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Abstract—Classification is the basis of cognition. Unlike other 

solutions, this study approaches it from the view of outliers. We 

present an expanding algorithm to detect outliers in univariate 

datasets, together with the underlying foundation. The 

expanding algorithm runs in a holistic way, making it a rather 

robust solution. Synthetic and real data experiments show its 

power. Furthermore, an application for multi-class problems 

leads to the introduction of the oscillator algorithm. The 

corresponding result implies the potential wide use of the 

expanding algorithm.    

 

Index Terms—Classification, outlier, expanding algorithm, 

sensitivity.  

 

I. INTRODUCTION 

 

Classification is the basis of cognition. Of all the 

algorithms, neural networks, which simulate the function of 

neurons simply, have been proved to be a general and 

effective method. Currently, this method still appears to be 

robust and valuable [28, 29]. Unlike others, this study aims to 

find a basis for classification. We approach the problem from 

the view of outliers. One pattern is an outlier of another 

pattern, so outlier detection actually underlies the 

classification. The outlier problem can be traced to its origin 

in the middle of the eighteenth century, when the main 

discussion was about the justification to reject or retain an 

observation. “It is rather because…, that the loss in the 

accuracy of the experiment caused by throwing away a couple 

of good values is small compared to the loss caused by 

keeping even one bad value” [1]. There is still a great need for 

outlier detection in academia, industry, government, and 

research. From Peirce‟s old criterion [11] to current robust 

methods [9, 14], there are many different methods for 

detecting outliers. Some commonly used simple methods 

include Chauvenet‟s criterion [3], Boxplot [15], median and 

median absolute deviation (MAD) [5], and mean and standard 

variation. The problem is that the results from these seem to 

be inconsistent. It is as Pearson [10] stated: “even the best 

outlier-detection procedures can behave somewhat 

unpredictably, finding either more or fewer outliers in a data 

set than your eyes or other manual analyses might”. This 

problem prompted our study. We approach the outlier 

detection problem in an ontological way, starting from the 
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definition of an outlier. By analysing the nature of outliers, 

that is, inconsistency, we develop the concept of an integrated 

inconsistent rate (IIR) to express the outlier degree. 

Combined with Weber‟s Law, IIR, like humans, can 

distinguish outliers from normal values. Such classification is 

basic. This paper discusses related works and gives some 

examples to show the inconsistencies in commonly used 

methods in Section II. A new simple mechanism for detecting 

univariate outliers is presented in Section III. Section IV 

compares the new method with traditional ones using 

simulated and real data. We offer an extended discussion in 

Section V and our conclusions follow in Section VI. 

  

II. RELATED WORKS 

 

Due to manipulation errors by humans, system errors in 

sensors, or interference from unintended signals, some 

experimental data may differ greatly from the majority of the 

data and should be rejected. Traditional solutions approach 

the problem from the theory of probability. The old mean and 

standard deviation (σ) method assumes that data follow a 

normal distribution, and then uses a 95% (2σ) or 99.7% (3σ) 

boundary to identify “outliers”. The Boxplot divides ordered 

data into four quartiles. Let the lower hinge (defined as the 

25
th

 percentile) be q1 and the upper hinge (the 75
th

 percentile) 

be q3, then call the difference between them IQR (q3-q1), and 

any data outside the fence q1-1.5*IQR and q3+1.5*IQR are 

identified as outliers. The median and MAD method 

calculates the median and MADn of the data, where MADn = 

b*medi|xi-medjxj|, medixi is the median of data {x1,…,xn} and 

b=1.4826, and then uses median±kMADn to detect outliers. 

While the mean and standard deviation method uses a fixed 

coefficient (2 or 3) multiplied by the standard deviation (σ), 

Chauvenet‟s criterion uses a variable coefficient related to the 

number of data. In a recent work, Ross [13] suggested a return 

to the Peirce criterion, a forerunner of the probability 

approach. Rousseeuw presented various robust algorithms 

such as LMS and LTS [14], which were developed from the 

well-known least squares (LS) method. Differing from LS by 

using the idea of the least sum of squares as the regression 

estimator, LMS uses the least median of squares, while LTS 

uses the least trimmed squares. Thereafter, outliers are 

identified as those points that lie far away from the robust fit 

(a similar reasonable ratio, such as 1.5 for the Boxplot or k for 

the median and MAD method, is predetermined). Since there 

are so many algorithms, the problem arises of how to choose 

between them, especially in the face of contradiction. Turkey 

advised, “It is perfectly proper to use both classical and robust 

methods routinely, and only worry when they differ enough to 

matter. But when they differ, you should think hard” [9]. We 
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are still faced with the same difficulty, as can be seen by the 

examples here. In Table 1, for the median and MAD method 

(abbreviated as “MAD”) we use k=3; the mean and standard 

deviation is abbreviated to “Mean”; and the robust LTS and 

LMS can be referred to the program “PROCESS” [14]. 

The following datasets were all taken from the web [16]. 

ROSNER contains 10 monthly diastolic blood pressure 

measurements; GRUBBS1 contains data on the strength of 

hard-drawn copper wire; GRUBBS3 consists of data on the 

percentage elongation of plastic material; and CUSHNY 

gives the difference in hours of sleep due to two different 

drugs used on ten patients. Obvious and common outliers are 

shown in bold italic font. 

 

1. ROSNER:  90, 93, 86, 92, 95, 83, 75, 40, 88, 80 

2. BARNETT:  3, 4, 7, 8, 10, 949, 951 

3. GRUBBS1:  568, 570, 570, 570, 572, 572, 572, 578, 584, 

596 

4. GRUBBS3:  2.02, 2.22, 3.04, 3.23, 3.59, 3.73, 3.94, 4.05, 

4.11, 4.13 

5. CUSHNY:  0, 0.8, 1, 1.2, 1.3. 1.3, 1.4, 1.8, 2.4, 4.6 

 

 Here, we note that using Peirce‟s criterion with 

BARNETT data, if we assume from the start that there are two 

doubtful observations, 949 and 951 are identified; while 

MAD used with GRUBBS3 data, detects 2.02 and 2.22 with 

k=2. Thus, different methods lead to different results. Is there 

no absolute outlier or no absolute detection method? The 

current situation is not satisfactory. Investigating the 

underlying foundation of one of the methods leads to even 

more confusion. When commenting on why 1.5 is used in the 

Boxplot method, Tukey said, “Because 1 is too small and 2 is 

too large” [23]. We should treat these solutions with the same 

attitude Hampel applied to the concept of an outlier, “without 

clear boundaries, nevertheless they are useful” [6]. The 

purpose of this study is to propose a simple, yet efficient and 

robust way of finding the “clear boundaries”.  

 

III. ONTOLOGICAL CRITERION  

A. Confirming the boundary 

 

To confirm the boundary between normal data and outliers, 

a precise definition of an outlier is needed. We introduce the 

following well-known definition. 

(An outlier is) an observation (or subset of observations), 

which appears to be inconsistent with the remainder of that set 

of data [2].  

 

Barnett and Lewis [2] stated that “the phrase „appears to be 

inconsistent‟ is crucial”. Hawkins [7] also pointed out that an 

outlier is “an observation which deviates so much from other 

observations”. Because inconsistency is the nature of an 

outlier and we cannot confirm such a characteristic from 

patterns outside of the data [8], we can only construct an 

inconsistent principle inside the data. Since inconsistency can 

be described as data from one position starting to appear very 

different from other ones (at least half of the whole), and 

distance is the best characteristic to express the difference of 

data, we developed the concept of an integrated inconsistent 

rate to detect outliers in univariate data.  

 

Preliminaries 

Let S denote an interval series {δ1, δ2,…, δN} and 





N

i

i

1

 .  

Three quantities are defined as follows: 

  

Expansion ratio:  /ii NEr    

  

      Inhibitory rate: ))(max/( j
ij

iiiIhr 


     

  

Integrated inconsistent rate:   

  




/))(max(/ j
ij

iiii NIhrErIIR   

  

The expansion ratio expresses the ratio of the current 

interval (δi) to the average interval (Δ/N). The value of Eri is 1 

if there is no expansion in the current position compared with 

its “original” state. The greater the ratio is, the more likely it is 

to be the boundary separating outliers and normal data. The 

inhibitory rate is a modifying factor to the current IIR in terms 

of the former maximum interval and current interval. Ihr 

becomes infinity when δi is equal to max(δj), in which case IIR 

is defined as 0. IIR takes both local and global characteristics 

into consideration, and thus gives an integrated inconsistent 

evaluation of the current interval with respect to others. A 

simple example to demonstrate the algorithm is a sequence of 

numbers with a common difference, such as {1, 2, 3, 4, 5, 6, 

7}. For each number greater than 2, its expansion ratio, 

inhibitory rate, and integrated inconsistent rate are 1, + , 

and 0, respectively. 

The first element using IIR equal to or greater than c is 

confirmed as the boundary between outliers and normal 

values. Obviously, at least more than half the data should be 

normal, so outlier detection merely checks the remaining part. 

Suppose a dataset has outliers on the high value side, then the 

smallest value is the safest (normal) one. For such datasets, 

the following Expanding Algorithm (or IIR algorithm) 

Table 1. Outliers detected by various methods 

 Mean Boxplot MAD Peirce‟s LTS LMS IIR 

ROSNER none 40 40 40 40 40 40 

BARNETT none none 949,951 none 949,951 949,951 949,951 

GRUBBS1 none 596 584,596 596 578,584,596 578,584,596 596 

GRUBBS3 none none none none 2.02,2.22 2.02,2.22 2.02,2.22 

CUSHNY none 4.6 4.6 4.6 0,2.4,4.6 2.4,4.6 4.6 
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calculates the boundary distinguishing the outliers.  

 

Algorithm 1:  

Expanding Algorithm 

 

Input: dataset D {d1, d2,…, dN} with length N, and an 

adjustable threshold c 

Output: outliers of dataset D 

1.  Sort D in ascending order; without loss of generality, we 

express the sorted D as 

D={d0:N, d1:N, …,dN-1:N}, where d0:N ≤d1:N ≤ … ≤dN-1:N 

2.  For i = 1 to N-1 do  δi = di:N - di-1:N  

Δ= dN-1:N – d0:N  //Δ is the sum of all δi 

3.  //Calculate Er, Ihr and IIR of di:N  (i ≥2): 

     max1=0 

     For i = 2 to N-1 do 

          maxi = max{maxi-1, δi-1} 

  /)1(NEr ii   

    )max(/ iiiiIhr    

         IIRi = Eri / Ihri  

4.   t = min{i | IIRi > c and i > N/2}  

5.  Output dk when dk ≥ dt:N    

 

Obviously, each of the steps 2, 3, 4, and 5 in the above 

algorithm costs O(N), and thus the complexity of the 

algorithm is O(NlogN), which comes from step 1. 

In a similar way, the algorithm for a dataset with outliers on 

the lower value side can easily be designed. The algorithm, 

generalised as follows, solves the case where the safest point 

is in the middle. 

 

Algorithm 1’: 

Expanding Algorithm 

 

Input: dataset D {d1, d2,…, dN} in ascending order 

Output: outliers of dataset D 

 

1. Set median set M={dN/2, dN/2+1} if N=even, or 

M={d(N+1)/2} if N=odd. 

2. Let the order of the minimum value of M be the left limit 

l, and the order of the maximum value be the right limit r. 

Initial value of l, r is l0, r0, where l0 =N/2, r0=N/2+1 if N is 

even, and l0 =r0=(N+1)/2 if N is odd. 

3. Expanding median set M by step 4 till |M|=N/2+1 (N is 

even) or (N+1)/2 (N is odd). 

4.  If (dr+1 - dr) > (dl - dl-1) then let left limit l=l-1    

   Otherwise, let right limit r=r+1 

5. Calculate maxdelta=max{(di-di-1), (dj-dj-1)} (i<l0,  j>r0  

di,djM) 

6. Resume step 4 and calculate the following three 

parameters till IIR>=c or reaching all data (l=1 and r=N), c is 

the threshold. 

      To i<l:                                                    

Eri=(di+1-di)/(dN-d1)*(N-1) 

Ihri=(di+1-di)/(di+1-di-maxdelta)  

              IIRi=Eri/Ihri                                 

If IIRi<c  

let l=i  and maxdelta=max{maxdelta, (di+1-di)}  

      to j>r: 

            Erj =(dj-dj-1)/(dN-d1)*(N-1) 

            Ihrj =(dj-dj-1)/(dj-dj-1-maxdelta) 

            IIRj=Erj/Ihrj 

                 if IIRj <c 

                let r=j and maxdelta=max{maxdelta, (dj-dj-1)} 

7. Accepted median set is normal set, that is, in [l,r], output 

others as outliers. 

 

We demonstrate the execution of the algorithm in Table 2 

using GRUBBS1 data. There is a total of ten data, so the 

middle two values, both 572, become members of the median 

set M in the beginning. Then the nearest neighbours of M are 

added in turn, until the size of M is 6. At this stage, maxdelta 

is calculated (step 5 in Algorithm 1‟). Steps 6 to 9 in Table 2 

correspond to step 6 in Algorithm 1‟. When we reach 596, 

since its IIR is greater than c (1.81, refer to Section III.B), the 

boundary between normal data and outliers is confirmed. 

 

B. Sensitivity 

 

A sensitivity index IIR has been introduced in the 

Expanding Algorithm. It is a subjective parameter and can be 

deduced by Weber‟s law [18], which states that the ratio of the 

increment threshold ( I ) to the background intensity ( I ) is a 

constant ( K ), i.e., K
I

I



. All distinguishable quantities 

are related to this formulation. Suppose that three values 

deduced from the formulation: III ,,0  are given. If we 

cannot tell I  from II  , the number 0 is a distinguishable 

quantity. Alternatively, we can make the transformation: 

III  ,,0 . If I  cannot be sensed, II   differs 

(sensible) from the others (0 and I ). We express the three 

values as two intervals (N=2), i.e., δ1=ΔI, and δ2=I. 

 

Table 2. Outlier detection process for GRUBBS1 data 

Step Members of median set added Er Ihr IIR maxdelta 

1 572, 572     

2 572     

3 570     

 4 570     

5 570    2 

6 568 0.64   0 2 

7 578 1.93 1.5 1.29 6 

8 584 1.93   0 6 

9 596 (outlier) 3.86 2 1.93  
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According to the preliminaries in Section III.A, we obtain 

three parameters corresponding to interval I (the case when 

i=2).   
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We have a reasonable K in (0, 1), with the corresponding 

typical IIR given in Table 3. The threshold c in the Expanding 

Algorithm is assigned to 1.81 in this paper.  

 

IV. EXPERIMENTS 

 

For performing outlier tests, one approach is to use an 

outlier-generating model that allows a small number of 

observations from a random sample to come from a 

distribution G differing from the target distribution F [2]. 

Observations not from F are called contaminants. The object 

of finding outliers is to detect the contaminants.  

Reimann et al. [12] compared the three-sigma rule, the 

Boxplot, and the MAD method. Here, we compare the same 

methods, but replace the three-sigma rule with our IIR 

algorithm. In the first simulation, both F and G were normal 

distributions, with means of 0 and 10, respectively, and 

standard deviation of 1. A fixed sample size of N=500 was 

used, of which different percentages (0-49% step 1%) were 

outliers drawn from G. In the comparison of the Boxplot, the 

MAD method, and the IIR algorithm, each simulation was 

replicated 1000 times and the average percentage of detected 

outliers computed. The results are shown in Fig. 1(a). In the 

second simulation, the mean of the G distribution was 

changed to 5, with the results depicted in Fig. 1(b). 

According to Fig. 1(a), the Boxplot and MAD method 

perform well. Nevertheless, at 25% outliers, the Boxplot 

breaks down; and at 37% outliers, the MAD method breaks 

down. The IIR algorithm performs consistently, always 

overestimating the number of outliers slightly. According to 

Fig. 1(b), the Boxplot breaks down at 19% outliers and the 

MAD breaks down at 20%, whereas our IIR algorithm retains 

its efficient execution until 47%. In fact, the distance between 

distributions of means 0 and 5 is so close that the separation of 

normal values and outliers is no longer clear. Considering that 

the IIR algorithm can still detect 32.5% of outliers with a 

contamination percentage of up to 49%, clearly shows that it 

is indeed robust. 

A further experiment explains why the IIR algorithm 
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(a) Distributions with means 0 and 10                             (b) Distributions with means 0 and 5 
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(c) Standard normal distribution 

  

Fig. 1. Average percentage of outliers detected by three methods 

Table 3. Typical IIR in the three values system 

K IIR 

0 2 

0.01 1.96 

0.05 1.81 

0.1 1.64 

1 0 
 

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_03

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



 

 

 

overestimates outliers. For simulated standard normal 

distributions with sample sizes 10, 50, 100, 500, 1000, 5000 

and 10000, we computed the percentage of detected outliers 

for the three methods. Each sample size was replicated 1000 

times and the average results are shown in Fig. 1(c). As the 

sample size increases, the Boxplot and the MAD method tend 

to detect outliers less than 1% of the time, while the IIR 

algorithm appears robust and its detection ability increases 

slightly. In theory, the probability of the appearance of a 

deviation point increases with an increase in sample size. But 

   

0

3

6

9

12

15

504010 200 30
% simulated outliers

%
 d

et
ec

te
d

 o
u

tl
ie

rs

Boxplot

median±3MADn

IIR

       

50403020100

50

40

30

20

10

0

% simulated outliers

%
 d

et
ec

te
d

 o
u

tl
ie

rs

Boxplot

median±3MADn

IIR

 
  (a) Distributions with means 0 and 3                          (b) Distributions with means 0 and 6 
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(c) Distributions with means 0 and 7                            (d) Distributions with means 0 and 8 
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  (e) Distributions with means 0 and 15                          (f) Distributions with means 0 and 20 
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(g) Distributions with means 0 and 25                      (h) Distributions with means 0 and 30 

 
Fig. 2.  Average detection percentage for various distributions 
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appearance does not mean consistency; and the IIR algorithm 

can detect such inconsistency, while the other two methods 

seem to fail. The reason that the IIR algorithm always 

overestimates outliers with smaller sample sizes is that the IIR 

algorithm not only detects contaminants, but also detects 

outliers in the target distribution itself. 

To illustrate the character of the IIR algorithm better, we 

extend the previous experiment to make additional 
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(b) Distributions with means 0 and 10 

 

Fig. 3. Detected percentage by different IIR 
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Fig. 4. Different IIR cases for standard normal distribution 
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comparisons. Contaminants are extended to distributions with 

means 3, 6, 7, 8, 15, 20, 25, and 30 with the same standard 

deviation 1. Fig. 2 shows the results. The Boxplot appears 

consistent within its capability. With a mean greater than or 

equal to 25, the MAD method no longer breaks down, while 

the Expanding Algorithm achieves this at mean 7. At mean 30, 

the average interval between the Expanding Algorithm and 

the MAD method (in this case, nearly all contaminants are 

detected) decreases to 0.4% (simulated outliers are from 1% 

to 49%), a tiny value extracted from the target itself. As a 

comparison, the average interval between the Expanding 

Algorithms at mean 7 and mean 30 is 1.64%, which is fairly 

robust. 

In addition, we compared the results using different 

sensitivity thresholds. We used 0.11, 0.22, 0.35, 0.5, 0.67, 

0.86, 1.08, 1.33, 1.64, 1.81, and 2 based on distributions with 

means 0 and 5, and distributions with means 0 and 10, all with 

standard deviation 1. The results are shown in Fig. 3. We 

observe that different sensitivity degrees produce different 

results, but the trend and breakdown points are all similar. 

Instances with average error less than 5% (from 0% to 49%) 

are 1.33, 1.64, 1.81, and 2. This again confirms the 

consistency of the Expanding Algorithm even with different 

thresholds, and a threshold around 1.81 concurs with our 

initial sense. Thresholds less than 1 are considered too 

sensitive. Another experiment, with results depicted in Fig. 4, 

has the same conclusion. For different sample sizes of a 

standard normal distribution, different IIR thresholds have 

different sensitivity, with between 1.33 and 2 being 

acceptable. 

This paper also makes use of real data [17], in which “there 

is little room for argument about what the outliers are” [4]. 

The data consist of 2001 measurements of radiation taken 

from a balloon about 30-40 kilometres above the earth‟s 

surface. As reported by the Hampel inward procedure, 396 

observations are identified as outliers (normal observations 

are all between y=±0.1). All the obvious outliers are identified, 

leaving only a few doubtful cases of no great importance. In 

this case, median±3MADn detected 347 outliers, and Boxplot 

297 outliers. LST detected 440 outliers (normal values in 

[-0.065, 0.089]), while LMS detected 428 outliers (normal 

values in [-0.068, 0.098]). The IIR algorithm detected 398 

outliers (normal values in [-0.084, 0.092]). Compared with 

the results of the Hampel inward procedure (normal values 

are in [-0.083, 0.1]), and considering outside neighbours of 

-0.083 (three -0.084s and two -0.091s), and outside 

neighbours of 0.092 (0.097, 0.098, 0.099, 0.099, 0.1, and 

0.111), the IIR algorithm is found to have better location 

ability. It is obvious that the other methods were not able to 

take into account the local properties, making it difficult for 

them to capture correctly the exact boundaries (locally 

related).  

 

The results of applying the IIR algorithm to the datasets in 

Section II are given in Table 1. The same positive conclusion 

can be drawn here. 

 

V. DISCUSSION 

 

In this section, we discuss a rather famous set of 

observations and then give an example of a multi-class case.  

 

The classic set (Table 4.) consists of a sample of 15 

observations of the vertical semi-diameter of Venus made by 

Lieutenant Herndon using the meridian-circle at Washington 

in 1846 [11].  

Peirce applied his criterion and rejected two observations, 

+1.01 and -1.40 [11]. Later, Gould recalculated Peirce‟s 

criterion with increased precision and identified only +1.01 

[24]. The Boxplot and the MAD method mentioned above all 

label -1.40 as the only outlier. LMS and LTS both detect two 

outliers, +1.01 and -1.40. Grubbs confirmed -1.40 to be 

rejected and +1.01 to be retained at the 5% level [25]. Tietjen 

and Moore used a one variable Grubbs-type statistic to reject 

both -1.40 and +1.01, and declared their method to have a real 

significance level of 0.05 [26]. Barnett et al. [2] found even 

-1.40 not to be an outlier, although they used mismatched data. 

Nevertheless, the problem lies with +1.01, and not with -1.40.  

If we use Tietjen and Moore‟s method with CUSHNY data 

(Section II), we obtain E2=0.128, E3=0.044, E4=0.026. These 

values are all smaller than the corresponding 5% critical 

values of 0.172, 0.083 and 0.037. Thus, 4.6, 0, 2.4, and 0.8 

should all be labelled as outliers. Their evaluation of the case 

is exactly so: using the appropriate value of k for Ek is 

important, otherwise an error occurs. However, can a decision 

be made before it is processed? Before we suggest an answer, 

we analyse this example using the IIR algorithm. 

Using 1.81 as the sensitivity threshold, we only identify 

-1.40 as an outlier. What about +1.01? Its IIR is 1.10, which 

means it is detected at K=0.29. The next larger value of IIR is 

at 0.39, the IIR of which is 0.29 and the corresponding K is 

0.75, which is distant from 0.29 and in quite a different 

“sense” level, where a smaller K means a more sensitive 

system. Using a different sensitivity, we possess different 

 

Table 4. Observations of the vertical semi-diameter of 

Venus 

-0.30 +0.48 +0.63 -0.22 +0.18 

-0.44 -0.24 -0.13 -0.05 +0.39 

+1.01 +0.06 -1.40 +0.20 +0.10 
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Fig. 5. Ruspini data (five clusters by Oscillator Algorithm) 
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knowledge. The IIR algorithm is a consistent method. Further 

description of outliers can be found in the works by Hsiao et al. 

[8, 27]. 

Although the above algorithm solves the problem of two 

classes, we show, by means of an example, that the Expanding 

Algorithm can be applied to problems with multiple classes. 

The Ruspini dataset, consisting of 75 points (Fig. 5) in four 

groups, is commonly used to illustrate clustering techniques 

[22]. Clustering is one of the classic problems in machine 

learning. A popular method is k-means clustering [19, 20]. 

Although its simplicity and speed are very appealing in 

practice, it offers no guarantees of accuracy. Furthermore, 

solving the problem exactly is NP-hard [21]. Like k-means, 

most algorithms use the center point to represent a cluster, and 

each element is classified according to its distance from the 

closest center. In reality, this is not always so, and the absolute 

center is not necessary (this does not imply that the center 

point is useless). Based on this observation, a new method is 

presented to cluster Ruspini data. 

 

Given a Ruspini dataset D {d1, d2, …, d75}, with each point 

as a cell. 

 

Oscillator Algorithm: 

 

1. Calculate distances between any two points di and dj. 

2. For any point di, arrange its distance series (to other 

points) in ascending order. 

3. Calculate the series of any i using the Expanding 

Algorithm under the condition that the safest point is the first 

one and at least three points are included for more than two 

classes to exist. From this we obtain 75 clustering sets. 

4. Randomly choose one point as a seed with firing 

intensity 1, and let the intensities of other points be 0. 

5. Any partner (clustering member) of the firing cell can 

receive its stimulus and thus begin to fire with the same 

intensity, while others receive an identical negative input. 

6. Repeat step 5 until all cells remain unchanged or are fully 

charged (including negatively charged).  

7. Cluster all cells with positive firing in one cluster. 

8. Repeat steps 4 to 7 on the remaining points.  

9. Alternative approach: combine all the results of each cell, 

and determine clusters. 

 

Fig. 5 shows the clustering outcome using the Oscillator 

Algorithm. The data are clustered into five groups. 

Considering the small scale of cluster 4 (46-48), we can easily 

merge it with its nearest neighbour - cluster 3. In this case, the 

result remains the same as designed. However, without any 

extra information or restriction, cluster 4 could also be treated 

as outliers.  

Table 5 gives the detailed results of the Oscillator 

Algorithm. Each cell was chosen as a seed in turn, and two 

different results were achieved. One matches the result of five 

clusters; in the other case, cells remain silent, which means 

that the corresponding cells have no way of obtaining 

resonance. From the results, we can see the effect of the 

Oscillator Algorithm, based completely on uncertainty and 

being just what we need to model the mind.  

 

VI. CONCLUSION 

 

This paper is concerned with the outlier detection problem 

for univariate data, which can also be viewed as a primary 

pattern classification problem. The Expanding Algorithm is 

presented, together with three clearly defined parameters (Er, 

Ihr, IIR) to express the degree of the outlier, which clarifies 

the related problem in a certain way. Furthermore, a 

sensitivity index based on Weber‟s law is combined 

seamlessly to create an effective system. Experiments using 

both simulated and real data show the robustness of the 

system. A deeper relation between patterns and outliers can be 

found in [8] [27], where a general framework was constructed 

to describe and calculate patterns – a key factor for 

intelligence. In this paper, an extended application is also 

discussed for multi-class problems, and the result strengthens 

the conclusion in [27]. Above all, any classification can be 

treated as a type of distinction between numbers that 

correspond to the characteristics or features of things. 

Distinction is the foundation of human cognition. 

Indistinguishable items are classified into one group, and the 

difference within a class is less than that between classes. The 

underlying distinction or inconsistency can be expressed 

simply and well using IIR, which takes into account both the 

whole and the detail. The ability to distinguish correlates with 

the level of IIR, i.e., the different thresholds of IIR lead to 

different precision results. This condition mimics human 

thought, and thus the Expanding Algorithm based on the 

inconsistency principle can be widely used in classification. It 

is also expected that this method could result in an effective 

mind model when combined with previous and future works. 
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