
 
 

 

 

 
 
Abstract— It has been reported that Internet Protocol (IP) 
packet traffic exhibits self-similarity or long range dependence 
(LRD) and causes the degradation of switch performance. 
Therefore, it is crucial for an appropriate buffer design of a 
switch.  In this paper, we investigate the packet loss and delay 
behavior of the asynchronous switch under self-similar variable 
length packet traffic by modeling it as KMMMPP /1//  
queueing system wherein MMPP (Markov-Modulated Poisson 
Process) is fitted by equating the variance of MMPP and that of 
self-similar traffic. MMPP model is already validated one to 
emulate the self-similar characteristics. We investigate the 
packet loss probability, mean waiting time against system 
parameters, traffic parameters and fitting parameters. 
Numerical results show that analysis presented in this paper is 
useful in dimensioning the switch.  

 
Index Terms — MMPP, queueing system, self-similar traffic, 

packet loss probabilities, Quality of Service (QoS), computation 
complexities.  

I. INTRODUCTION 
  Seminal studies reveal that IP packet traffic in both Ethernet 
and Wide Area Network (WAN) tends to be bursty in many 
time-scales [1-3]. This bursty traffic can be characterized 
mathematically as self-similar or long range dependent 
(LRD). Earlier results have shown that LRD traffic has an ill 
affect on the performance of network nodes such as routers or 
switches. Since the switch buffer will overflow easily under 
bursty traffic, it is worthy to consider the influence of 
self-similar traffic while designing the network. Most of the 
proposed parsimonious self-similar models are asymptotic in 
nature; hence they are less effective in analyzing the 
queueing based performance measures when the buffer size 
is small. Self-similar traffic modeled by Markovian Arrival 
Process (MAP) has been proposed to emulate self-similarity 
over the desired time-scales [4, 5]. These works    involve    
Markov Modulated Poisson Process ( d2 -MMPP), which is a 
superposition of d  2-state Interrupted Poisson Processes 
(IPPs)  and a                                 
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Poisson process.  MMPP is fitted by equating the second 
order statistics of resultant MMPP and that of  self-similar 
traffic over desired time-scales. MMPP is a particular case of 
MAP and IPP is a particular case of MMPP. These models 
are computationally tractable; therefore they are more 
suitable models especially at shorter buffer depth. 

Deeper understanding of the switch behavior is necessary, 
because switch is the critical component in providing Quality 
of Service (QoS) guarantee in internet. The QoS parameters 
such as packet loss probability and packet delay are 
significant in dimensioning the switch. In [5], first, switch is 
modeled as KDMMPP /1// queueing system and then the 
impacts of time-scale and Hurst parameter ( )H  on the 
packet loss probability are investigated by means of both 
analytical and simulation results, wherein the MMPP is 
generated so as to match the variance of self-similar traffic 
over specified time-scales. From [5], it is found that 
generalized variance based fitting is robust on queuing 
behavior in terms of time-scale and number of components 

)(d in superposition. In general, switches could be divided 
into two categories based on their operation modes: slotted 
synchronous and un-slotted asynchronous. When the 
switches are operated under slotted synchronous mode, 
packets need to be aligned before entering the switch and 
involves the cost of packet synchronous. On the other hand, 
asynchronous network could let the packets enter without 
alignment. Since IP packets are, in general, variable in 
length, switch is required to possess the ability to switch the 
variable length packets. Hence the concern about 
asynchronous variable length packet traffic is increasing. 
Therefore, performance analysis of switch by means of 

KDMMPP /1// queueing system wherein service time is 
deterministic may not be appropriate. In the papers [6, 7], 
switch with the variable length packet traffic is modeled as 

KMMMPP /1// system wherein service time is exponential. 
That is, packet length is assumed to follow exponential 
distribution to make the performance analysis of switch 
handling self-similar traffic with variable length packets. In 
the said paper, MMPP emulating self-similar traffic is 
modeled as superposition of four IPPs and a Poisson process. 
It is illustrated in the paper [8] that superposition of four 
two-state MMPPs suffices to model the second order 
self-similar  behavior over several time-scales. In the  present 
paper, first, two MMPPs emulating self-similar traffic are 
fitted by taking the superposition of   three IPPs  and four 
IPPs (that is d =3 and 4), respectively,  and then queueing 
analysis is made for the comparison of these cases by means 
of simulation results. 
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 The rest of the paper is organized as follows. In section II, 
we first, overview the definitions of self-similar processes 
and MMPP. We then present the computational complexity 
and the analytical results of KMMMPP /1// system in 
section III. In section IV, we present some numerical results 
pertaining to packet loss probability and mean waiting time 
of KMMMPP /1//  queueing system and illustrate the 
effects of parameters such as Hurst parameter, traffic 
intensity, number of components in superposition, and time 
scales. Finally some conclusions are given in section V. 

II. SELF-SIMILAR TRAFFIC AND MARKOV MODULATED 
POISSON PROCESS (MMPP) 

 
The definition of exact second-order self-similar processes 

is given as follows. If we consider X  as a second -order 
stationary process with variance 2σ , and divide time axis 
into disjoint intervals of unit length, we could 
define ........}3,2,1/{ == tXX t to be the number of points 

(packet arrivals) in the tht  interval. A new sequence 
( ) ( ){ },m m

tX X=   where  
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= ∑  1, 2,3.....t =  , is the average of 

the original sequence in m   non-overlapping blocks. Then 
the process X  is defined as an exact second order 
self-similar process with the Hurst parameter, 2/1 β−=H ,   
if     .1,)( 2)( ≥∀= − mmXVar m βσ                                        (1) 
 Now we present the fundamentals of MMPP.  MMPP is a 
doubly stochastic process in which arrival rate is given by 

],[ tJλ where 0, ≥tJ t  is an m -state Markov process. The 
arrival rate can therefore take on only m  values, 
namely mλλλ ,......,, 21 . It is equal to jλ  whenever the 

Markov process is in the state   j , .1 mj ≤≤  The MMPP is 

fully parameterized by the infinitesimal generator  Q  of the   

Markov process and the vector ),......,,( 21 mλλλλ =  of the 

arrival rates. Let Λ  be the diagonal matrix with ,jjj λ=Λ  

.1 mj ≤≤  In the case of two states, Q and Λ are given as 
follows:   
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The mean arrival rate λ of MMPP is given by eΛ= πλ , 

where π  is the stationary probability vector of Q, i.e. 

1,0 == eQ ππ and e= [1, 1, 1…1] T is an all -1 column 
vector with designated dimension. If we let tN  , t ≥0, be the 
number of arrivals in (0, t], for the stationary MMPP, the 
Mean of tN is   
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The interesting feature of MMPP is that a superposition of 
MMPPs is still MMPP. 

III. MMPP/M/1/K QUEUEING SYSTEM 
Asynchronous switch with self-similar variable length 

packet input traffic is modeled as KMMMPP /1// queuing 
system. In KMMMPP /1// system, the packets arrive 
according to the MMPP of states m  and is characterized by 

the matrices Λ,Q , where Λ,Q  are mm× matrices.  The 

service time is exponential with service rate μ . Let kD , 

0≥k  denotes   the  matrix of order mm× whose ),( ji  

element is the   probability that given departure at time 0, 
which left at least one packet in the system and the process is 
in state i  , the next departure occurs when the arrival process 
in j  , and during that service time there were k  arrivals. 
Then kD satisfies the following equation: 
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where I is the unit matrix of designated dimension. Now we 
compute the kD s by extending the methodology [9, 10] from 
the deterministic service time distribution to the exponential 
service time distribution.  For 0=k  in (6), we have   
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From (6), we have 
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We compute the matrices sD s using the recurrence formulae 
(7) - (9). Now we consider the embedded Markov chain 

}0/)(),({ ≥nnJnL at the departure epochs of the queueing 
system KMMMPP /1// on the state space 

},1,10/),{( miKbibS ≤≤−≤≤= where )(nL denotes 
buffer occupancy and )(nJ  denotes the state of MMPP. Then 
the pertaining embedded Markov chain has transition 
probability matrix: 
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where ,)( 1Λ−Λ= −QG consisting of conditional 

probabilities that system is not busy and  ∑
∞

=

=
ik

ki DE . 

Let ky , )10( −≤≤ Kk be an m×1  vector whose 
thi element is the stationary conditional probability that the 

number of packets in the system is k and the state of 

underlying arrival process is in i at an arbitrary time. The 
packet loss probability (PLP) as given in the paper [11] is 
 

( )
ρ

ey
PLP 01

1
−

−= ,                                                    (11) 

where
μ
λρ = , traffic intensity, and λ  is the mean arrival 

rate of MMPP and is given by eΛ= πλ .  
 Now we shall discuss the computational complexity of the  

stationary probability vector ).....,( 110 −= Kyyyy  of the 

transition probability matrix P  following the method [12]. 
The matrix P   is in canonical form of 1// GM   system. The 
stationary probability vector is given by 

,]][1,0,.....0,0,0[ 1
1

−−= PIy where I is the unit matrix 

of appropriate dimension and  1P  is the matrix P in which the 

last column is replaced by [ 1, 1, 1,........0] .T− − −  

Multiplying the permutation matrix S  by ),( 1PI −  where  
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and   the product can be put in the following form  
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Dimensions of the blocks of matrices CBA ,,  and  D  are 
( 1) ( 1) , ( 1) , ( 1)K m K m K m m m K m− × − − × × − and mm× , 
respectively. Using Schur-Banachiewicz formula for the 
inverse of block matrices leads to  
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 where BCAD 1−−=Δ , the Schur complement of ,A  

,1BAE −=  and .1−= CAF  The stationary probability 

vector is the last row of  the  matrix   1 1( )F− −Δ − Δ   since  
1 1

1 1( ) ( ( ))I P S I P S− −− = − . The matrix Δ  is non-singular, if 
A  is non-singular. The matrix A  is upper triangular Toeplitz 
matrix whose inverse is easy to compute. The computation 
complexity to compute its inverse is of the order 
( ).)2( 32 mKO −  The computation complexity to compute 

F  is of the order ( )2 3( 2) .O K m−  The computation 

complexities to compute FB  and F1−Δ  are of the same 
order and equals to ( )3( 2) .O K m−  Therefore, overall 

complexity to compute the stationary probability vector is 

( )2 3( 2) .O K m−  

IV. NUMERICAL RESULTS 
 
 In this section, we present some numerical results of 
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packet loss probability and investigate its behavior in terms 
of traffic intensity, time-scale, Hurst parameter H , and d . 
Also, mean waiting time against traffic intensity is presented. 
First, transition rate matrix Q  and arrival rate matrix Λ of 
MMPP are fitted according to the generalized variance based 
method [5] for the self-similar traffic pertaining to the values  

,9.0,8.0,7.0=H variance ,6.02 =σ arrival rate 1=λ  over 

the   time-scales ],10,10[],10,10[ 6252 and ]10,10[ 72  as in 

the paper [5]. Next, the stationary probability vector y  is 

computed by using the method discussed in earlier section, 
and then packet loss probability is computed against traffic 
intensity using (11). Numerical calculations are performed 
using MATLAB and are compared with that of published 
tool SIRIUS ++ in [13], for the validation of MATLAB 
program. The difference between these two analytical results 
is found to be very small. These validated analytical results 
are compared with the simulation results of self-similar 
traffic. Self- similar traffic is generated by using ad-hoc 
discrete event simulator (DES) using raw C++ code.  We use 
aggregated multiple sub-streams, each consisting of 
alternative Pareto-distribution  on/off periods. The Pareto 
distribution is heavy-tailed distribution with the probability 

density function 1)( += α

αα
x

bxf , ( bx ≥ )   has the degree of 

self-similarity (Hurst parameter) (3 )
2

H α−
= , where 

( 1.6)α =  is a shape parameter, and ( 4000)b =  is a location 
parameter. Results are depicted in Figs.1-4. For all the cases, 
variance 2σ , arrival rate λ   of the traffic and buffer depth 
K  are   assumed to be 0.6, 1 and 10, respectively [5].   Fig.1 
depicts packet loss probability as a function of traffic 
intensity over three time-scales 2 5 2 6[10 ,10 ],[10 ,10 ], and 

2 7[10 ,10 ].   Parameter settings for Fig.1 are  0.7H =  and 
.4=d  From the Fig.1, it is clear that as time-scale increases 

PLP decreases as in the papers [5, 9]. Fig.2. depicts the 
variation of packet loss probability as function of traffic 
intensity over the time-scale ]10,10[ 72  for various H . In 
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Fig.1. Variation of Packet Loss Probability with Traffic 
Intensity when H=0.7 and d=4. 
 

the Fig.2, solid line represents analytical results whereas 
dotted line represents simulation results. It is clear from the 
figure that the difference between analytical results and 
for 9.0,8.0,7.0=H , over the time–scales ]10,10[ 52 and  

]10,10[ 72  , when .4=d  Fig. 3 infers that as self-similarity 
)(H  and traffic intensity increase PLP increases. When 

)(H  is greater, the values pertaining to ]10,10[ 72  are 

greater than that of ]10,10[ 52 . However, when 7.0=H , the 
discrepancy is not seen. This indicates that time-scale matters 
when H  is greater.   Fig.4. depicts the packet loss 
probability as a function of traffic intensity over the 
time-scale ]10,10[ 72  for the cases 3d =  and 4. From Fig.4, 
we could conclude that it suffices to superpose four IPPs as in 
[5, 7]. Mean waiting time (W) can be computed by means of 
queue length distribution as follows: 

                                  ( )k
k

W k y eρ
λ

= ∑  

 Mean waiting time against traffic intensity is computed for 
7.0=H and 4=d , results are compared with that of 

software Q -SQUARED, and are presented in Fig-5. It is 
clear that both the results are in agreement, and mean waiting 
time increases as traffic intensity increases as expected.     
From the above results, we can conclude that four IPP 
components over larger time-scale are enough to model the 
self-similar traffic. In all the above cases, we observe that 
packet loss probability   and mean waiting time become large 
as ρ  is getting larger. This tendency agrees with our 
intuition. 
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Fig.2. Variation of Packet Loss Probability with Traffic 
Intensity over the Time-Scale [102,107] when d=4. 

V. CONCLUSIONS 
 
 In this paper, the asynchronous switch with the self-similar 
variable length packet traffic is modeled as KMMMPP /1//   
system, and then the loss behavior of said queuing system is 
investigated, where MMPP is generated so as to match the 
variance of self-similar traffic over a time-scale. In this 
model, service time distribution is considered as exponential 
rather than deterministic, since IP packets are, in general, 
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variable in length. Our numerical results reveal that 
time-scale and number of components in fitting ( d ) do have 
impact on packet loss probability. Packet loss probability 
increases as H and ρ  increase. Based on the analysis 
presented in this paper, one could select the appropriate 
time-scale in the generalized variance based fitting method 
[5] to meet the QoS requirement. This kind of analysis is 
useful in dimensioning the switch under self-similar variable 
length packet traffic. 
 
 

 
Fig.3. Variation of Packet Loss Probability with Traffic 
Intensity and H when  4d = .          
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Fig.4. Variation of Packet Loss Probability with Traffic 
Intensity over the Time-Scale [102,107] when   d=3, 4 for 
analytical results   and when H= 0.7 
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  Fig. 5.Variation of Mean Waiting Time with Traffic 
Intensity over the Time-Scale [102,107], when H= 0.7,  d=4. 
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