach with CF. We first show how
a Naive Bayes classification approach can be combined
with CF, and then show how SVM (or other classification
approaches) can be combined with CF.

4.1 Combining Item-Based CF and Naive
Bayes Classifier (RecNBCF)

We propose a framework for combining the item-based
CF with the Naive Bayes classifier. The idea is to train
Naive Bayes classifier in off-line stage for generating rec-
ommendations. The prediction computed by the item-
based CF using on-line stage is used if we have less con-
fidence in the prediction computed by the Naive Bayes,
else Naive Bayes’s prediction is used. We propose a sim-
ple approach for determining the confidence in the Naive
Bayes’s prediction.

Let P̂NB , P̂ICF , and P̂Final represent the predictions
generated by the Naive Bayes classifier, item-based CF,
and the prediction we are confident to be accurate. Let
Pr(Cj) be the posterior probability of class j computed
by the Naive Bayes classifier, L be a list containing the
probabilities of each class, and d(i, j) be the absolute
difference between two class probabilities, i.e. d(i, j) =

2.41
6.67

8.53

35.55

46.81

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

%
a

g
e

 R
a

t
in

g
s

Rating Scale

Figure 2: Distribution of FilmTrust dataset. Rating scale
shown by 1, represents the counts of ratings 1 and 2; 2,
represents the counts of ratings 3 and 4; 3, represents
the counts of ratings 5 and 6; 4, represents the counts of
ratings 7 and 8; and 5, represents the counts of ratings 9
and 10.

|L(i) − L(j)| = |Pr(Ci) − Pr(Cj)| where i 6= j. The
proposed hybrid approach is outlined in algorithm 1.

Step 2 to 5 (P̂ICF = 0) represent the case, where item-
based CF fails to make a prediction17. In this case, we use
prediction made by the Naive Bayes classifier. Step 7 to
16 determine the confidence in Naive Bayes’s prediction.
Confidence in Naive Bayes’s prediction is high when the
posterior probability of the predicted class is sufficiently
larger than others. If d(S, S − 1) is sufficiently large,
then we can assume that the actual value of an unknown
rating has been predicted. The parameter α represents
this difference and can be found empirically on training
set. The parameter β tells us if the difference between the
predictions made by the individual recommender systems
is small, then again we are confident that Naive Bayes
is able to predict a rating correctly. This is a kind of
heuristic approach learnt from the prediction behaviour
of CF and Naive Bayes. CF gives prediction in floating
point scale, and Naive Bayes gives in integer point scale.
CF recommender systems give accurate recommendation,
but mostly they do not predict actual value, for example,
if the actual value of an unknown rating is 4, then CF’s
prediction might be 3.9 (or 4.1, or some other value). On
the other hand, Naive Bayes can give actual value, for
example in the aforementioned case, it might give us 4.
However, if Naive Bayes is not very confident, then it
might result in prediction that is not close to the actual
one, e.g. 3, 2, etc. We take the difference of individual
recommender’s predictions, and if it is less than a thresh-
old (β), then we use Naive Bayes’s prediction assuming

17This can occur when no similar item is found against a target
item, for example, in new-item cold start scenario—when only the
active user has rated the target item.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

that it has been predicted correctly. Steps 17 to 28 rep-
resent the case, where we have tie cases in Naive Bayes
posterior probabilities. In this scenario, we take differ-
ence of each tie class with CF’s prediction and use that
class as final prediction, if the difference is less than β.
Step 29 to 30 describe the case where we do not have
enough trust in Naive Bayes’s prediction, hence we use
prediction made by the item-based CF.

Algorithm 1 RecNBCF

1: procedure Recommend(P̂ICF , P̂NB , L)
2: if (P̂ICF == 0) then
3: a. P̂Final ← P̂NB

4: b. return P̂Final

5: end if
6: Sort the list L in ascending order, so that L(1)

contains the lowest value and L(S) contains the high-
est value.

7: if (L(S) 6= L(S − 1)) then
8: if d(S, S − 1) > α then
9: a. P̂Final ← P̂NB

10: b. return P̂Final

11: else
12: if (|P̂NB − P̂ICF | < β) then
13: a. P̂Final ← P̂NB

14: b. return P̂Final

15: end if
16: end if
17: else (i.e. L(S) = L(S − 1))
18: for t← S − 1, 1 do
19: if (L(S) == L(t)) then
20: if (|P̂ICF − t| < β) then
21: a. P̂Final ← t

22: b. return P̂Final

23: end if
24: else
25: Break for
26: end if
27: end for
28: end if
29: P̂Final ← P̂ICF

30: return P̂Final

31: end procedure

4.2 Combining Item-Based CF and SVM
Classifier (RecSVMCF)

Algorithm 1 can be used to combine the Item-based CF
and SVM classifiers. The methodology is the same, ex-
cept Pr(Cj) represents the SVM’s estimated probability
for the class j. Parameters can be learned in the training
set through cross validation. Similarly any other classifier
can be combined with collaborative filtering.

5 Experimental Evaluation

5.1 Dataset

We used MovieLens (ML) and FilmTrust (FT) datasets
for evaluating our algorithm. MovieLens data set con-
tains 943 users, 1682 movies, and 100 000 ratings on
an integer scale 1 (bad) to 5 (excellent). Movie-
Lens data set has been used in many research projects
[11, 41, 27]. The sparsity of this dataset is 93.7%(
1− non zero entries

all possible entries
=1− 100000

943×1682
= 0.937

)
.

We created the second dataset by crawling the FilmTrust
website. The dataset retrieved (on 10th of March 2009)
contains 1214 users, 1922 movies, and 28 645 ratings on a
floating point scale of 1.0 (bad) to 10.0 (excellent). The
sparsity of this dataset is 99.06%. We digitized the rating
scale between 1 to 10 by rounding off a rating to the
nearest integer value. The distribution of the data is
shown in figure 1 and figure 218.

5.2 Feature Extraction and Selection

We downloaded information about movies given in
MovieLens and FilmTrust dataset from IMDB. After stop
word removal and stemming, we constructed a vector of
keywords, tags, directors, actors/actresses, and user re-
views given to a movie in IMDB. We used TF-IDF ap-
proach for determining the weights of words in a docu-
ment (i.e. movie) with DF-Thresholding feature selec-
tion. DF Thresholding approach computes the Docu-
ment Frequency (DF) for each word in the training set
and removes words having DF less than a predetermined
threshold [36]. The assumption behind this is that, these
rare words neither have the discriminating power for a
category prediction nor do they influence the global per-
formance. We normalize the data between 0 and 1.

It must be noted that the text categorization and rec-
ommender system share a number of characteristics. A
vector space model is the most commonly used document
representation technique, in which documents are repre-
sented by vectors of words. Each vector component rep-
resents a word feature and approaches, such as boolean
weights, TF − IDF , normalized TF − IDF [34] etc. can
be used for determining the weight of a word in document.
The resulting representation also called attribute-value
representation, can be very large (e.g. 10 000 dimen-
sions and more), because there is one dimension for each
unique word found in the collection of documents after
stop word removal and stemming. A word-by-document
matrix is used to represent a collection of documents,
where each entry symbolizes the occurrence of a word
in a document. This matrix is typically very sparse, as
not every word appears in every document. The recom-
mender systems share the same characteristic. In [24] the

18Both dataset can be downloaded from:
https://sourceforge.net/projects/hybridrecommend.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

authors argues that each user can be viewed as a docu-
ment and each item rated by a user can be represented
by a word appearing in a document. Our assumption is
slightly different from the one in [24] we view each user
as a document, however we get features (words) against
each item rated by a user. Each item is represented by
a vector of bags of words and user profile is represented
by a big vector obtained by concatenating the vectors of
bags of words of each item rated by the user. In this way,
a user profile captured by a recommender system is very
similar to the vector space model in text categorization.
Hence, our assumption is that the basic text categoriza-
tion algorithms can be applied to recommender system
problem and that the results should be comparable.

5.3 Metrics

Several metrics have been used for evaluating recom-
mender systems which can broadly be categorized into
predictive accuracy metrics, classification accuracy met-
rics, and rank accuracy metrics [42]. The predictive ac-
curacy metrics measure how close is the recommender
system’s predicted value of a rating, with the true value
of that rating assigned by the user. These metrics include
mean absolute error, mean square error, and normal-
ized mean absolute error, and have been used in research
projects such as [13, 43, 12, 11]. The classification accu-
racy metrics determine the frequency of decisions made
by a recommender system, for finding and recommending
a good item to a user. These metrics include precision,
recall, F1 measure, and receiver operating characteristic
curve, and have been used in [12, 44]. The last category
of metrics, rank accuracy metrics measure the proximity
between the ordering predicted by a recommender system
to the ordering given by the actual user, for the same set
of items. These metrics include half-life utility metric
proposed by Brease [13].

Our specific task in this paper is to predict scores for
items that already have been rated by actual users, and
to check how well this prediction helps users in select-
ing high quality items. Keeping this into account, we
use Mean Absolute Error (MAE) and Receiver Operating
Characteristic (ROC) sensitivity.

MAE measures the average absolute deviation between
a recommender system’s predicted rating and a true rat-
ing assigned by the user. The goal of a recommendation
algorithm is to minimize MAE. It is computed as follows:

|E| =

O∑

i=1

|pi − ai|

O
,

where pi and ai are the predicted and actual values of a
rating respectively, and O is the total number of samples
in the test set. A sample is a tuple consisting of a user

ID, movie ID, and rating, < uid,mid, r >, where r is the
rating a recommender system has to predict. It has been
used in [13, 11, 29, 3, 45].

ROC is the extent to which an information filtering sys-
tem can distinguish between good and bad items. ROC
sensitivity measures the probability with which a system
accept a good item. The ROC sensitivity ranges from 1
(perfect) to 0 (imperfect) with 0.5 for random. To use
this metric for recommender systems, we must first de-
termine which items are good (signal) and which are bad
(noise). In [46, 37] the authors consider a movie “good”
if the user rated it with a rating of 4 or higher and “bad”
otherwise. The flaw with this approach is that it does
not take into account the inherent difference in the user
rating scale—a user may consider a rating of 3 in a 5
point scale to be good, while another may consider it
bad. We consider an item good if a user rated it with a
score higher than their average (in the training set) and
bad otherwise. It has been used in [29, 3].

Furthermore, we used coverage that measures how many
items a recommender system can make recommendation
for. It has been used in [42, 29, 3, 45]. We did not take
coverage as the percentage of items that can be recom-
mended/predicted from all available ones. The reason
is, a recommendation algorithm can increase coverage by
making bogus predictions, hence coverage and accuracy
must be measured simultaneously. We selected only those
items that have already been rated by the actual users.

5.4 Evaluation Methodology

We performed 5-fold cross validation and reported the av-
erage results. Each distinct fold contains 20% randomly
ratings of each user as the test set and the remaining 80%
as the training set. We further subdivided our training
set into a validation set and training set for measuring
the parameters sensitivity. For learning the parameters,
we conducted 5-fold cross validation on the 80% training
set, by selecting the different test and training set each
time, and taking the average of results.

6 Result and Discussion

We compared our algorithm with eight different algo-
rithms: user-based CF using Pearson correlation with
default voting (UBCFDV) [13], item-based CF (IBCF)
using adjusted-cosine similarity19 [11], a hybrid rec-
ommendation algorithm, IDemo4, proposed in [27], a
Naive Bayes classification approach (NB) using item con-
tent information, a SVM classification approach using
item content information, two Naive hybrid approaches
(NBIBCF, SVMIBCF) for generating recommendation
by taking the average of the prediction generated by a

19With the exception that we used adjusted cosine similarity, and
significant weights. For more information, refer to [45].

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05

M
e

a
n

 A
b

s
o

lu
te

 E
ro

rr
 (

M
A

E
)

Parameter C (Log Scale)

Figure 3: Determining the optimal value of parameter C in SVM for MovieLens (ML) dataset. X-axis shows the
value of C in log scale. The corresponding MAE is shown on y-axis. The MAE decreases with the increase in the
value of C, and becomes stable after C = 2−9.

Naive Bayes and an item-based CF, and SVM and item-
based CF, and content-boosted algorithm (CB) proposed
in [18]. Furthermore, we tuned all algorithms for the best
mentioning parameters.

5 10 15 20 25 30 35 40 45 50
0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

Neighbourhood Size (ML Dataset)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

5 10 15 20 25 30 35 40 45 50
1.44

1.45

1.46

1.47

1.48

1.49

1.5

Neighbourhood Size (FT Dataset)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Figure 4: Determining the optimal value of neighbour-
hood size (K) for MovieLens (ML) and FilmTrust (FT)
dataset.

6.1 Learning the Optimal Values of Param-
eters

The purpose of these experiments is to determine, which
of the parameters affect the prediction quality of the pro-
posed algorithms, and to determine their optimal values.

6.1.1 Finding the Optimal Number of Neigh-
bours (K) in Item-based Collaborative Fil-
tering

To measure the optimal number of neighbours, we
changed the neighbourhood size from 5 to 50 with a dif-
ference of 5, and observed the corresponding MAE. Fig-
ure 4 shows that MAE decreases in general with the in-
crease in the neighbourhood size. This is in contrast with
the conventional item-based CF proposed in [11], where
the MAE increases with the increase in the neighbour-
hood size. The reason is that the authors in [11] did not
use any significant weighting scheme and used weighted
sum prediction generation formula, whereas, we are us-
ing significant weighting schemes and adjusted weighted
sum prediction generation formula20. Figure 4 shows
that the MAE keeps on decreasing with the increase in
the number of neighbours, reaches at its minimum for
K = 30 for MovieLens dataset and K = 25 for FilmTrust
dataset, and then either starts increasing (though incre-

20The detail is not in the scope of this work, please refer to [45].

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

Table 1: A comparison of the proposed algorithms with others in terms of cost (based on [41]), accuracy metrics,
and coverage. IBCFSW represents IBCF with significant weights applied over the rating similarity. The best results
have been shown in bold.

Algorithm On-line Cost
Best MAE ROC-Sensitivity Coverage

(ML) (FT) (ML) (FT) (ML) (FT)
UBCFDV O(M2N) +O(NM) 0.743 1.448 0.714 0.502 99.789 93.611
IBCF O(N2) 0.755 1.449 0.674 0.521 99.867 95.100
IBCFSW O(N2) 0.744 1.425 0.787 0.530 99.867 95.100
IDemo4 O(N2) 0.745 1.422 0.739 0.528 99.991 95.407
RecNBCF O(N2) +O(Nf) 0.696 1.368 0.785 0.542 100 99.992
RecSVMCF O(N2) +O(Nnsv) 0.684 1.346 0.793 0.536 100 99.992
NB O(Nf) 0.815 1.471 0.708 0.515 100 99.992
SVM O(Nnsv) 0.779 1.463 0.699 0.512 100 99.992
NBIBCF O(N2) +O(Nf) 0.768 1.458 0.717 0.526 100 99.992
SVMIBCF O(N2) +O(Nnsv) 0.759 1.445 0.723 0.534 100 99.992
CB O(M2N) +O(NM) +O(Nf) 0.711 1.393 0.748 0.531 100 99.995

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

DF Threshold (ML Dataset)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.46

1.48

1.5

1.52

1.54

DF Threshold (FT Dataset)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

Figure 5: Determining the optimal value of DF for
MovieLens (ML) and FilmTrust (FT) dataset.

ment is very small) again or stays constant. For the sub-
sequent experiments, we choose K = 30 for MovieLens
and K = 25 for FilmTrust dataset as optimal neighbour-
hood size.

6.1.2 Finding the Optimal Value of C for SVM

The cost parameter, C, controls the trade off between
permitting training errors and forcing rigid margins. It
allows some misclassification by creating soft margins. A
more accurate model can be created by increasing the
value of C that increases the cost of misclassification,
however the resulting model may over fit. Similarly, a
small value of C may under fit the model. Figure 3 shows,
how MAE changes with the change in the value of C. We

varied the value of C from 2−15 to 215 by increasing the
power by 2. Figure 3 shows that the MAE is large for
the small value of C, which may be due to under fitting.
The MAE decreases with the increase in the value of C,
reaches at its minimum for C = 2−9, and then becomes
stable for C > 2−9 (between 1.00E−03 and 1.00E−02 in
log scale). We choose C = 2 for MovieLens dataset to
avoid any over fitting and under fitting of the model.
FilmTrust dataset shows the similar results (not shown),
hence we choose C = 2 as an optimal value for FilmTrust
dataset.

6.1.3 Finding the Optimal Value of DF Thresh-
old for Naive Bayes Classifier

For determining the optimal value of DF , we varied the
value of DF from 0 to 1.0 with a difference of 0.0521. The
results are shown in figure 5. Figure 5 shows that DF =
0.50 and DF = 0.30 gave the lowest MAE for MovieLens
and FilmTrust dataset respectively. It is worth noting
that, the values of parameters are found to be different
for MovieLens and FilmTrust dataset, which is due to
the fact that both dataset have different density, rating
distribution, and rating scale. We choose these values of
DF for the subsequent experiments.

6.1.4 Finding the Optimal Value of DF Thresh-
old for SVM

For determining the optimal value of DF , we varied the
value of DF from 0 to 1.0 with a difference of 0.05. The
results (not shown) did not show any improvement. We
did not perform any feature selection for SVM.

21DF = 0.05 means that the word should occur at-least in 5%
of the movies seen by an active user, to be considered as a valid
feature.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Parameter AlphaParameter Beta

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

Figure 6: Finding the optimal value of α and β in
RecNBCF , through grid search.

6.1.5 Finding the Optimal Value of α and β for
RecNBCF Algorithm

For MovieLens dataset, we performed a series of exper-
iments by changing α from 0.02 to 0.4 with a difference
of 0.02. For each experiment, we changed β from 0.05 to
1.0 with difference of 0.05, keeping the α parameter fixed,
and observed the corresponding MAE. The grid coordi-
nates which gave the lowest MAE are recorded to be the
optimal parameters. Figure 6 shows that the MAE de-
creases with the increase in the value of alpha and reaches
it peak at α = 0.34. After that it either increases or stays
constant. We note that the MAE is minimum between
β = 0.7 to β = 0.8. Keeping the results in account, we
choose the optimal value of α and β to be 0.34 and 0.7
respectively. For FilmTrust dataset, the optimal parame-
ters are found to be α = 0.20 and β = 0.9. We note that
the values of parameters are found different for Movie-
Lens and FilmTrust dataset.

6.1.6 Finding the Optimal Value of α and β for
RecSVMCF Algorithm

For MovieLens dataset, we performed a series of exper-
iments by changing α from 0.02 to 0.4 with a difference
of 0.02. For each experiment, we changed β from 0.05
to 1.0 with difference of 0.05, keeping the α parameter
fixed, and observed the corresponding MAE. Again, the
grid coordinates which gave the lowest MAE are recorded
to be the optimal parameters. Figure 7 shows that the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Parameter Alpha
Parameter Beta

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Figure 7: Finding the optimal value of α and β in
RecSVMCF , through grid search.

MAE decreases with the increase in the value of alpha
and reaches it peak at α = 0.36. After that it either
increases or stays constant. We note that at β = 0.7,
the MAE is minimum. Keeping the results in account,
we choose the optimal value of α and β to be 0.36 and
0.7 respectively. For FilmTrust dataset, the optimal pa-
rameters are found to be α = 0.25 and β = 0.85. We
note that the values of parameters are found different for
MovieLens and FilmTrust dataset.

6.2 Performance Evaluation With Other Al-
gorithms

6.2.1 Performance Evaluation in Terms of MAE,
ROC-Sensitivity, and Coverage

The MAE, ROC-sensitivity, and coverage of the proposed
algorithms are shown in table 1. Table 1 shows that
the proposed algorithms outperform other significantly
in terms of MAE and ROC-sensitivity, whereas they give
comparable results to others in terms of coverage metric.
The reason for such good results is that when a classifier
has sufficiently large confidence in prediction, then it can
correctly classify an instance (a unknown rating), result-
ing in the reduced MAE, and increased ROC-sensitivity
and coverage. The percentage improvement, in case of
RecNBCF , over NBIBCF is 9.2% and 6.17% for Movie-
Lens and FilmTrust dataset respectively. The percentage
improvement, in case of RecSVMCF , over SVMIBCF is
9.8% and 6.8% for MovieLens and FilmTrust dataset re-
spectively. These results indicate that our algorithms give

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

statistically significant results than the naive approaches
used to combine the classifiers and CF. It is worth not-
ing that for FilmTrust dataset, ROC sensitivity is lower,
for all algorithms in general, as compared to MovieLens
dataset. We believe that it is due to the rating distri-
bution. Furthermore, the coverage of the algorithms is
much lower in the case of FilmTrust dataset, which is
due to the reason that it is very sparse.

6.2.2 Performance Evaluation Under Cold-Start
Scenarios

We checked the performance of the algorithm under new
item cold-start problems. When an item is rated by only
few users, then item-based and user-based CF will not
give good results. Our proposed scheme works well in
new item cold-start problem scenario, as it does not solely
depend on the number of users who have rated the target
item for finding the similarity. We assume that item-
based CF fails to make prediction, if the target item is
rated by very few users (γ). The parameter γ is learned
through the training set, and is found to be 10 for Movie-
Lens and 8 for FilmTrust dataset. This value of γ indi-
cates that under new-item cold-start scenario, it is better
to use classification approach rather than CF approach.

For testing our algorithm in this scenario, we selected
1000 random samples of user/item pairs from the test set.
While making prediction for a target item, the number of
users in the training set who have rated target item were
kept 0, 2, and 5. The corresponding MAE ; represented
by MAE0, MAE2, MAE5, is shown in table 2. Table 2
shows that CF and IDemo4 fail to make prediction when
only the active user rated the target item, and in general
they gave inaccurate predictions. It is worth noting that,
in e-commerce domains (e.g. Amazon), there may be mil-
lions of items that are rated by only a few users (< 5).
In this scenario, CF and related approaches would results
in inaccurate recommendations. The poor performance
of user-based CF is due to the reason that, we have less
neighbours against an active user, hence performance de-
grades. The reason in case of item-based CF is that,
the similar items found after applying rating correlation
may be not actually similar. As while finding similar-
ity, we isolate all users who have rated both target item
and the item we find similarity with. In this case, we
have maximum 5 users who have rated both items, as a
result, similarity found by adjusted cosine measure will
be misleading. The IDemo4 produces poor results, as it
operates over candidate neighbouring items found after
applying the rating similarity. Both content-boosted and
the proposed approaches give good results as they make
effective use of user’s content profile that can be used by
a classifier for making predictions.

It must be noted that our algorithm will not give good

results in the case of new user cold-start problems. The
reason is that we do not have enough training data to
train classifiers. This problem can effectively be solved
by applying the vector similarity [13] over user or item’s
content profiles to find similar users or items, which can
be used for making predictions. Alternatively, user con-
tent profiles can be matched with item content profiles to
generate recommendations.

6.2.3 Performance Evaluation In Terms of Cost

Table 1 shows the on-line cost22 of different algorithms
used in this work. Here, f is the number of fea-
tures/words in the dictionary (used in a classifier). The
training computation complexity of SVM and Naive
Bayes classifier, for one user, is O(N3) and O(Nf) re-
spectively. We train M classifiers, so total training com-
putation complexity becomes O(MN3) for SVM and
O(MNf) for Naive Bayes. The classifying computation
complexity for one sample (rating) is O(nsv) for SVM
and O(f) for Naive Bayes. If we classify N items then it
becomes O(Nnsv) for SVM and O(Nf) for Naive Bayes.

Table 1 shows that the proposed algorithms are scalable
and practical as their on-line cost is less or equal to the
cost of other algorithms. We are using item-based CF,
whose on-line cost is less than that of user-based CF used
in [18]23. Even if we consider using Naive Bayes classifier
to fill the user-item rating matrix and then use item-based
CF over this filled matrix, then our cost will be less than
that. The reason is, in the filled matrix case, one has to go
through all the filled rows of matrix for finding the similar
items. For a large e-commerce system like Amazon, where
we already have millions of neighbours against an active
user/item, filling the matrix and then going through all
the users/items for finding the similar users/items in not
pragmatic due to limited memory and other constraint
on the execution time of the recommender system.

6.3 Eliminating Over Specialization Prob-
lem: Producing Diverse Recommenda-
tions

Pure content-based recommender systems recommend
items that are the most similar to a user’s profile. In
this way, a user can not find recommendations that are
different from the ones it has already rated or seen. The
proposed algorithms can overcome the over-specialization
problem caused by pure content-based filtering. The
reason is that they do not totally depend on classifi-

22It is the cost for generating predictions for N items. We assume
that we compute item similarities and train classifier in off-line
fashion.

23It is because, we can build expensive and less volatile item
similarity model in off-line fashion. Hence on-line cost becomes
O(N2) in worst case, and in practical it is O(KN), where K is the
number of top K most similar items against a target item (K < N).

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

Table 2: Performance evaluation under new item cold-start problem. If the number of users who have rated the
target item is zero, then the conventional approaches fail to produce recommendation. The table shows that the
proposed approaches produce more accurate recommendations than the conventional ones. The best results have
been shown in bold.

Algo.
MAE0 MAE2 MAE5

(ML) (FT) (ML) (FT) (ML) (FT)
UBCFDV – – 1.229 2.197 0.920 1.801
IBCFSW – – 1.192 2.152 0.864 1.742
IDemo4 – – 1.171 2.123 0.849 1.714
CB 0.830 1.491 0.815 1.476 0.802 1.465
RecNBCF 0.809 1.478 0.809 1.478 0.809 1.478
RecSVMCF 0.791 1.467 0.791 1.467 0.791 1.467

cation algorithms trained on the content information.
They can make recommendation outside the preferences
(outside the box [19]) of an individual by switching to the
CF recommendation approach. Diversity [42] of recom-
mendations is very important, and a system should not
recommend items to users that are very similar to the
previously recommended items. If we construct a list of
top-N recommendation for an active user, then our algo-
rithms would introduce some sort of randomness in the
recommendation list, resulting in a range of alternatives
to be recommended rather than homogeneous set of alter-
natives. By switching to machine learning classifiers and
CF approaches, our algorithms can balance the accuracy
and diversity of recommendations.

7 Conclusion And Future Work

In this paper, we have proposed a switching hybrid rec-
ommendation approach by combining item-based collab-
orative filtering with a classification approach. We em-
pirically show that our recommendation approach out-
perform others in terms of accuracy, and coverage and is
more scalable.

As a future work, we would like to use over sampling and
under sampling [36] schemes to overcome the imbalanced
dataset problem. We note in figures 1 and 2 that the dis-
tribution of the data is skewed towards the higher ratings,
hence results of a classifier may be biased. In our work,
we overcome imbalanced dataset problem for SVM classi-
fication, by assigning different penalties to classes accord-
ing to the prior knowledge of users. The prior knowledge
of a user is the fraction of the total number of ratings
belonging to a class to the total number of ratings pro-
vided by the user in the training set. Another important
area of research is to use regression rather than classifica-
tion approaches, which may increase the performance of
our hybrid system. Moreover, different feature selection
algorithms can be used to enhance the performance of
classifiers.

Another interesting area of future research is to apply di-

mensionality reduction techniques to reduce the dimen-
sions of the dataset. Partitional clustering algorithms,
such as KMeans clustering [47], or singular value decom-
position [12] can be applied over the user-item rating ma-
trix to reduce the dimensionality of the dataset. CF can
be applied over the clustered data, making the resulting
system scalable.

Finally, individual predictions made by user-based and
item-based CF can be combined in switching hybrid way.
We hope that combining these two approaches will result
in increase in accuracy, as both of them focus on differ-
ent kind of relationship. In certain cases, user-based CF
may be useful in identifying different kind of relationship
that item-based CF will fail to recognize, for example,
if none of the items rated by an active user are closely
related to the target item nt, then it is beneficiary to
switch to user-oriented perspective that may find set of
users very similar to the active user, who rated target
item nt. Combining these approaches with classification
ones can further increase the performance of our algo-
rithms. Furthermore, we would like to evaluate our algo-
rithms on dataset of domains other than movies, such as
BookCrossing24 dataset.

Acknowledgment

The work reported in this paper has formed part of
the Instant Knowledge Research Programme of Mo-
bile VCE, (the Virtual Centre of Excellence in Mo-
bile & Personal Communications), www.mobilevce.com.
The programme is co-funded by the UK Technology
Strategy Boards Collaborative Research and Develop-
ment programme. Detailed technical reports on this re-
search are available to all Industrial Members of Mobile
VCE. This work has been supported from UET-Taxila
(www.uettaxila.edu.pk) Pakistan. We would like to
thank Juergen Ulbts (http://www.jmdb.de/) and Martin
Helmhout for helping integrating datasets with IMDB.

24http://www.informatik.uni-freiburg.de/ cziegler/BX/

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

References

[1] P. Resnick and H. R. Varian, “Recommender sys-
tems,” Commun. ACM, vol. 40, no. 3, pp. 56–58,
1997.

[2] B. Mobasher, “Recommender systems,” Kunstliche
Intelligenz, Special Issue on Web Mining, vol. 3, pp.
41–43, 2007.

[3] M. Ghazanfar and A. Prugel-Bennett, “An Im-
proved Switching Hybrid Recommender System Us-
ing Naive Bayes Classifier and Collaborative Filter-
ing,” in Lecture Notes in Engineering and Computer
Science: Proceedings of The International Multi
Conference of Engineers and Computer Scientists
2010. IMECS 2010, 17–19 March, 2010, Hong Kong,
pp. 493–502.

[4] J. Y. G Linden, B Smith, “Amazon.com recom-
mendations: item-to-item collaborative filtering,” in
IEEE, Internet Computing, vol. 7, 2003, pp. 76–80.

[5] D. Goldberg, D. Nichols, B. Oki, and D. Terry, “Us-
ing collaborative filtering to weave an information
tapestry,” Communications of the ACM, vol. 35,
no. 12, p. 70, 1992.

[6] U. Shardanand and P. Maes, “Social information fil-
tering:algorithms for automating word of mouth,” in
Proc. Conf. Human Factors in Computing Systems,
1995, pp. 210–217.

[7] L. Terveen, W. Hill, B. Amento, D. McDonald, and
J. Creter, “Phoaks: A system for sharing recommen-
dations,” in Comm. ACM, vol. 40, 1997, pp. 59–62.

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,
and J. Riedl, “GroupLens: An open architecture for
collaborative filtering of netnews,” in Proceedings of
the 1994 ACM conference on Computer supported
cooperative work. ACM New York, NY, USA, 1994,
pp. 175–186.

[9] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Her-
locker, L. R. Gordon, and J. Riedl, “Grouplens: ap-
plying collaborative filtering to usenet news,” Com-
mun. ACM, vol. 40, no. 3, pp. 77–87, March 1997.

[10] A. T. Gediminas Adomavicius, “Toward the next
generation of recommender systems: A survey of
the state-of-the-art and possible extensions,” IEEE
Transactions on Knowledge and Data Engineering,
vol. 17, pp. 734–749, 2005.

[11] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl,
“Item-based collaborative filtering recommendation
algorithms,” in Proceedings of the 10th international
conference on World Wide Web. ACM New York,
NY, USA, 2001, pp. 285–295.

[12] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Application of dimensionality reduction in recom-
mender system–a case study,” in ACM WebKDD
2000 Web Mining for E-Commerce Workshop. Cite-
seer, 2000.

[13] J. S. Breese, D. Heckerman, and C. Kadie, “Empiri-
cal analysis of predictive algorithms for collaborative
filtering.” Morgan Kaufmann, 1998, pp. 43–52.

[14] Y. Park and A. Tuzhilin, “The long tail of recom-
mender systems and how to leverage it,” in Proceed-
ings of the 2008 ACM conference on Recommender
systems. ACM New York, NY, USA, 2008, pp. 11–
18.

[15] M. Pazzani and D. Billsus, “Content-based recom-
mendation systems,” 2007, pp. 325–341.

[16] K. Lang, “Newsweeder: Learning to filter netnews,”
in In Proceedings of the Twelfth International Con-
ference on Machine Learning, 1995.

[17] S. Alag, Collective Intelligence in Action. Manning
Publications, October, 2008.

[18] P. Melville, R. J. Mooney, and R. Nagarajan,
“Content-boosted collaborative filtering for im-
proved recommendations,” in in Eighteenth National
Conference on Artificial Intelligence, 2002, pp. 187–
192.

[19] R. Burke, “Hybrid recommender systems: Survey
and experiments,” User Modeling and User-Adapted
Interaction, vol. 12, no. 4, pp. 331–370, November
2002.

[20] M. J. Pazzani, “A framework for collaborative,
content-based and demographic filtering,” Artificial
Intelligence Review, vol. 13, no. 5 - 6, pp. 393–408,
December 1999.

[21] M. Claypool, A. Gokhale, T. Mir, P. Murnikov,
D. Netes, and M. Sartin, “Combining content-based
and collaborative filters in an online newspaper,” in
In Proceedings of ACM SIGIR Workshop on Recom-
mender Systems, 1999.

[22] R. Burke, “Integrating knowledge-based and
collaborative-filtering recommender systems,” in
Proceedings of the Workshop on AI and Electronic
Commerce, 1999.

[23] S. Al Mamunur Rashid, G. Karypis, and J. Riedl,
“ClustKNN: a highly scalable hybrid model-&
memory-based CF algorithm,” in Proc. of WebKDD
2006: KDD Workshop on Web Mining and Web Us-
age Analysis, August 20-23 2006, Philadelphia, PA.
Citeseer.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

[24] T. Zhang and V. Iyengar, “Recommender systems
using linear classifiers,” The Journal of Machine
Learning Research, vol. 2, p. 334, 2002.

[25] R. J. Mooney and L. Roy, “Content-based book rec-
ommending using learning for text categorization,”
in Proceedings of DL-00, 5th ACM Conference on
Digital Libraries. San Antonio, US: ACM Press,
New York, US, 2000, pp. 195–204.

[26] M. Vozalis and K. Margaritis, “Collaborative filter-
ing enhanced by demographic correlation,” in AIAI
Symposium on Professional Practice in AI, of the
18th World Computer Congress, 2004.

[27] ——, “On the enhancement of collaborative filtering
by demographic data,” Web Intelligence and Agent
Systems, vol. 4, no. 2, pp. 117–138, 2006.

[28] Y. S. Marko Balabanovic, “Fab: content-based, col-
laborative recommendation,” in Communications of
the ACM archive, vol. 40, Miami, Florida, USA,
1997, pp. 66–72.

[29] M. A. Ghazanfar and A. Prugel-Bennett, “A
scalable, accurate hybrid recommender sys-
tem,” in The 3rd International Conference on
Knowledge Discovery and Data Mining (WKDD
2010). IEEE, January 2010. [Online]. Available:
http://eprints.ecs.soton.ac.uk/18430/

[30] B. Sarwar, J. Konstan, J. Herlocker, B. Miller, and
J. Riedl, “Using filtering agents to improve predic-
tion quality in the GroupLens research collaborative
filtering system,” in Proceedings of the 1998 ACM
conference on Computer supported cooperative work.
ACM New York, NY, USA, 1998, pp. 345–354.

[31] N. Good, J. Schafer, J. Konstan, A. Borchers,
B. Sarwar, J. Herlocker, and J. Riedl, “Combining
collaborative filtering with personal agents for better
recommendations,” in Proceedings of the National
Conference on Artificial Intelligence. JOHN WI-
LEY & SONS LTD, 1999, pp. 439–446.

[32] H. Ma, I. King, and M. Lyu, “Effective missing data
prediction for collaborative filtering,” in Proceedings
of the 30th annual international ACM SIGIR con-
ference on Research and development in information
retrieval. ACM, 2007, p. 46.

[33] U. Nahm and R. Mooney, “Text mining with infor-
mation extraction,” 2002.

[34] K. Aas and L. Eikvil, “Text categorisation: A sur-
vey.” 1999.

[35] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin,
and C. G. Nevill-Manning, “Kea: practical auto-
matic keyphrase extraction,” in DL ’99: Proceedings
of the fourth ACM conference on Digital libraries.
ACM Press, 1999, pp. 254–255.

[36] I. H. W. Witten and F. Eibe, Data Mining: Prac-
tical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann, Octo-
ber 1999.

[37] K. Jung, D. Park, and J. Lee, “Hybrid Collaborative
Filtering and Content-Based Filtering for Improved
Recommender System,” Lecture Notes in Computer
Science, pp. 295–302, 2004.

[38] T. Joachims, “Text categorization with support vec-
tor machines: Learning with many relevant fea-
tures.” Springer Verlag, 1998, pp. 137–142.

[39] C. Hsu, C. Chang, C. Lin et al., “A practical guide
to support vector classification,” 2003.

[40] C.-C. Chang and C.-J. Lin, LIBSVM:
a library for support vector machines,
http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

[41] M. Vozalis and K. Margaritis, “Using SVD and de-
mographic data for the enhancement of generalized
collaborative filtering,” Information Sciences, vol.
177, no. 15, pp. 3017–3037, 2007.

[42] L. G. T. Jonathan L. Herlocker, Joseph A. Konstan
and J. T. Riedl, “Evaluating collaborative filtering
recommender systems,” ACM Transactions on In-
formation Systems (TOIS) archive, vol. 22, pp. 734–
749, 2004.

[43] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Recommender systems for large-scale e-commerce:
Scalable neighborhood formation using clustering,”
2002.

[44] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Analysis of recommendation algorithms for e-
commerce.” ACM Press, 2000, pp. 158–167.

[45] M. A. Ghazanfar and A. Prugel-Bennett, “Novel
Significance Weighting Schemes for Collabora-
tive Filtering: Generating Improved Recom-
mendations in Sparse Environments,” in The
6th International Conference on Data Mining
2010 (DMIN 10), 2010. [Online]. Available:
http://eprints.ecs.soton.ac.uk/18788/

[46] J. Herlocker, J. Konstan, and J. Riedl, “An algo-
rithmic framework for performing collaborative fil-
tering,” in Proceedings of the 22nd annual inter-
national ACM SIGIR conference on Research and
development in information retrieval. ACM New
York, NY, USA, 1999, pp. 230–237.

[47] P. Berkhin, “Survey of clustering data mining tech-
niques,” 2002.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_09

(Advance online publication: 19 August 2010)

__

