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Abstract— A hybrid Fuzzy Neural Network (FNN)

system is presented in this paper. The proposed

FNN can handle numeric and fuzzy inputs simulta-

neously. The numeric inputs are fuzzified by input

nodes upon presentation to the network while the

fuzzy inputs do not require this translation. The

connections between input to hidden nodes repre-

sent rule antecedents and hidden to output nodes

represent rule consequents. All the connections are

represented by Gaussian fuzzy sets. The mutual

subsethood measure for fuzzy sets that indicates

the degree to which the two fuzzy sets are equal

and is used as a method of activation spread in the

network. A volume based defuzzification method is

used to compute the numeric output of the network.

The training of the network is done using gradient

descent learning procedure. The model has been

tested on three benchmark problems i.e. sine−cosine

and Narazaki Ralescu’s function for approximation

and Iris flower data for classification. Results are also

compared with existing schemes and the proposed

model shows its natural capability as a function

approximator, and classifier.

Keywords: Cardinality, classifier, function ap-

proximation, fuzzy neural system, mutual subsethood

1 Introduction

The conventional approaches to system modeling that are
based on mathematical tools (i.e. difference equations)
perform poorly in dealing with complex and uncertain
systems. The basic reason is that, most of the time; it is
very difficult to find a global function or analytical struc-
ture for a nonlinear system. In contrast, fuzzy logic pro-
vides an inference morphology that enables approximate
human reasoning capability to be applied in a fuzzy infer-
ence system. Therefore, a fuzzy inference system employ-
ing fuzzy logical rules can model the quantitative aspects
of human knowledge and reasoning processes without em-
ploying precise quantitative analysis.
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In recent past, artificial neural network has also played
an important role in solving many engineering problems
[1], [2]. Neural network has advantages such as learning,
adaption, fault tolerance, parallelism, and generalization.
The fuzzy system utilizing the learning capability of neu-
ral networks can successfully construct the input output
mapping for many applications [3], [4]. The benefits of
combining fuzzy logic and neural network have been ex-
plored extensively in the literature [5], [6], [7], [8], [9].
The term neuro-fuzzy system (also neuro-fuzzy methods
or models) refers to combinations of techniques from neu-
ral networks and fuzzy system [10], [11], [12], [13], [14].
This does not mean that a neural network and a fuzzy
system are used in some kind of combination, but a fuzzy
system is created from data by some kind of (heuristic)
learning method, motivated by learning procedures used
in neural networks. The neuro-fuzzy methods are usually
applied, if a fuzzy system is required to solve a problem
of function approximation−or a special case of it, like,
control or classification [15], [16], [17], [18], [19]−and the
otherwise manual design process should be supported and
replaced by an automatic learning process.
In this paper, the attention has been focused on the func-
tion approximation and classification capabilities of the
subsethood based fuzzy neural model (subsethood based
FNN). This model can handle simultaneous admission
of fuzzy or numeric inputs along with the integration of
a fuzzy mutual subsethood measure for activity propa-
gation. A product aggregation operator computes the
strength of firing of a rule as a fuzzy inner product and
works in conjunction with volume defuzzification to gen-
erate numeric outputs. A gradient descent algorithm al-
lows the model to fine tune rules with the help of numeric
data.
The organization of the paper is as follows: Section 2
presents the architectural and operational detail of the
model. Section 3 describes the gradient descent learning
procedure for training the model. Section 4 and Section 5
shows the experiment results for three benchmark prob-
lems based on function approximation and classification.
Finally, the Section 6 concludes the paper.

2 Fuzzy Neural Network system

The proposed architecture of subsethood based Fuzzy
neural network is shown in Fig. 1. Here x1 to xm and
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Figure 1: Architecture of subsethood based FNN model.

xm+1 to xn are numeric and linguistic inputs respectively.
Each hidden node represents a rule, and input-hidden
node connection represents fuzzy rule antecedent. Each
hidden-output node connection represents a fuzzy rule
consequent. Fuzzy set corresponding to linguistic levels
of fuzzy if-then rules are defined on input and output
UODs and are represented by symmetric Gaussian mem-
bership functions specified by a center c and spread σ.
The center and spread of fuzzy weights wij from input
nodes i to rule nodes j are shown as cij and σij of a
Gaussian fuzzy set and denoted by wij = (cij , σij). In a
similar way, consequent fuzzy weights from rule nodes j
to output nodes k are denoted by vjk = (cjk, σjk). Here
y1 to yk . . . yp are the outputs of the subsethood based
FNN model.

2.1 Signal Transmission at Input Nodes

In the proposed FNN the input features x1, ..., xn can be
either linguistic or numeric or the combination of both.
Therefore two kinds of nodes may present in the input
layer of the network corresponding to the nature of input
features.
Linguistic nodes accept the linguistic inputs represented
by a fuzzy sets with a Gaussian membership function and
modeled by a center ci and spread σi. These linguistic in-
puts can be drawn from pre-specified fuzzy sets as shown
in Fig. 2, where three Gaussian fuzzy sets have been de-
fined on the universe of discourse (UODs) [-1,1]. Thus,
a linguistic input feature xi is represented by the pair of
center and spread (ci, σi). No transformation of inputs
takes place at linguistic nodes in the input layer. They
merely transmit the fuzzy input forward along antecedent
weights.
Numeric nodes accept numeric inputs and fuzzify them
into Gaussian fuzzy sets. The numeric input is fuzzi-
fied by treating it as the centre of a Gaussian member-
ship function with a heuristically chosen spread. An ex-
ample of this fuzzification process is shown in Fig. 3,
where a numeric feature value of 0.3 has been fuzzified
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Figure 2: Fuzzy sets for fuzzy inputs.
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Figure 3: Fuzzification of numeric input.

into a Gaussian membership function centered at 0.3 with
spread 0.35. The Gaussian shape is chosen to match the
Gaussian shape of weight fuzzy sets since this facilitates
subsethood calculations detailed in section 2.2.
Therefore, the signal from a numeric node of the input
layer is represented by the pair (ci, σi). Antecedent con-
nections uniformly receive signals of the form (ci, σi).
Signals (S(xi) = (ci, σi)) are transmitted to hidden rule
nodes through fuzzy weights wij also of the form (cij , σij),
where single subscript notation has been adopted for the
input sets and the double subscript for the weight sets.

2.2 Signal Transmission from Input to Rule
Nodes (Mutual Subsethood Method)

Since both the signal and the weight are fuzzy sets, being
represented by Gaussian membership function, there is a
need to quantify the net value of the signal transmitted
along the weight by the extent of overlap between the two
fuzzy sets. This is measured by their mutual subsethood
[20]. Consider two fuzzy sets A and B with centers c1, c2

and spreads σ1, σ2 respectively. These sets are expressed
by their membership functions as:

a(x) = e−((x−c1)/σ1)
2
. (1)

b(x) = e−((x−c2)/σ2)
2
. (2)
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Figure 4: Example of overlapping: c1 > c2 and σ1 < σ2.
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Figure 5: Fuzzy signal transmission.

The cardinality C(A) of fuzzy set A is defined by

C(A) =
∫ ∞

−∞
a(x)dx =

∫ ∞

−∞
e−((x−c1)/σ1)

2
dx. (3)

Then the mutual subsethood E(A,B) of fuzzy sets A and
B measures the extent to which fuzzy set A equals fuzzy
set B can be evaluated as:

E(A,B) =
C(A ∩B)

C(A) + C(B)− C(A ∩B)
. (4)

Further detail on the mutual subsethood measure can
be found in [20]. Depending upon the relative values of
centers and spreads of fuzzy sets A and B (nature of
overlap), the four possible different cases are as follows:
case 1: c1 = c2 having any values of σ1 and σ2.
case 2: c1 6= c2 and σ1 = σ2.
case 3: c1 6= c2 and σ1 > σ2.
case 4: c1 6= c2 and σ1 < σ2.
In case 1, the two fuzzy sets do not cross over−either one
fuzzy set belongs completely to the other or two fuzzy
sets are identical. In case 2, there is exactly one cross
over point, whereas in cases 3 and 4, there are exactly
two crossover points. An example of case 4 type overlap
is shown in Fig. 4. To calculate the crossover points, by
setting a(x) = b(x), the two cross over points h1 and h2

yield as,

h1 =
c1 + σ1

σ2
c2

1 + σ1
σ2

, (5)

h2 =
c1 − σ1

σ2
c2

1− σ1
σ2

. (6)

These values of h1 and h2 are used to calculate the mutual
subsethood E(A,B) based on C(A∩B), as defined in (4).
Symbolically, for a signal si = S(xi) = (ci, σi) and fuzzy
weight wij = (cij , σij), the mutual subsethood is

Eij = E(si, wij) =
C(si ∩ wij)

C(si) + C(wij)− C(si ∩ wij)
. (7)

As shown in Fig. 5, in the subsethood based FNN model,
a fuzzy input signal is transmitted along a fuzzy weight
that represents an antecedent connection. The transmit-
ted signal is quantified by Eij , which denotes the mu-
tual subsethood between the fuzzy signal S(xi) and fuzzy
weight (cij , σij) and can be computed using (4).
The expression for cardinality can be evaluated for each of
the four cases in terms of standard error function erf(x)
represented as (8).

erf(x) =
2√
π

∫ x

0

e−t2dt. (8)

The expressions for C(si∩wij) for all the four cases iden-
tified above are evaluated in Appendix (A) seperately.

2.3 Activity Aggregation at Rule Nodes
(Product Operator)

The net activation zj of the rule node j is a product of
all mutual subsethoods known as the fuzzy inner product
can be evaluated as

zj =
n∏

i=1

Eij =
n∏

i=1

E(S(xi), wij) (9)

The inner product operator in (9) exhibits following prop-
erties: it is bounded between 0 and 1; monotonic increas-
ing; continuous and symmetric.
The signal function for the rule node is linear

S(zj) = zj . (10)

Numeric activation values are transmitted unchanged to
consequent connections.

2.4 Output Layer Signal Computation (Vol-
ume Defuzzification)

The signal of each output node is determined using stan-
dard volume based centroid defuzzification [20]. The ac-
tivation of the output node is yk, and Vjk’s denote con-
sequent set volumes, then the general expression of de-
fuzzification is

yk =

∑q
j=1 zjcjkVjk∑q

j=1 zjVjk
. (11)
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The volume Vjk is simply the area of consequent fuzzy
sets which are represented by Gaussian membership func-
tion. From (11), the output can be evaluated as

yk =

∑q
j=1 zjcjkσjk∑q

j=1 zjσjk
. (12)

The signal of output node k is linear i.e. S(yk) = yk.

3 Supervised learning (Gradient descent
algorithm)

The subsethood based linguistic network is trained by su-
pervised learning. This involves repeated presentation of
a set of input patterns drawn from the training set. The
output of the network is compared with the desired value
to obtain the error, and network weights are changed on
the basis of an error minimization criterion. Once the
network is trained to the desired level of error, it is tested
by presenting a new set of input patterns drawn from the
testing set.

3.1 Update Equations for Free Parameters

Learning is incorporated into the subsethood−linguistic
model using the gradient descent method [15], [21]. A
squared error criterion is used as a training performance
parameter. The squared error et at iteration t is com-
puted in the standard way

et =
1
2

p∑

k=1

(dt
k − S(yt

k))2. (13)

where dt
k is the desired value at output node k, and the

error evaluated over all p outputs for a specific pattern
k. Both the centers and spreads cij , cjk, σij and σjk of
antecedents and consequent connections are modified on
the basis of update equations given as follows:

ct+1
ij = ct

ij − η
∂et

∂ct
ij

+ α4ct−1
ij . (14)

where η is the learning rate, α is the momentum param-
eter, and

4ct−1
ij = ct

ij − ct−1
ij . (15)

3.2 Partial Derivatives Evaluation

The expressions of partial derivatives required in these
update equations are derived as follows:
For the error derivative with respect to consequent cen-
ters

∂e

∂cjk
=

∂e

∂yk

∂yk

∂cjk
= −(dk − yk)

zjσjk∑q
j=1 zjσjk

(16)

and the error derivative with respect to the consequent
spreads

∂e

∂σjk
=

∂e

∂yk

∂yk

∂σjk

= −(dk − yk){
zjcjk

∑q
j=1 zjσjk − zj

∑q
j=1 zjcjkσjk

(
∑q

j=1 zjσjk)2

}
.

(17)

The error derivatives with respect to antecedent centers
and spreads involve subsethood derivatives in the chain
and are somewhat more involved to evaluate. Specifically,
the error derivative chains with respect to antecedent cen-
ters and spreads are given as following,

∂e

∂cij
=

p∑

k=1

∂e

∂yk

∂yk

∂zj

∂zj

∂Eij

∂Eij

∂cij

=
p∑

k=1

−(dk − yk)
∂yk

∂zj

∂zj

∂Eij

∂Eij

∂cij
, (18)

∂e

∂σij
=

p∑

k=1

∂e

∂yk

∂yk

∂zj

∂zj

∂Eij

∂Eij

∂σij

=
p∑

k=1

−(dk − yk)
∂yk

∂zj

∂zj

∂Eij

∂Eij

∂σij
, (19)

and the error derivative chains with respect to input fea-
ture spread is evaluated as

∂e

∂σi
=

q∑

j=1

p∑

k=1

∂e

∂yk

∂yk

∂zj

∂zj

∂Eij

∂Eij

∂σi

=
q∑

j=1

p∑

k=1

−(dk − yk)
∂yk

∂zj

∂zj

∂Eij

∂Eij

∂σi
. (20)

where

∂yk

∂zj
=

σjkcjk

∑q
j=1 zjσjk − σjk

∑q
j=1 zjcjkσjk

(
∑q

j=1 zjσjk)2

= σjk

[
cjk

∑q
j=1 zjσjk −

∑q
j=1 zjcjkσjk

(
∑q

j=1 zjσjk)2

]

=
σjk(cjk − yk)∑q

j=1 zjσjk
(21)

and
∂zj

∂Eij
=

n∏

i=1,i6=j

Eij . (22)

The expressions for antecedent connection, mutual sub-
sethood partial derivatives ∂Eij

∂cij
and ∂Eij

∂σij
are obtained by

differentiating (7) with respect to cij , σij and σi as in
(23), (24) and (25). In these equations, the calculation
of ∂C(si ∩ wij)/∂cij and ∂C(si ∩ wij)/∂σij depends on
the nature of overlap of the input feature fuzzy set and
weight fuzzy set, i.e. upon the values of cij , ci, σij and σi.

∂Eij

∂cij
=




(
∂C(si∩wij)

∂cij
(
√

π(σi + σij)− C(si ∩ wij))
)

(
√

π(σi + σij)− C(si ∩ wij))
2
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−
−

(
−∂C(si∩wij)

∂cij
C(si ∩ wij)

)

(
√

π(σi + σij)− C(si ∩ wij))
2


 , (23)

∂Eij

∂σij
=




(
∂C(si∩wij)

∂σij
(
√

π(σi + σij)− C(si ∩ wij))
)

(
√

π(σi + σij)− C(si ∩ wij))
2

−

((√
π − ∂C(si∩wij)

∂σij

)
C(si ∩ wij)

)

(
√

π(σi + σij)− C(si ∩ wij))
2


 , (24)

and

∂Eij

∂σi
=




(
∂C(si∩wij)

∂σi
(
√

π(σij + σi)− C(si ∩ wij))
)

(
√

π(σij + σi)− C(si ∩ wij))
2

−

((√
π − ∂C(si∩wij)

∂σi

)
C(si ∩ wij)

)

(
√

π(σij + σi)− C(si ∩ wij))
2


 . (25)

In (23), (24) and (25), the calculation of
∂C(si ∩ wij)/∂cij , ∂C(si ∩ wij)/∂σij and
∂C(si ∩ wij)/∂σi is required, which depends on the
nature of overlap. The case wise expressions of the above
terms are evaluated in Appendix (B) seperately.

4 Function approximation

Function approximation involves determining or learning
the input-output relations using numeric input-output
data. Conventional methods like linear regression are
useful in cases where the relation being learnt, is linear or
quasi-linear. For nonlinear function approximation multi-
layer neural networks are well suited to solve the problem
but at the same time they also experience the drawback
of their black box nature and heuristic decisions regard-
ing the network structure and tunable parameters. Inter-
pretability of learnt knowledge is another severe problem
in conventional neural networks.
On the other hand, function approximation by fuzzy sys-
tem employs the concept of dividing the input space into
sub regions, and for each sub region a fuzzy rule is de-
fined thus making the system interpretable. The perfor-
mance of the fuzzy system depends on the generation of
sub regions in input space for a specific problem. The
practical limitation arises with fuzzy systems when the
input variables are increased and the number of fuzzy
rules explodes leading to the problem known as the curse
of dimensionality.
Both fuzzy system and neural network are universal func-
tion approximators and can approximate functions to any
arbitrary degree of accuracy [20], [22]. Fuzzy neural sys-
tem also has capability of approximating any continuous
function or modeling a system [23],[24],[25]. The pro-
posed fuzzy neural network was tested to exploit the ad-
vantages of both neural network and fuzzy system seam-
lessly in the applications like function approximation and
classification.

0
2

4
6

8

0

2

4

6

8
-1

-0.5

0

0.5

1

xy

f(
x,

y)

(a)

0
2

4
6

8

0

2

4

6

8
-1

-0.5

0

0.5

1

xy

f(
x,

y)

(b)

Figure 6: (a) Mesh plot and contours of 900 training pat-
terns. (b) Mesh plot and contours of 400 testing patterns.

Table 1: Details of different learning schedules used for
simulation studies

Learning Schedule Details

LS=0.2 η and α are fixed to 0.2

LS=0.1 η and α are fixed to 0.1

LS=0.01 η and α are fixed to 0.01

LS=0.001 η and α are fixed to 0.001
η-learning rate and α-momentum

4.1 Sine-Cosine Function

The learning capabilities of the proposed model was
demonstrated by approximating the sine-cosine function
given as

f(x, y) = sin(x)cos(y). (26)

for the purpose of training the network the above func-
tion was described by 900 sample points, evenly dis-
tributed in a 30x30 grid in the input cross-space [0, 2π]
x[0, 2π]. The model was tested by another set of 400
points evenly distributed in a 20x20 grid in the input
cross-space [0, 2π]x[0, 2π]. The mesh plot of training and
testing patterns are shown in Fig. 6.
For training of the model, the centers of fuzzy weights be-
tween the input layer and rule layer were initially random-
ized in the range[0, 2π] while the centers of fuzzy weights
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Figure 7: f(x, y) surace plot and their corresponding testing error surface after 250 epochs for different rule counts
with learning schedule LS=0.01, (a) f(x, y) surface for 5 rules, (b) f(x, y) surface for 10 rules, (c) f(x, y) surface for
15 rules, (d) error suface for 5 rules, (e) error suface for 10 rules, (f) error suface for 15 rules, (g) f(x, y) surface for
20 rules, (h) f(x, y) surface for 30 rules, (i) f(x, y) surface for 50 rules, (j) error suface for 20 rules, (k) error suface
for 30 rules, (l) error suface for 50 rules.

between rule layer and output layer were initially ran-
domized in the range [−1, 1]. The spreads of all the fuzzy
weights and the spreads of input feature fuzzifiers were
initialized randomly in range [0.2, 0.9].
The number of free parameters that subsethood based
FNN employs is straightforward to calculate: one spread
for each numeric input; a center and a spread for each
antecedent and consequent connection of a rule. For
this function model employs a 2-r-1 network architec-
ture, where r is the number of rule nodes. Therefore,
since each rule has two antecedents and one consequent,
an r-rule FNN system will have 6r+2 free parameters.
Model was trained for different number of rules−5, 10,
15, 20, 30 and 50. To study the effect of learning param-
eters on the performance of model the simulation were
performed with different learning schedules as shown in
Table 1 . The root mean square error, evaluated for both
training and testing patterns, is given as

RMSEtrn =

√∑
training patterns(desired− actual)2

number of training patterns
(27)

RMSEtest =

√∑
testing patterns(desired− actual)2

number of testing patterns
(28)

Table 2: Root mean square errors for different rule count
and learning schedules (LS) for 250 epochs

Rules LS = 0.2 LS = 0.1
RMSEtrn RMSEtest RMSEtrn RMSEtest

5 0.4306 0.5928 0.3464 0.6210

10 0.1851 0.3144 0.2745 0.3239

15 0.0897 0.1125 0.1250 0.1746

20 0.0631 0.1518 0.0811 0.1026

30 0.0418 0.0522 0.0518 0.0615

50 0.0316 0.0323 0.0219 0.0452

Rules LS = 0.01 LS = 0.001
RMSEtrn RMSEtest RMSEtrn RMSEtest

5 0.3352 0.4080 0.3428 0.3567

10 0.1758 0.1997 0.2194 0.2783

15 0.1419 0.1516 0.2771 0.2954

20 0.0972 0.1247 0.1446 0.1432

30 0.0645 0.0735 0.1135 0.1246

50 0.0336 0.0354 0.0336 0.0354

In order to visualize the surface obtained from the test
set after training the function f(x,y)=sin(x) cos(y) for 250
epochs the three dimensional plots of the function were
generated. Fig. 7 illustrates surface plots of the function
and the error surface for different values of rule counts
with learning schedule as LS=0.01. It is observed that a
model of mere 5 rules seems to be coarsely approximating
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Figure 8: Error trajectories for different rules and learning schedules in sine− cosine function problem.

the given function. The error is more where the slope of
the function changes in that region. Thus, increasing the
number of rules generates better approximated surface
for f(x, y) and the corresponding plots are shown in Fig.
7.
From the results shown in Table 2 it is observed that for
a learning schedule LS=0.2 or higher and with small rule
count the subsethood model is unable to train, result-
ing oscillations in error trajectories as shown in Fig. 8.
This may occur due to the improper selection of learning
parameters (learning rate (η) and momentum (α)) and
number of rules. But with the same learning parameters
and higher rule counts like 30 and 50 rules model pro-
duces good approximation. The observations for fuzzy
neuro model drawn in the above experiments can be sum-
marized as following:
1. As the number of rules increases the approximation
performance of model improves to a certain limit.
2. For higher learning rates and momentum with lower
rule counts the model is unable to learn. In contrast if
the learning rate and momentum are kept to small values
a smooth decaying trajectory is obtained even for small
rule counts.

3. Model works fairly well by keeping the learning rate
and momentum fixed to small values.
4. Most of the learning is achieved in a small number of
epochs.

4.2 Narazaki and Ralescu function

The function is expressed as follows,

y(x) = 0.2 + 0.8(x + 0.7sin(2πx)), 0 ≤ x ≤ 1 (29)

and the plot of the function is shown in Fig.9. The
system architecture used for approximating single input-
output function is 1-r-1, where r is the number of rule
nodes. The tunable parameters that model employs for
this application can be calculated same as the sine −
cosine function i.e. one spread for each input, and a
center and a spread for each antecedent and consequent
connection of rule. As each rule has one antecedent and
one consequent, r rule architecture will have 4r+1 free
parameters. The model was trained using 21 training
patterns. These patterns were generated at intervals of
0.05 in range [0,1]. Thus, the training patterns are of the
form:

(0, y(0)), (0.05, y(0.05)), ..., (1, y(1)) (30)
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Figure 9: Narazaki-Ralescu function.

The evaluation was done using 101 test data taken at
intervals of 0.01. The training and test sets generated
were mutually exclusive. Two performance indices J1
and J2 as defined in [26], used for evaluation are given
as:

J1 = 100× 1
21

∑

training data

|actual output− desired output|
desired output

(31)

J2 = 100× 1
101

∑

test data

|actual output− desired output|
desired output

(32)
Experiments were conducted for different rule counts,
using a learning rate of 0.01 and momentum of 0.01
throughout the learning procedure. Table 3 summarizes
the performance of model in terms of indices J1 and J2
for rule counts 3 to 6. It is evident from the performance
measures that for 5 or 6 rules the approximation accu-
racy is much better than that for 3 or 4 rules. In general
up to a certain limit, as the number of rules grows, the
performance of model improves.
Table 4 compares the test accuracy performance index J2
for different models along with the number of rules and
tunable parameters used to achieve it. With five rules the
proposed model obtained J1 = 0.9467 and J2 = 0.7403
as better than other schemes. From the above results,
it can be infer that subsethood-based FNN shows the
ability to approximate function with good accuracy in
comparison with other existing models.

Table 3: Subsethood based FNN performance for
Narazaki-Ralescu’s function

Number Trainable Training Testing
of RulesParameterAccuracy (J1%)Accuracy (J2%)

3 13 2.57 1.7015
4 17 1.022 0.7350
5 21 0.94675 0.7403
6 25 0.6703 0.6595

Table 4: Performance comparison of subsethood based
FNN with other methods for Narazaki-Ralescu’s function

Methods Number Trainable Testing
and reference of RulesParametersAccuracy (J2%)

FuGeNeSys[31] 5 15 0.856
Lin and Cunningham III [32] 4 16 0.987

Narazaki and Ralescu[26] na 12 3.19
Subsethood based FNN 3 13 1.7015
Subsethood based FNN 5 21 0.7403

Table 5: Iris data classification results for the subsethood
based Fuzzy Neural Network system

Rule Free RMSE number of resubstitution
CountParameters mis-classifications accuracy (%)

3 46 0.12183 1 99.33

4 60 0.12016 0 100

5 74 0.11453 0 100

6 88 0.11449 0 100

7 102 0.11232 0 100

8 116 0.10927 0 100

5 Classification

In classification problems, the purpose of the proposed
network is to assign each pattern to one of a number of
classes (or, more generally, to estimate the probability
of membership of the case in each class). The Iris flower
data set or Fisher’s Iris data set is a multivariate data set
introduced by Sir Ronald Aylmer Fisher as an example
of discriminant analysis.

5.1 Iris data Classification

Iris data involves classification of three subspecies of the
flower namely, Iris sestosa, iris versicolor and Iris vir-
ginica on the basis of four feature measurements of the
Iris flower-sepal length, sepal width, petal length and
petal width [27]. There are 50 patterns (of four features)
for each of the three subspecies of Iris flower. The in-
put pattern set thus comprises 150 four-dimensional pat-
terns. This data can be obtained from UCI repository of
machine learning databases through the following link−
http : //www.ics.uci.edu/ mlearn/MLRepository.html.
The six possible scatter plots of Iris data are shown in Fig.
10. It can be observed that classes Iris versicolor and Iris
virginica substantially overlap, while class Iris sestosa is
well separated from the other two. For this classification
problem subsethood based FNN model employs a 4-r-3
network architecture: the input layer consists of four nu-
meric nodes; the output layer comprises three class nodes;
and there are r rule nodes in the hidden layer.
To train the network initially the centers of antecedent
weight fuzzy sets were randomized in the range of the
minimum and maximum values of respective input fea-
tures of Iris data. Feature-wise, these ranges are (4.3,
7.9), (2.0, 4.4), (1.0, 6.9) and (0.1, 2.5). The centers of
hidden-output weight fuzzy sets were randomized in the
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Figure 10: Six projection plots of Iris data.

range (0,1) and the spreads of all fuzzy weights and fea-
ture spreads were randomized in the range (0.2, 0.9). All
150 patterns of the Iris data were presented sequentially
to the input layer of the network for training. The learn-
ing rate and momentum were kept constant at 0.001 dur-
ing the training process. The test patterns which again
comprised all 150 patterns of Iris data were presented
to the trained network and the resubstitution error com-
puted.
Simulation experiments were conducted with different
numbers of rule nodes to illustrate the performance of
the classifier with a variation in the number of rules. No-
tice that for r rules, the number of connections in the
4-r-3 architecture for Iris data will be 7r. Because the
representation of a fuzzy weight requires two parameters
(center and spread), the total number of free parameters
to be trained will be 14r+4.
Table 5 summarizes the performance of proposed model
for different rule counts. It is observed that except for rule

count 3 subsethood based FNIS model is able to achieve
100 % resubstitution accuracy by classifying all patterns
correctly. Thus by merely using 60 parameters for subset-
hood based FNN model produces no mis-classifications,
and using only 46 free parameters 1 mis-classification is
obtained. Apart from this, it is also observed from Table
5 that as the numbers of rules increase the training root
mean square error (RMSE) decreases.
As an example, the fuzzy weights of the trained network
with four rules that produce zero resubstitution error are
illustrated in the scatter plot of Iris data in Fig. 11. The
rule patches in two dimensions were obtained by finding
the rectangular overlapping area produced by the projec-
tion of 3σ points of the Gaussian fuzzy sets on different
input feature axes of the same rule. The 3σ points were
chosen because for 3σ on either side of centers of a Gaus-
sian fuzzy set 99.7 % of the total area of the fuzzy set
gets covered.
To solve the Iris data classification problem using other
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Figure 11: Rule patches learnt by a 4-rule subsethood based FNN network.

techniques like genetic algorithm (GA), learning vec-
tor quantization (LVQ) and its family of generalized
fuzzy algorithms (GLVQ-F), and random search (RS),
several attempts have been reported in the literature
[29, 30, 12, 31].
The results obtained from GA, RS, LVQ and GLVQ-F
have been adapted from [28] for the purpose of compari-
son and summarized in Table 6.
Table 6 compares the resubstitution mis-classifications of
subsethood based FNN with these techniques. In GA
and random search techniques 2 resubstitution misclas-
sification for 3 rules are reported. For 4 rules the GA
performance deteriorates with 4 misclassifications in com-
parison to 2 misclassifications in random search. In com-
parison, subsethood based FNN has only one resubstitu-
tion mis-classification for 3 rules which is less than other
methods. Subsethood based FNN produces zero resubsti-
tuition mis-classification for any number of rules greater

Table 6: Comparison of number of resubstitution mis-
classifications for Iris data with different number of pro-
totypes/rules

Prototype/Rule → 3 4 5 6 7 8
Model ↓
LVQ* 17 24 14 14 3 4

GLVQ-F* 16 20 19 14 5 3
GA* 2 4 2 2 3 1
RS* 2 2 2 2 1 1

SuPFuNIS [15] 1 1 0 0 0 0
Subsethood based FNN 1 0 0 0 0 0

∗ : result adapted from [28]

than or equal to 4 as summarized in Table 6.

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_02

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



6 Conclusion

In this paper the subsethood based Fuzzy Neural
Network model is designed and simulated in Matlab
7.1 environment. The three benchmark problems are
also discussed to demonstrate the application potential
of the proposed fuzzy neural network model. The
experiment results show that the proposed model
performs better as a universal approximator and a
classifier when compared to other existing models. The
subsethood based Fuzzy Neural Network model suffers
few drawbacks like the use of heuristic approach to select
the number of rule nodes to solve a particular problem
and unable to accommodate the use of disjunctions of
conjunctive antecedents. In future work authors shall
investigate the genetic algorithm based evolvable Fuzzy
Neural network to overcome the drawbacks of proposed
model and also use subsethood based Fuzzy Neural Net-
work model in the field of image compression and control.

Appendix

The expressions for cardinality can be evaluated in
terms of the standard function erf(x) as follows

(A) Expressions for C(si ∩ wij)

The expression for cardinality can be evaluated in
terms of the standard error function erf (x) given in (8).
The case wise expressions for C(si ∩ wij) for all four
possibilities identified in Section (2.2) are as follows.

Case 1− Ci = Cij : If σi < σij , the signal fuzzy
set si completely belongs to the weight fuzzy set wij ,
and the cardinality C(si ∩ wij) = C(si)

C(si ∩ wij) = C(si) =
∫ ∞

−∞
e−((x−ci)/σi)

2
dx

= σi

√
π

2
[erf(∞)− erf(−∞)]

= σi

√
π. (33)

Similarly, C(si ∩ wij) = C(wij) if σi > σij and
C(si ∩ wij) = σij

√
π. If σi = σij , the two fuzzy sets are

identical. Summarizing these three sub cases, the values
of cardinality can be shown as

C(si ∩ wij) =

{
C(si) = σi

√
π, if σi < σij

C(wij) = σij
√

π, if σi > σij

C(si) = C(wij) = σi
√

π = σij
√

π, if σi = σij .

(34)

Case 2− Ci 6= Cij , σi = σij : In this case there will be
exactly one cross over point h1. Assuming cij > ci, the

cardinality C(si ∩ wij) can be evaluated as

C(si ∩ wij) =
∫ h1

−∞
e−((x−cij)/σij)

2
dx

+
∫ ∞

h1

e−((x−ci)/σi)
2
dx

= σi

√
π

2

[
1 + erf

(
(h1 − cij)

σij

)]

+σi

√
π

2

[
1− erf

(
(h1 − ci)

σi

)]
.(35)

If cij < ci, the expression for cardinality C(si ∩ wij) is

C(si ∩ wij) =
∫ h1

−∞
e−((x−ci)/σi)

2
dx

+
∫ ∞

h1

e−((x−cij)/σij)
2
dx

= σi

√
π

2

[
1 + erf

(
(h1 − ci)

σi

)]

+σi

√
π

2

[
1− erf

(
(h1 − cij)

σij

)]
(36)

Case 3− Ci 6= Cij , σi < σij : In this case, there will
be two crossover points h1 and h2, as calculated in (5)
and (6). Assuming h1 < h2 and cij > ci, the cardinality
C(si ∩ wij) can be evaluated as

C(si ∩ wij) =
∫ h1

−∞
e−((x−ci)/σi)

2
dx

+
∫ h2

h1

e−((x−cij)/σij)
2
dx

+
∫ ∞

h2

e−((x−ci)/σi)
2
dx

= σi

√
π

2

[
1 + erf

(
(h1 − ci)

σi

)]

+σi

√
π

2

[
1− erf

(
(h1 − ci)

σi

)]

+σij

√
π

2

[
erf

(
(h2 − cij)

σij

)

− erf

(
(h1 − cij)

σij

)]
. (37)

if cij < ci, the expression for C(si ∩ wij) is identical to
(37)
Case 4− Ci 6= Cij , σi > σij : This case is similar to case
3, and once again, there will be two crossover points h1

and h2, as calculated in (5) and (6). Assuming h1 < h2

and cij > ci, the cardinality C(si ∩wij) can be evaluated
as

C(si ∩ wij) =
∫ h1

−∞
e−((x−cij)/σij)

2
dx

+
∫ h2

h1

e−((x−ci)/σi)
2
dx
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+
∫ ∞

h2

e−((x−cij)/σi)
2
dx

= σij

√
π

2

[
1 + erf

(
(h1 − cij)

σij

)]

+σij

√
π

2

[
1− erf

(
(h1 − cij)

σij

)]

+σi

√
π

2

[
erf

(
(h2 − ci)

σi

)

− erf

(
(h1 − ci)

σi

)]
. (38)

If cij < ci the expression for cardinality is identical to
(38).
Corresponding expressions for E(si ∩ wij) are obtained
by substituting for C(si ∩ wij) from (34)-(38) in to (7).

(B) Expressions for ∂C(si ∩ wij)/∂cij,
∂C(si ∩ wij)/∂σij and ∂C(si ∩ wij)/∂σi

As per the discussion in the Section (3.2) that, the
calculation of ∂C(si ∩ wij)/∂cij , ∂C(si ∩ wij)/∂σij and
∂C(si ∩ wij)/∂σi is required in (23), (24) and (25) which
depends on the nature of overlap. Therefore the case
wise expressions are given as following:

Case 1− Ci = Cij : As is evident from (34), C(si ∩ wij)
is independent of cij , and therefore,

∂C(si ∩ wij)
∂cij

= 0. (39)

similarly the first derivative of (34) with respect to σij

and σi is,

∂C(si ∩ wij)
∂σij

=
{ √

π, if cij = ci and σij ≤ σi

0, if cij = ci and σij > σi.
(40)

∂C(si ∩ wij)
∂σi

=
{

0, if cij = ci and σij < σi√
π, if cij = ci and σij ≥ σi.

(41)

Case 2− Ci 6= Cij , σi = σij : When
cij > ci, ∂C(si ∩ wij)/∂cij , ∂C(si ∩ wij)/∂σij and
∂C(si ∩ wij)/∂σi are derived by differentiating (35) as
follows :

∂C(si ∩ wij)
∂cij

=
∫ h1

−∞

∂

∂cij
e−((x−cij)/σij)

2
dx

+
∫ ∞

h1

∂

∂cij
e−((x−ci)/σi)

2
dx

=
∫ h1

−∞

∂

∂cij
e−((x−cij)/σij)

2
dx

= −e−((h1−cij)/σij)
2

(42)

∂C(si ∩ wij)
∂σij

=
∫ h1

−∞

∂

∂σij
e−((x−cij)/σij)

2
dx

+
∫ ∞

h1

∂

∂σij
e−((x−ci)/σi)

2
dx

= −h1 − cij

σij
e−((h1−cij)/σij)

2

+
√

π

2

[
erf

(
(h1 − cij)

σij

)
+ 1

]
(43)

∂C(si ∩ wij)
∂σi

=
∫ h1

−∞

∂

∂σi
e−((x−cij)/σij)

2
dx

+
∫ ∞

h1

∂

∂σi
e−((x−ci)/σi)

2
dx

=
h1 − ci

σi
e−((h1−ci)/σi)

2

−
√

π

2

[
erf

(
(h1 − ci)

σi

)
− 1

]
(44)

When cij < ci, ∂C(si ∩ wij)/∂cij , ∂C(si ∩ wij)/∂σij and
∂C(si ∩ wij)/∂σi are derived by differentiating (36) as
follows :

∂C(si ∩ wij)
∂cij

=
∫ h1

−∞

∂

∂cij
e−((x−ci)/σi)

2
dx

+
∫ ∞

h1

∂

∂cij
e−((x−cij)/σij)

2
dx

=
∫ ∞

h1

∂

∂cij
e−((x−cij)/σij)

2
dx

= e−((h1−cij)/σij)
2

(45)

∂C(si ∩ wij)
∂σij

=
∫ h1

−∞

∂

∂σij
e−((x−ci)/σi)

2
dx

+
∫ ∞

h1

∂

∂σij
e−((x−cij)/σij)

2
dx

= −h1 − cij

σij
e−((h1−cij)/σij)

2

−
√

π

2

[
erf

(
(h1 − cij)

σij

)
− 1

]
(46)

∂C(si ∩ wij)
∂σi

=
∫ h1

−∞

∂

∂σi
e−((x−ci)/σi)

2
dx

+
∫ ∞

h1

∂

∂σi
e−((x−cij)/σij)

2
dx

= −h1 − ci

σi
e−((h1−ci)/σi)

2

+
√

π

2

[
erf

(
(h1 − ci)

σi

)
+ 1

]
(47)

Case 3− Ci 6= Cij , σi < σij : Once again, two
sub cases arise similar to those of Case 2. When
cij > ci, ∂C(si ∩ wij)/∂cij , ∂C(si ∩ wij)/∂σij and
∂C(si ∩ wij)/∂σi are derived by differentiating (37).

∂C(si ∩ wij)
∂cij

=
∫ h1

−∞

∂

∂cij
e−((x−ci)/σi)

2
dx
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+
∫ h2

h1

∂

∂cij
e−((x−cij)/σij)

2
dx

+
∫ ∞

h2

∂

∂cij
e−((x−ci)/σi)

2
dx

=
∫ h2

h1

∂

∂cij
e−((x−cij)/σij)

2
dx

= −e−((h2−cij)/σij)
2

+e−((h1−cij)/σij)
2

(48)

∂C(si ∩ wij)
∂σij

=
∫ h1

−∞

∂

∂σij
e−((x−ci)/σi)

2
dx

+
∫ h2

h1

∂

∂σij
e−((x−cij)/σij)

2
dx

+
∫ ∞

h2

∂

∂σij
e−((x−ci)/σi)

2
dx

=
∫ h2

h1

∂

∂σij
e−((x−cij)/σij)

2
dx

=
h1 − cij

σij
e−((h1−cij)/σij)

2

−h2 − cij

σij
e−((h2−cij)/σij)

2

+
√

π

2

[
−erf

(
(h1 − cij)

σij

)

+ erf

(
(h2 − cij)

σij

)]
(49)

∂C(si ∩ wij)
∂σi

=
∫ h1

−∞

∂

∂σi
e−((x−ci)/σi)

2
dx

+
∫ h2

h1

∂

∂σi
e−((x−cij)/σij)

2
dx

+
∫ ∞

h2

∂

∂σi
e−((x−ci)/σi)

2
dx

=
∫ h1

−∞

∂

∂σi
e−((x−ci)/σi)

2
dx

+
∫ ∞

h2

∂

∂σi
e−((x−ci)/σi)

2
dx

= −h1 − ci

σi
e−((h1−ci)/σi)

2

+
h2 − ci

σi
e−((h2−ci)/σi)

2

+
√

π

2

[{
erf

(
(h1 − ci)

σi

)
+ 1

}

−
{

erf

(
(h2 − cij)

σij

)
− 1

}]
(50)

Similarly, if cij < ci

∂C(si ∩ wij)
∂cij

=
∫ h1

−∞

∂

∂cij
e−((x−ci)/σi)

2
dx

+
∫ h2

h1

∂

∂cij
e−((x−cij)/σij)

2
dx

+
∫ ∞

h2

∂

∂cij
e−((x−ci)/σi)

2
dx

=
∫ h2

h1

∂

∂cij
e−((x−cij)/σij)

2
dx

= −e−((h2−cij)/σij)
2

+e−((h1−cij)/σij)
2

(51)

Thus for both the cases (cij < ci or cij > ci),
identical expressions for ∂C(si ∩ wij)/∂cij are obtained.
Similarly, the expressions for ∂C(si ∩ wij)/∂σij and
∂C(si ∩ wij)/∂σi also remain the same as (49) and (50)
respectively in both the conditions.
Case 4− Ci 6= Cij , σi > σij : When
cij > ci, ∂C(si ∩ wij)/∂cij , ∂C(si ∩ wij)/∂σij and
∂C(si ∩ wij)/∂σi are derived by differentiating (38) as

∂C(si ∩ wij)
∂cij

=
∫ h1

−∞

∂

∂cij
e−((x−cij)/σij)

2
dx

+
∫ h2

h1

∂

∂cij
e−((x−ci)/σi)

2
dx

= −e−((h1−cij)/σij)
2

+e−((h2−cij)/σij)
2

(52)

∂C(si ∩ wij)
∂σij

=
∫ h1

−∞

∂

∂σij
e−((x−cij)/σij)

2
dx

+
∫ h2

h1

∂

∂σij
e−((x−ci)/σi)

2
dx

+
∫ ∞

h2

∂

∂σij
e−((x−cij)/σij)

2
dx

=
h1 − cij

σij
e−((h1−cij)/σij)

2

−h2 − cij

σij
e−((h1−cij)/σij)

2

+
√

π

2

[
2 + erf

(
(h1 − cij)

σij

)

− erf

(
(h2 − cij)

σij

)]
(53)

∂C(si ∩ wij)
∂σi

=
∫ h1

−∞

∂

∂σi
e−((x−cij)/σij)

2
dx

+
∫ h2

h1

∂

∂σi
e−((x−ci)/σi)

2
dx

+
∫ ∞

h2

∂

∂σi
e−((x−cij)/σij)

2
dx

=
h1 − ci

σi
e−((h1−ci)/σi)

2

−h2 − ci

σi
e−((h2−ci)/σi)

2
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+
√

π

2

[{
erf

(
(h2 − ci)

σi

)}

−
{

erf

(
(h1 − ci)

σi

)}]
(54)

If cij < ci, the expressions for ∂C(si ∩ wij)/∂cij ,
∂C(si ∩ wij)/∂σij and ∂C(si ∩ wij)/∂σi are again the
same as (52), (53) and ( 54) respectively.
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