
Cyber Security in Internet-Based Multiplayer

Gaming

Christopher Dixon and Luay A. Wahsheh∗

Abstract—Internet-based multiplayer gaming has
been used extensively over the past few years. The
main concern that has arisen from online game
distributers is the prevention of cheating. Most online
games are organized through the client/server model.
This is done in an attempt to prevent cheating,
steering away from peer-to-peer applications which
would be better for relieving the work load of servers
by pushing tasks onto the clients, but in turn opens
up Pandora’s box for hackers. The quest for better
security in online games benefits both the players
as well as the game developers. In this research
work, we investigate current security issues in online
multiplayer gaming as well as potential solutions to
these problems. We discuss how cheats are usually
centralized in the protocol level of the game design.
These cheats will range from fixed-delay cheats to
collusion cheats. Also discussed in this research work
are four models that attempt to counterattack these
exploits and in turn fix the cheating problem.

Keywords: cyber security, networked computer games,

cheat prevention, peer-to-peer, latency.

1 Introduction

With the rising trends in online gaming, comes the
problem of presenting a cost effective measure to prevent
hackers and cyber security issues arising from users. It
has been shown that many cheats in online games are
due to poor or non-existent security objectives in the
game design [12]. Although security plays a major role in
the design of software systems, it is still not considered
an explicit part of the development process [8]. Security
requirements are usually added to an already existing
system. As a result, this leads to numerous problems with
the overall security design.

Hacking can be defined as gaining access to a computer
by illegally accessing information. A simple way to
look at hacking is to think of a burglar breaking
into a house [1]. The house is a computer, and the
burglar is a hacker. Hacking has become a very serious
issue in computer games [13]. Cyber security can be
viewed as mechanisms that are designed to enforce

∗Department of Computer Science, Norfolk State

University, 700 Park Avenue, Norfolk, Virginia 23504, USA,

c.s.dixon@spartans.nsu.edu, law@nsu.edu.

secure (proper) behavior on the operation of computers
in networks that are connected to the Internet. Secure is
defined by a security policy that addresses information
confidentiality, integrity, and availability [7]. We consider
a system secure if the security policy is being correctly
enforced. In current models, the game itself is run off
of a client/server (C/S) model, but most updates are
distributed on a peer-to-peer network [6]. While C/S is
simple, secure, and reliable, it has limited scalability to
support a large number of players [10]. As soon as the
servers offload some resources onto the clients in order to
be more cost effective, the issue of trustworthiness comes
into play. Although, putting everything on a peer-to-peer
system does not necessarily make it secure [6].

In an online survey [11], 35% of 594 players
who responded within a 2-week period admitted to
cheating/hacking in an online game. The hacks can be
as simple as a speed hack which allows the user to
move faster than was originally designed or an aimbot
which allows the user to have a heightened sense of
precision accuracy not originally designed in the game;
or this can lead to more serious problems like stealing
online accounts as well as altering online game play
environments. Table 1 shows examples of common cheats
in the game level, application level, protocol level, and the
infrastructure level and possible solutions to fix them [9].

Potential solutions have been proposed to fix certain
problems, but most of these issues cannot be resolved. In
this paper, we discuss simple hacks in online gaming as
well as hacks that can occur in peer-to-peer applications.
This paper also discusses solution designs to hacks that
occur in the protocol layer of game design which is where
most hacks occur.

For the purpose of this research work, let us refer to
Bob and Alice. Bob is the trusted player and Alice is the
cheater. Cheating in online gaming can be categorized by
the layer in which it occurs: game, application, protocol,
or network [5]. All of the designed protocols discussed
in this paper refer to issues that arise from the protocol
level of the game design. This layer is where the passing
of packets from an individual to the server as well as other
players occurs.

The five protocol level cheats that all these designs

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_13

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



Table 1: Game cheats and their possible solutions.

������ �
�	

�



�

��


�
�

�


	

�

�
�

�
�	

�


�

�


�
	

�



�



��

�
�

���������	� � � � � � �

������� �� �� �� �� �� ��

���	
������������ �� �� �� �� �� ��


��	�����������	� � � � � � �

���������������������

�����������������
�� �� �� �� �� ��

����	������ ��!��� �� �� �� �� �� ��

������	�����	� � � � � � �

"������������������������

#�������$����!�������!$�
�� �� �� �� �� ��

���������� �� �� �� �� �� ��

"�������������$� �� �� �� �� �� ��

%���� &	'� �� �� �� &	'�&	'�

������(������� &	'� �� &	'�&	'� �� &	'�

������������������	� � � � � � �

�������������������� �� �� �� �� �� ��


���$	������� ��!��� �� �� �� �� �� ��

��)������*�� ��)�����$��������

��)����������*�� &	'�)����������!�*��

discuss are fixed-delay cheats, timestamp cheats,
suppressed update cheats, inconsistency cheats, and
collusion cheats. A fixed-delay cheat is when Alice adds
a delay to her packets being sent to Bob. This results in
Alice receiving Bob’s packets faster, thus allowing Alice
to react faster in relation to Bob’s actions. A timestamp
cheat is when Alice alters the time in which her action
was sent to Bob. Alice would receive Bob’s move and
then send Bob a move that was time stamped for Bob
before the received update was received resulting in a
future look at what Bob was going to do and thus gives
Alice a way to react. A suppressed update cheat is when
Alice does not send any updates at all to Bob, but will
still continue to receive Bob’s updates. This makes Alice
invisible to Bob. Alice will eventually send an update
when she realizes that she is about to be kicked from
the server. An inconsistency cheat can be very complex.
Alice will send correct updates to all other players in a
game except for Bob. Bob will think Alice is in a different
location, but Bob’s team will disagree with him. Alice will
eventually send a correct update to Bob to hide her cheat.
A collusion cheat happens when players share information
about another player. Bob’s team mate can share Bob’s
updates with Alice, thus giving Alice an advantage over
Bob.

In all of the research work that is discussed in this
paper, the developers tested their protocols on games that
were designed by the protocol developers. None of these
protocol designs have been tested on popular mainstream

online multiplayer games as of their publications.

The remainder of this paper is organized as follows:
in Section 2, the new event ordering protocol design is
discussed which was designed to combat all five protocol
level cheats previously discussed. Section 3 discusses a
model that was built around the fair-ordered message
exchange protocol and its attempt to prevent users from
using the timestamp cheat. Section 4 discusses the secure
event agreement protocol design which is built on the
new event ordering protocol design and claims to be an
improvement on the new event ordering protocol design.
Section 5 discusses the efficient and secure event signature
protocol. Then, Section 6 concludes the paper.

2 New-Event Ordering Protocol

The goal of the new event ordering protocol is to
address the problems associated with the peer-to-peer
architecture for massively multiplayer online games.
New-event ordering protocol provides low latency event
ordering while still preventing common protocol level
cheats [5]. In this protocol, the players decide what
happens. The majority of players vote on the updates
that are received and if the majority of votes say that an
update is valid, then the update is valid, even if all the
players did not receive the update.

The new event ordering protocol was inspired by bucket
synchronization in that it divides time into “rounds”
which is used to set a maximum latency in which a
player has time to submit his or her updates [5]. The
maximum latency can be no larger than three times
that of the slowest player. For example, assume that
we have a multiplayer game active and all players as
well as the servers are located in the United States of
America. Sometime later, a player from China connects
to the server where the server calculates that his or her
round trip time is 500 ms. The maximum latency of that
server would now be 1500 ms between rounds. Of course,
the lower the round trip time, the better the gaming
experience. Each player sends updates to the server which
distributes his or her updates among the other players.
Any late updates submitted to the server are considered
invalid. At the end of the round, the players “vote” on
what updates were submitted to them. These “voting
sessions” are done automatically with the player having
to do nothing. This prevents other players from changing
their updates from player to player.

Each update that is sent through the new event ordering
protocol must be received before the end of the round.
Also, these messages are encrypted. In the following
round, the players will send their keys for the previous
encrypted update sent to all players so that the update
can be decrypted. The updates that are sent to all players
have the following format using equation 1 [5]:

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_13

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



Table 2: Player A’s table of votes.

Player Bit-vector

A 1 1 0 1 0

B 0 1 0 1 0

C 1 1 1 0 0

D 1 1 1 1 1

E packet lost

Voting tally 3 4 2 3 1

Mr
A = E(SA(Ur

A)),Kr−1

A , SA(V r−1

A ) (1)

In this message, E(SA(Ur
A)) is an encrypted signature,

SA(), of update Ur
A, Kr−1

A is A’s key for the update from
round r − 1, and V r−1

A is the bit vector of votes for the
messages received during round r − 1.

Consistency is achieved through the majority voting. The
updates that are sent are only validated if the majority of
the players received the update. If a vote is not received,
it is considered invalid. If the majority of the players
vote that the update is invalid, then all players will once
again attempt to communicate with the “invalid” player.
Table 2 shows an example voting round using the new
event ordering protocol [5].

One of the benefits to the “voting” concept is that the
game can continue no matter what. Assuming that the
majority of the players are returning a “valid” update for
all players, then the game will continue to proceed with
no problems. Another benefit to “voting” is that it will
keep the majority of the players happy. Instead of lagging
a server beyond playing, if a player fails to communicate
with the other players, then the non-communicating
player is kicked from the server.

According to the creators of the new event ordering
protocol, all five forms of the protocol level cheats
were fixed. Fixed-delay cheats were addressed by the
bounds placed on the time limit in which updates
could be received. If an update was received late, then
the update was considered invalid and did not count
towards the final vote. The timestamp cheat was also
addressed in the same manner. Since the rounds had a
maximum length, no update could be received late since
it would be considered invalid. The suppressed update
cheat was fixed by the new event ordering protocol’s
ability to not send updates to players that are not
in turn sending updates. The user will not receive
updates pertaining to the actions that other players are
performing and will eventually be kicked from the server
if the activity continues to happen. The inconsistency
cheat is addressed with the use of digital signatures
and state comparisons. During gameplay, players will
occasionally check the state of all players. If two or
more players discover an inconsistency, the protocol can

trace the packets and can be used as evidence when
attempting to ban a player. Once the proof is obtained,
the procedure of banning a player is inevitable. If two
players receive different information from a player, that
information can be used against the cheating player
and can be used as evidence to ban that player from
the server. Finally, the new event ordering protocol
claims to address collusion in three ways [5]. First, the
new event ordering protocol can adjust the majority
value sufficiently high to prevent collusion. Second, the
authenticating directory (AD) service prevents players
from logging in multiple times and gaining a majority.
Third, the communication component of the protocol
design can randomly select witnesses for a new event
ordering protocol group.

Overall, the new event ordering protocol design has been
a stepping stone for other developers in the gaming
community, generating many “offspring”, two of which
will be discussed in this research work. Looking at
network latencies and dividing them into rounds is a
smart way to organize the time frame in which updates
from players are to be received. The future work of
the new event ordering protocol developers is to design
a protocol for group management, event propagation,
storage, and computation.

3 Cheat Controlled Protocol

The cheat controlled protocol design was created to
address the timestamp cheat which refers to a situation
where a player will alter the time that his or her update
would have been sent to the other players, thus giving the
cheating player a future look at what is going to happen
and allowing him or her to react in the way that best fits
his or her needs. The cheat controlled protocol uses two
main equations to calculate whether a delayed message
is due to network congestion or if the delayed message is
an attempt to cheat.

Equation 2 measures the proposed arrival time of an
update from a player [3].

PAT i
jk = Ui + δi

jk + ERTTj + ESi
j + RTTTj + ST i

j (2)

In equation 2, PAT stands for the proposed arrival time
of the update. Ui stands for the server time at time
i. δi

jk stands for the reaction time of a player. ERTTj

stands for the estimated round trip time. ESi
j stands for

the estimated update message processing time. RTTTj

stands for the round trip time tolerance. ST i
j stands for

the update message processing time tolerance.

The information that represents the proposed arrival time
of the update is used in combination with equation 3,
which calculates the actual arrival time for the update [3]:

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_13

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



AAT i
jk = Ui + Aδi

jk + ARTTj + ASi
j (3)

In equation 3, AAT stands for the actual arrival time for
the update to the server. Ui once again stands for the
server time. Aδi

jk stands for the actual reaction time that
the player submitted. ARTTj stands for the actual round
trip time. ASi

j stands for the actual update message
processing time. This equation along with equation 2 help
the cheat controlled protocol design to decide whether an
update is “valid” or “invalid”.

In order to determine whether or not a player is cheating,
the cheat controlled protocol compares the proposed
arrival time and the actual arrival time. If the actual
arrival time is less than or equal to the proposed arrival
time, then the player is assumed to not be cheating. If the
actual arrival time is greater than the proposed arrival
time, then there can be a few reasons to why there is a
delay. One reason is that there can be network congestion
between the server and the player [3]. An easy way to tell
if a player is attempting to cheat is done by the server. If
the server does not see any network congestion occurring,
then the delayed message is an attempted cheat by a
player.

The cheat controlled protocol is a very good design,
but is very primitive when compared to other protocols
designed to prevent cheating in online games. Only
looking at one cheat, the timestamp cheat, helps the
cheat controlled protocol focus on the main problem
but detours from the fact that developers are trying to
prevent all five protocol level cheats that are discussed
in this paper. Another issue is that the cheat controlled
protocol is useful only if all players are playing on a
steady connection. If a player has any network congestion
that may delay the passing of that player’s update to
the server, the cheat controlled protocol may see that
player as a cheater and kick that player from the game
server. Overall, this protocol would be very effective, if
we were only considering the timestamp cheat; but since
we are trying to remedy five of the major protocol level
cheats, the cheat controlled protocol seems quite weak
when trying to fully protect a game server.

4 Secure Event Agreement Protocol

The secure event agreement protocol was designed after
the new event ordering protocol (which was discussed
earlier). The reason for the creation of the secure event
agreement protocol was because the developers who
designed the secure event agreement protocol researched
the new event ordering protocol and claimed that it only
prevented three out of the five types of protocol level
cheats that it claimed to remedy. The developers of the
secure event agreement protocol claim that their new
protocol design addresses all five protocol level cheats and

Figure 1: An illustration of the voting attack.

also that the performance of the secure event agreement
protocol is at worst equal to that of the new event
ordering protocol and in some cases is better [4].

As a refresher, the new event ordering protocol limited
rounds to three times that of the slowest player’s
round trip time. The new event ordering protocol also
compensated for loss of updates by using a voting system
in which if the majority of the players could “validate” the
update, then the update was considered to be a “valid”
update even if not all of the players received the update.
The developers of the secure event agreement protocol
claim that there are three problems with the design of the
new event ordering protocol [4]. First, it was discovered
that an attacker can replay older updates for another
player. Second, an attacker can fabricate messages from
previously seen “validated” updates. Third, an attacker
can send different updates to different players. The
developers of the secure event agreement protocol show
how people can exploit these design flaws and give a
proposed design that will effectively counter all protocol
level cheats. Figure 1 shows how an intruder can initiate
a voting attack in a system that does not implement
the secure event agreement protocol [4]. In this case,
both Alice and Bob are honest players with an intruder
intercepting their messages.

First, an attacker can resend an update to another player.
We will once again refer to Alice as being the player who
is cheating and Bob being the honest player. To resend
an update to another player, a player would need to have
seen the previous round update and the current round
update so that he or she has the key to decrypt the
message. So Alice would have the previous round message
as well as the message of the current round to obtain the
decryption key for the message. Once Alice has decrypted
the message, she can either re-encrypt it with a new key
or resend it as it is. This is still considered to be an
inconsistency cheat.

Second, an attacker can fabricate messages from

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_13

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



previously seen “validated” updates. The voting for the
new event ordering protocol was done with zeros and
ones, zero meaning that the update was not received
before the end of the round and one meaning that the
update was received before the end of the round. So Alice
could exploit this by gathering the votes from many other
players, and creating false messages that would appear to
come from the other players. Doing this gives Alice the
ability to send her update after the round has come to
an end and the other players will consider that update
valid. This allows Alice to get a future look at the other
players’ moves and allows her to react in an appropriate
manner. Fabricating these messages will make the voting
scheme used by the new event ordering protocol obsolete.
This is still considered to be a timestamp cheat.

Third, an attacker can send different updates to different
players. The problem that has arisen with this is that the
new event ordering protocol did not provide an assurance
policy that all players had received the same updates.
Since the updates are not tied to any specific round, it
is possible for Alice to resend signed updates to different
players which would convince them, for example, that
Bob was cheating. This would give Alice the upper hand.
If Alice can distract the rest of the players from her
cheating by making it seem that Bob is the dishonest
player, Alice will have the advantage of doing other cheats
and having Bob take the blame. This is still considered
to be an inconsistency cheat.

The way that the secure event agreement protocol
addresses these flaws in the new event ordering protocol
is by adding an extra encryption algorithm and applying
it to the update [4]. The encryption algorithm uses a
hashing function to commit the player to the value of
the message. The equation, labeled as equation 4, is as
follows:

CommitrA = H(Ur
A, nr, SessID, IDA) (4)

In equation 4, the value Ur
A stands for the update of

player A at round r. nr stands for a random value
that is specific to round r. The value of n cannot have
been previously used and cannot be used again after the
current round is over. The session ID, SessID, is included
in the hashing function to prevent the message from being
used again in the future. The result that is given from
equation 4 is then plugged back into an altered form of
equation 1 to give the new resulting message that is to
be sent to the players [6]. Equation 5 is just an altered
form of equation 2 that switches the encryption in the
message with the new CommitrA equation and provides
more security on the message that is being sent to all the
other players. With the addition of equations 4 and 5 to
the basis that was the design of the new event ordering
protocol, the secure event agreement protocol successfully
addresses all five protocol level cheats that have been

discussed in this paper.

Mr
A = SA(CommitrA, Ur−1

A , V hr−1

A , nr−1, r) (5)

The secure event agreement protocol addresses the fixed
delay cheat by making all players submit their moves
before the end of the round. At the conclusion of the
round, all the players will vote to determine whether the
updates are “valid” or “invalid” and upon completion
of all the voting for the round, the moves of all the
players for the round will be revealed. The secure event
agreement protocol addresses the timestamp cheat by
limiting the rounds to a fixed time. If a player’s update
has not been sent out by the end of the round, then it
will not be accepted and will be considered to be an
“invalid” update. The secure event agreement protocol
addresses the suppressed update cheat with the inclusion
of equation 4 in its message creation design.

Since the commit feature is included in the message
creation, it is now possible for players who did not receive
the update to know the update to which the player has
committed. This is made possible by the inclusion of
the players ID in equation 4. The player’s ID acts as
a signature which authenticates the update making it
very difficult to fabricate an update. The secure event
agreement protocol addresses the inconsistency cheat by
the inclusion of equation 4 in the message creation design.
The value of CommitrA should be equal for all messages
that are sent out during a round. If the majority of
the players receive a message with the same value of
CommitrA, then the update will be considered “valid”
and accepted by all players. Finally, the secure event
agreement protocol claims to address the collusion cheat
by still allowing players to share information. With the
inclusion of equation 4, the only information that can be
shared among players is that of the decrypted updates.

When compared to the other anti-cheating protocols
that have been discussed in this paper, the secure event
agreement protocol seems to be the best candidate to
get the job done. With the inclusion of equation 4 to its
design, it now successfully protects from the five protocol
level cheats in which it was designed to do. Also, the
secure event agreement protocol does an excellent job
of building on the design of the new event ordering
protocol and also by documenting how the new event
ordering protocol does not effectively protect against
all five protocol level cheats discussed in this paper.
The future work for the developers of the secure event
agreement protocol was to design group selection and
round negotiation protocols that will work in conjunction
with the secure event agreement protocol [4].

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_13

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



Table 3: Notations.

P layeri each player in the game, where i ∈ {1..m}
H(x) hash operator with input message x

OSK
j
i playeri’s jth one-time signature key

Ssk(x) message signing x by secret key sk

x|y concatenation of the message x and y

δ
j
i signature signed by playeri’s jth OSK

Δ signature signed by secret key sk

5 Efficient and Secure Event Signature

Protocol

The efficient and secure event signature protocol was
designed to effectively sign multiple updates at one
time. It was also designed to enforce unforgeability and
verifiability when transferring updates from player to
player. Unforgeability and verifiability are requirements
for digital signatures, assuring the user that the signature
that is shown on the updates that are received is from
the player [2]. The efficient and secure event signature
protocol was designed on both the new event ordering
protocol and the secure event agreement protocol. The
efficient and secure event signature protocol’s main goal
is to achieve scalability and fairness for peer-to-peer based
massive multiplayer online games.

The only thing that the developers of the efficient and
secure event signature protocol claim is wrong with
the new event ordering protocol and the secure event
agreement protocol is that both of these protocols are
not practical due to the excessive use of cryptographic
signatures [2]. The efficient and secure event signature
protocol computes the digest of the message by using a
hash function before signing the message. The efficient
and secure event signature protocol is divided into four
phases: the initialization phase, the signing phase, the
verification phase, and the re-initialization phase. Table 3
breaks down the variable notations that will be used in
these four phases [2].

The initialization phase is where everything starts.
During the initialization phase, the players will
compute their one time signature keys. The one time
signature keys are generated with the following formula
OSK

j
i = H(OSK

j−1

i ) [2]. In the end of the initialization
phase, the players sign the one time signature keys with
the player’s secret key. Once the keys are generated, they
are stored on the hard drive of the user’s computer.
During the signing phase, the messages are then signed
and sent to the other players. As an example, the first
update to be sent by playeri would be H(OSK1

i |M
1

i )
which is a hashing of the player’s one time signature key
and the message for that round [2]. In the second round,
playeri will send the message for round two as well as
the key that will be used to decrypt the message from

the previous round. The third phase of the efficient and
secure event signature protocol is the verification phase.
It verifies whether or not the update that was received
came from the player claiming to have sent it. This is
done by using the secret key that is sent in the round
after the encrypted update was received. The final phase
is the re-initialization phase. Once a player has exhausted
all of his or her one time signature keys, the player must
generate new one time signature keys. This is the main
purpose of this phase, although it does not occur as often
as the other three phases.

The efficient and secure event signature protocol succeeds
in doing what it was designed to do. The efficient
and secure event signature protocol was built on the
foundations of the new event ordering protocol and the
secure event agreement protocol and wanted to improve
on the unforgeability and verifiability. It succeeds in
doing this by creating a hash chain when encrypting the
messages that are sent from player to player. Also, since
it was designed on the basis of two protocol level designs,
it has been proven to cover the five protocol level cheats
that were addressed in this paper.

6 Conclusion

This research work has shown the designs of four
protocols that were designed to counter attack against
protocol level cheating. The new event ordering protocol,
cheat controlled protocol, secure event agreement
protocol, and efficient and secure event signature protocol
all have their own merits in attempting to stop protocol
level cheating. We believe that the best of these four
protocols is the efficient and secure event signature
protocol. Building over the design flaws that were
documented with the new event ordering protocol and
the basis of the secure event agreement protocol when
attempting to compare it to the cheat controlled protocol,
which was designed to stop timestamp cheating, the
efficient and secure event signature protocol overshadows
what was done with the other three protocols discussed.
Also, the future designs (on which they are being
worked) for the secure event agreement protocol seem
very interesting and we believe that it can become one
of the major foundations for the prevention of protocol
level cheating as well as in the continuing development of
cyber security in online multiplayer gaming.

References

[1] Cebula, S. L., Wahsheh, L. A., “Computer
Ethical Hacking: An Education Perspective,”
13th International Conference on Computers

and Advanced Technology in Education, in
press (accepted for publication on June 8, 2010).

[2] Chan, M.-C., Hu, S.-Y., Jiang, J.-R., “An Efficient
and Secure Event Signature (EASES) Protocol for

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_13

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



Peer-to-peer Massively Multiplayer Online Games,”
Computer Networks, V52, N9, pp. 1838–1845, 2008.

[3] Chen, B. D., Maheswaran, M., “A Cheat Controlled
Protocol for Centralized Online Multiplayer
Games,” 3rd ACM SIGCOMM Workshop

on Network and System Support for Games,
pp. 139–143, 2004.

[4] Corman, A. B., Douglas, S., Schachte, P., Teague,
V., “A Secure Event Agreement (SEA) Protocol for
Peer-to-Peer Games,” 1st International Conference

on Availability, Reliability and Security, pp. 34–41,
2006.

[5] GauthierDickey, C., Zappala, D., Lo, V., Marr, J.,
“Low Latency and Cheat-Proof Event Ordering for
Peer-to-Peer Games,” 14th International Workshop

on Network and Operating Systems Support for

Digital Audio and Video, pp. 134–139, 2004.

[6] Kabus, P., Buchmann, A. P., “Design of a
Cheat-Resistant P2P Online Gaming System,”
2nd International Conference on Digital Interactive

Media in Entertainment and Arts, pp. 113–120,
2007.

[7] Wahsheh, L. A., “An Analysis of Security Policy
Specification Techniques,” 9th International

Conference on Security and Management, in
press (accepted for publication on April 12, 2010).

[8] Wahsheh, L. A., Alves-Foss, J., “Policy-Based
Security for Wireless Components in High Assurance
Computer Systems,” Journal of Computer Science,
V3, N9, pp. 726–735, 2007.

[9] Webb, S. D., Soh, S., “A Survey on Network Game
Cheats and P2P Solutions,” Australian Journal of

Intelligent Information Processing Systems, V9, N4,
pp. 34–43, 2008.

[10] Webb, S. D., Soh, S., “Cheating in Networked
Computer Games: A Review,” 2nd International

Conference on Digital Interactive Media in

Entertainment and Arts, pp. 105–112, 2007.

[11] Yan, J., Choi, H.-J., “Security Issues in Online
Gaming,” International Journal for the Application

of Technology in Information Environments, V20,
N2, pp. 125–133, 2002.

[12] Yan, J., Randell, B., “A Systematic Classification of
Cheating in Online Games,” 4th ACM SIGCOMM

Workshop on Network and System Support for

Games, pp. 1–9, 2005.

[13] Yan, J., Randell, B., “Security in Computer
Games: From Pong to Online Poker,” Technical
Report Series CS-TR-889, School of Computing
Science, University of Newcastle upon Tyne, United
Kingdom, 2005.

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_13

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 




