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Abstract—In this work we propose an iterative e algorithm for
identification in the state space of multivariable non-stationary
discrete time series considering and implementing a computa-
tional process which we will call AOKI_VAR.
The proposed algorithm is based on an algorithm proposed by
Masanao Aoki for computational modeling of time series.
A modeling example is presented as well as discussions on
validation, prediction and modeling of time series.

Index Terms—Non-stationary time series, computational mod-
eling, non stationary stochastic process, time variant identifica-
tion.

I. INTRODUCTION

Focused on our primary objective, computational modeling
of multivariable non-stationary time series data, we initially do
a brief study of the theoretical foundations for discrete time
series state space identification. A structure to be used in the
resolution of this kind of problem is also proposed, as well
as a discussion on validation, modeling and prediction of time
series is made.

In this article, we treat non-stationary time series as a set
of time invariant models, that is to say, the system matrices
Ak,Kk, Ck, supposedly present small time variations, "small
changes" meaning that every array changes slowly, allowing us
to generate an iterative algorithm for the proposed objective.
For this study we modify the algorithm proposed by AOKI [2]
for time series state space modeling and call it AOKI_VAR
Algorithm. Finally we test our algorithm using a benchmark.

II. FUNDAMENTALS

The computational modeling of data is a fundamental
problem in nearly every scientific discipline; particularly in
engineering and economics, the multivariate input and output
data are called vector signals or time series and their analysis
generally serve to at least one of the following possible
purposes:
• Modeling of signals that need to be recognized or re-

trieved by a process of analysis in applications such as
communications or economic time series predictions.

• Since in the signals, the information stored correspond
to the dynamical systems that produce them, or to the
dynamical systems that could predict hypothetical data,
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the utilization of the signals to determine the unknown
model parameters of the system model will allow the
realization of these tasks in the state space.

In general, the computational modeling of data in the state
space for linear dynamical systems with multiple inputs
and multiple outputs (MIMO) from the input and output
measurements in noisy environments, is a central problem
in multivariable modeling of time series, signal processing,
identification, analysis and control systems design, learning
and inteligent systems analysis and design.

A. NON-STATIONARY VECTOR TIME SERIES MODELING

A time series is a set of vector observations yk, at each
specific time k = {0, 1, 2, ...}. The multivariable discrete
time series model can be seen as the information generation
system that transforms past and present signals in to future
observations. The states collect the information contained in
the signals and transmit it through the dynamic model of the
series to generate new usable signal information.

A non-stationary discrete time series can be represented
by Y T = {y1, y2, ..., yT }. There is a serial dependency
relationship between these observations. The data modeling
problem is to describe mathematically the properties of these
non-stationary stochastic vectors.
One classical possibility for this treatment is through the
decomposition of the time series, yk, in their basic movements
such as: trend, T ; cyclic movements, C; seasonal movements,
S and irregular or random movements, I. Thus yk can be
decomposed as:

yk = (T + C + S + I)k ou yk = (TCSI)k (1)

Usually the trend can be estimated, for example, using graph-
ics where the trend is drawn, or by the method of least squares,
or by the method of the semimedias.
In this study we concentrate in non-stationary time series data
modeling, validation and prediction. The main objective of our
work is to determine the state space data model, including its
order and its matrices for diferent time instants, based on an
algorithm that explores the properties of subspaces for data
supplied by multivariable stochastic time series.

A time series model of the observed data {yk} is a spec-
ification of the joint probability distribution of the stochastic
process sequence the time series realizes. In this study we only
consider second order stochastic process, so only means and
covariances are accounted for.
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B. MODELING OF STATIONARY STOCHASTIC TIME SE-
RIES IN THE STATE SPACE.

Stationary multivariable time series in the state space can
be modeled by a discrete stochastic multivariable linear time
invariant system [13] :{

xk+1 = Axk + vk

yk = Cxk + wk
(2)

where the terms vk, wk are respectively the state and output
noises in the time series due to its stochastic nature. These
terms may be considered as inputs no one has any control on
them.

The perturbation vectors vk ∈ Rn and wk ∈ Rl are
white noise stochastic processes sequences of zero mean and
covariance matrices represented by:

E

[(
vk

wk

)(
vT

s wT
s

)]
=

[
Q S
ST R

]
k = s

0 k 6= s
(3)

where E is the mathematical expectance operator.
Defining the innovation vector ek, with E [ek] = 0 ∀k, ek ∈
Rl serially uncorrelated, stationary stochastic process in the
weak sense, with covariance matrix ∆ = E

(
eke

T
k

)
, we can

also represent the time series by the state space innovation
form: {

xk+1 = Axk +Kek

yk = Cxk + ek
(4)

where xk ∈ Rn is the state vector stochastic process
stationary in the weak sense, where K is a constant matrix.

The perturbation vector is
[
Kek

ek

]
and the covariance matrix

is:
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]
For analogy (3) and (5) are equal.
For the model described in the equation (4), we define the

extended observability matrix by:

O =
[
CT ATCT

(
AT
)2
CT · · ·

(
AT
)n−1

CT · · ·
]T

and the extended reachability matrix by

Ω =
[
M AM (A)2M · · · (A)n−1

M · · ·
]

where the covariance matrix M = E
(
xk+1y

T
k

)
, is given by:

M = AΠCT +K∆

where Π = E
(
xkx

T
k

)
:

Π = AΠAT +K∆KT

and Λo is the covariance matrix of the output stochastic
process {yk}:

Λo = CΠCT + ∆

Assuming ∆ > 0, ∆ and K can be expressed as:

4 = Λo − CΠCT

K = (M −AΠCT )∆−1

From these equations we have:

Π = AΠAT +
(
M −AΠCT

) (
Λo − CΠCT

)−1 (
M −AΠCT

)T
(6)

The stochastic realization problem for time series can be
expressed in the following steps:

1)Determine the matrices Λo, A,M and C that represent a
model for the covariances sequence Λi of a set of outputs
yk, assuming that the Hankel matrix of the covariances
can be factored, as H = OΩ.

2)Solve the Riccati equation (6), for the state covariance
Π.

3)Calculate ∆ and K from Λo, A,M,C andΠ.

In terms of the covariances, the Markov parameters of the
system can be represented as:

Λi =


CΠCT +R i = 0

MT
(
AT
)−i−1

CT i < 0
CAi−1M i ≥ 1

(7)

In other words:  R = Λ0 − CΠCT

Q = Π−AΠAT

S = M −AΠC
(8)

For better understanding, see [?], [?], [5], [13].

C. STATE SPACE REPRESENTATION OF A NON-
STATIONARY NOISE .

Consider v(k) a stochastic process with zero mean and
covariance matrix:

Ev (k2, k1) = V (k1)δ(k2 − k1)

where V (k)≥0 is its intensity.
In the case where V (k) is a constant V , the process is

stationary.
On the basis of a white noise ek we generate the non-

stationary noise ej,k, that we call innovation noise, by:{
zk+1 = Akzk +Kkek

ej,k = Ckzk + ek
(9)

where Ak, Ck,Kk are time variant.

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_11

(Revised online publication: 27 November 2010)

 
______________________________________________________________________________________ 



D. NON-STATIONARY TIME SERIES MODELING IN THE
STATE SPACE: AOKI_VAR ALGORITHM.

The algorithm we propose is defined initially for a number
of n intervals of experimentation for the signal identification.
Thus the AOKI_VAR algorithm here proposed will be evalu-
ated a number n of times whith T samples for a window, to
determine n sets of systems matrices for each experiment j.

Let Lj be a specific integer for the jth experimentation
interval Ij , given by:

Ij = [kj − Lj , kj + Lj ] (10)

with Lj = v ∗ ∇ and ∇ = S ∗ ∇j , where v and S are
adequately fixed integers and ∇j is the jth sampling period.

In the proposed algorithm we will treat the innovation model
of the non-stationary time series as a set of time invariant
innovation models. Hence the modeling of the non-stationary
time series will consist in a set of n stationary models that
will describe the system for the proposed algorithm. As the
innovation vector covariance matrix is time variant, cov ek =
∆k.

To interpret the identification of the parameters of the
problem, we have sets of indices j, k that tell us the input
sample for the kthinstant of time for the jthexperimental
interval for system (11). Therefore we can annotate that
j ∈ [j0,j0 + n− 1] and k ∈ [k0,k0 + T − 1] where j0 is the
first interval of experimentation, k0 is the first instant of time,
n is the total number of experiments or tests and T is the
number of samples for a simple experiment.

The noisy non-stationary linear system is represented by the
following state space equations:{

xj,k+1 = Aj,kxj,k +Kej,k

yj,k = Cj,kxj,k + ej,k
(11)

where T ≥ n, where ej,k is a stochastic process variant over
time generated by a white noise.

The problem is to determine the state space description[
xj,k+1

yj,k

]
=
[
Aj,k kj,k

Cj,k 1

] [
xj,k

ej,k

]
(12)

based on the following associated output data sequences:

Yj,k =


yj0,k0 yj0,k0+1 · · · yj0,k0+T−1

yj0+1,k0 yj0+1,k0+1 · · · yj0+1,k0+T−1

...
... · · ·

...
yj0+n−1,k0 yj0+1,k0 · · · yj0+n,k0+T−1


The matrix Yj,k represents the set of n intervals of experi-

mentation, allowing us to develop general expressions able to
relate the outputs starting at an initial time k0 and establishing
an adequate experiment in window j, for a discrete time-
varying system.

For achieving our objetive we utilize an iteractive algorithm
structure. This kind of structure is described in Figure 1, and
is based in [14], where representations for iterative and recur-
sive data processing structures are presented. The recursive
algorithm is obtained by working serially with the data, a
sample at a time, using a recursion. On the other hand, the
iteractive algorithm utilizes the en bloc method of analysis,

where a single estimate is obtained by operating over the entire
set of data in one operation. A sequence of these en bloc
operations characterizes the iteractive process; the en bloc or
batch solution can be considered as a single iteration on the
data.

Figura 1. Recursive and Iteractive

To model the time variant series on the state space we
can apply an iterative algorithm assuming small variations
on the systems matrices in a predefined interval of operation.
To the data we apply this iteractive scheme, that we call the
AOKI_VAR algorithm, that is summarized in this section and
where the following operations are made:

1)Determine the signal yj;k ≡ ȳ, generating the matrices
HA, HM , HC , H, Y−, Y+

Y− =


ȳ1 ȳ2 ȳ3 · · · ¯yN−1

0 ȳ1 ȳ2 · · · ¯yN−2

0 0 ȳ1 · · · ¯yN−3

...
...

... · · ·
...

0 0 . . . ¯yN−k−1 ¯yN−k



Y+ =


ȳ2 ȳ3 ȳ4 · · · ȳN

ȳ3 ȳ4 ȳ5 · · · 0
ȳ4 ȳ5 ȳ6 · · · 0
...

...
... · · ·

...
¯yj+1 ¯yj+2 ¯yj+3 · · · 0



H =
Y+Y

T
−

N
=


Λ1 Λ2 · · · Λk

Λ2 Λ3 · · · Λk+1

...
...

. . .
...

Λj Λj+1 · · · Λj+k



HA =


Λ2 Λ3 · · · Λk+1

Λ3 Λ4 · · · Λk+2

...
...

. . .
...

Λj+1 Λj+2 · · · Λj+k+1



HM =


Λ1

Λ2

...
Λj


HC =

[
Λ1 Λ2 · · · Λk

]
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2)Determine the singular value decomposition of the Han-
kel matrix of covariances

H = U
∑1/2 ∑1/2V T

3)Calculate the matrices Aj,k, Cj,k,Kj,k and 4j,k.
4)Update: iterate on the algorithm as described above, to

obtain the state and covariance matrices for yj,k for each
instant k of time and time interval j.

5)Validate.

E. VALIDATION, MODELING AND PREDICTION BY THE
AOKI_VAR ALGORITHM

The validation of a model can be defined as the
demonstration of its accuracy for a particular application. In
this sense, accuracy is the absence of systematic and random
errors. The time series model validation requires:

• The confirmation of the model (that is, that it proves to
be credible and admissible)

• The verification of the model (that is, that it proves to
be true).

Our proposal of validation for the AOKI_VAR algorithm has
the following scheme, Figure 2:

Figura 2. AOKI_VAR ALGORITHM VALIDATION

To confirm and to verify the quality of the proposed AO-
KI_VAR algorithm we implemented the following benchmark
for the time variant system:{

Xk+1 = Akxk +Kkek

yk = Ckxk + ek
(13)

where

Ak =
[
−0,3 0

0 ak

]
(14)

with

ak = −1
3
− 1

10
sin(

2πk
400

)

The remaining matrices are considered constants:

Kk =
[

5/4 5/4
7/10 7/10

]
(15)

C =
[

5/4 −7/10
5/4 −7/10

]
(16)

Using the procedure presented in II-D, the input to the
system (11) is a random signal that changes for each iteraction
of the algorithm according to (9).

For j = 1, the results for the validation phase of the
proposed AOKI_VAR algorithm are presented in Figures 3
to 5 for k = 1.

The matrices Â, B̂,K̂ and M̂ and the Markov parameters are
also presented, as well as in Table 1,4 ( the noise covariance
matrix) and 4̂ (the estimated noise covariance matrix), for this
case.

Figura 3. Innovation Noise for k = 1 and j = 1
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Figura 4. Outputs and outputs estimates for k = 1 and j = 1

Figura 5. Error for k = 1 and j = 1

Table I
COVARIANCES MATRICES FOR j = 1 AND k = 1

∆
0.9633 −0.0856
−0.0856 1.0092

∆̂
0.9176 −0.0801
−0.0799 1.2387

Â =
[

0,174 −0,21
0,216 −1,02

]
K̂ =

[
−1,02 −0,93
−0,17 −0,18

]
Ĉ =

[
−1,10 −0,05
−1,15 −0,04

]
M̂ =

[
−1,1 −1,15
0,05 0,045

]
Two ways of studying time series are here briefly

considered: state space modelling and prediction. In our

context, in the analysis of time series one tries to mainly
determine the model order and the model structure ( systems
and covariances matrices ) that generated the time series.
Thus modeling of time series, or computational modeling of
time series, or identification of time series in the state space
involves finding a time series model that represents the time
series characteristics: order and structure.

Assuming that the AOKI_VAR time series model has
already been validated, it can be used for modeling any time
series, as shown in Figure 7.

Figura 6. AOKI_ VAR MODELING

Based in Figure 6, we model the non-stationary time series
presented in Figure 7 and obtain the matrices Â, B̂,K̂ and M̂
for j = 1 and k = 1:

Â =
[

0,0337 −0,1260
−0,1260 −0,5975

]
K̂ =

[
−0,3476 1,0199
1,0102 1,0278

]
Ĉ =

[
−8,6150 −0,0367
0,0234 −0,0475

]
M̂ =

[
−4,1824 −1,1741
0,0418 0,0501

]
In Table II the estimated noise covariance matrix for j = 1

and k = 1 is presented.

Figura 7. Time Series
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Table II
COVARIANCE MATRIX

∆̂
14.0581 −0.3927
−0.3835 1.0264

Once a state space model for a time series is validated, it
can be used for prediction. In Figure 8 we present a proposal
for prediction of future values of the time series based on the
model obtained by the AOKI_VAR Algorithm. The results of
the prediction by the AOKI_VAR algorithm are presented in
Figure 10, and in Table III. In Figure 9 the innovations noises
for the validated model, for j = 1 and k = 1, are presented.

Figura 8. AOKI_VAR PREDICTION j = 1 and k = 1

Figura 9. Innovations Noises j = 1 and k = 1

Figura 10. Predicted Time Series for j = 1 and k = 1

Table III
COVARIANCE MATRIX

4 1.1097 0.8081
0.8081 15.6649

III. CONCLUSIONS

In this study we formulated a computational procedure
for state space modeling of multivariable non-stationary time
series we called AOKI_VAR algorithm, based on the AOKI
algorithm. We also discussed the validation, modeling and
prediction procedures of multivariable non-stationary time
series by the AOKI_VAR algorithm and an application using
a proposed benchmark has been presented. The results can be
considered good and the proposal useful under the considered
hypothesis, but they should still be considered as preliminary
due to the complexity of the problem considered.
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