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Abstract—Image recovery of super resolution aims to re-
cover a single high resolution image from one or more low
resolution frames. It is an ill-posed problem when the solution
does not exist or it is unique. Thus, we introduce the prior
based on Pearson type VII density integrated with a Markov
Random Field (MRF) model. We devise two different versions,
one that acts on the pixel level and another one that acts on
the entire image. Here we present our parameter estimation
and evaluate our approach using qualitative measurement in
both compressive measurement and classical super resolution.
Our estimation is theoretically simple and easy to implement.

Index Terms—single frame super resolution, Pearson type
VII, MRF model, compressive measurement

I. I NTRODUCTION

I MAGE recovery super resolution seeks to generate a
high resolution image from one or more low resolution

images. The limitations of the capturing source often
allow the loss of resolution including the shifting, rotation,
blur and down-sampling. Moreover, the capturing process
instigates additive noise that causes it is not sufficiently to
sample the scene adequately. Often the observed frames
are deficient or noisy, which makes this problem ill-posed
and possibly under-determined too. Thus, extra knowledge
is vital to acquire an adequate solution and known as
image prior.

Using probabilistic model based framework, this extra
information may be specified as a prior distribution on
the salient statistics that images are known to have. The
two main criterions are apparently contrary one another:
local smoothness and the existence of edges. To solve this
particular problem, an investigation on a density function
that has the abiliy to recover the image which allows for
greater variability by having larger tails than the standard
normal distribution (i.e:Gaussian). This density must be
robust or has the heavy tail property so that it would be
able to cope with the outlier. Hence the requirement of a
good image prior is demanding.

The former prior models have been proposed in the
literature, yet with no substantiation. Gaussian Markov
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Random Fields represent a common choice for its
computational tractability. The Huber-MRF is prominent
since it is more robust but still convex and works in [6],
[7], [8] are considered to be the state of the art approach.
They employ Huber prior, however the threshold is fixed
in [6], [8].

In our recent work [3], we study and compare the state
of the art of image priors in conventional super resolution
application using manual selection from several search
space. We extend our work by estimating the hyper-
parameters of Pearson prior using held out estimation
and cross validation. This includes other image priors as
well. Besides that, we test our estimation parameter in
both transformation (i) compressive measurement and (ii)
classical super resolution. Indeed, the ground truth image
is not accessible and the successful works in random
property [10] inspired us to cope with it. We exploit the
compressive measurement using real image.

Previously, we proposed a robust density, the univariate
version of Pearson type VII formulated as Markov
Random Field (MRF) in super resolution approach
[4]. The comparisons with the existing image priors are
concentrating on compressive matrices transformation. Due
of curiosity, we formulated and examined the multivariate
of Pearson type VII and compare it with the state of the
art approach using the classical super resolution technique.
This density is formerly used as robust density estimation
in [1] as alternative to the t-mixtures and in stock market
modelling [2].

The remainder of the paper is organised as follow. In
Section II, we describe the problem formally including how
to estimate the high resolution image. Section III presents
the image prior that we investigate for this experiment. The
Pearson type VII based MRF is described in Section IV.
Example results on automated estimation with comparsions
to other image priors are presents in Section V. It depicts
the experimental setting and its discussion. Finally, conclu-
sions and future work are discussed in Section VI.

II. FRAMEWORK OF IMAGE RECOVERY SUPER

RESOLUTION

In order to solve super-resolution problem, we must
formalise it first. We will employ the probabilistic
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formalism, which is well suited for its principled nature
and its flexibility. Firstly, we need to construct a model
of how the (unknown) high resolution image might have
given rise to the (observed) low resolution images. This
is often referred to as theforward modelor observation
model. This model serves as a formal abstraction of the
real physical process: the high-resolution image is the
’cause’, the low resolution images are the ’effects’. Since
we observe the ’effects’ but want to find out the ’cause’,
we then need to invert this model. This is abackward
operation, often termed asinference.

As already mentioned, this is easier said than done for
several reasons: (a) we may need to infer more pixel
intensities than we have observed ones in the first place;
(b) noise on the low resolution images degrades their
information content. Hence, the forward model and the data
alone is always insufficient. Fortunately, there is a prior
knowledge about the statistics of natural images that we can
exploit. Therefore the second part of the overall model for
super-resolution is a model of a (generic) high-resolution
image, encoded as aprior.

A. Model Formulation

The high resolution image ofN = r× c pixel intensities
will be vectorised and denoted asz. This image suffers
a quite complicated transformation into a low-resolution
frame includes blur and down-sampled. We adopt a linear
model to express this transformation which, although it
is not completely accurate, it has worked well in many
previous studies on super-resolution [5], [6], [8]. Denoting
the k-th low resolution frame byyk in a vectorised form,
and the linear transform that takesz into yk by W k, we
can write the forward model as the following:

yk = Wkz + ηk (1)

where ηk represents an additive noise, assumed to be
Gaussian with zero-mean andσ2 variance. HavingK
low resolution frames,yk, k = 1, . . . , K, we wish to
obtain the high resolution imagez. To simplify notation,
we will stack all theK available low resolution frames
into a single column vectory, and denote the length of
this vector byM . Thus, M is the total number of low
resolution pixels observed, in other words, if thek-th low
resolution frame hadMk pixels, thenM = M1 + · · ·MK .

Similarly, we will also stack the transformation matrices
into a single matrixW . This will then haveM × N
elements. Finally, the noise components will also be stacked
into anM -dimensional column vectorη. Then, the obser-
vation model in a vectorised form may be written as:

y = Wz + η (2)

In this model, the unknown variable of interest isz.
The transformation matrixW is usually parameterised,
and as such, it is considered to be known up to a few
parameters. Estimating these parameters ofW may be

done simultaneously with inferringz. In this case we talk
about the ’blind’ super-resolution problem. A special case
of this, whenW consists of blurring only, is often termed
as ’blind deblurring’ or ’blind deconvolution’. Several
authors have tackled this problem with success.

In this work, we will consider the transformation matrix
W as being known, since the focus of our study is
another aspect, namely the image prior, as it will become
clear in the next section. However, inspired from new
research in signal processing [11] that tries to exploit
the good properties of certain random matrices in signal
acquisition, we take ourW as a random matrix with
entries drawn i.i.d. from a standard Gaussian and then fixed.

While the conventional transformation, W is a product of
blurring and down-sampling matrix of size [M×N], usually
ill-conditioned matrix that models a linear blur operation
and the down-sampling by row and column operator. This
down-sampling operator made the problem harder where
now we have less pixels to observe and wish to recover
with a higher resolution image.

B. The Joint Model

Overall model is the joint model of the observationsy

and the unknownsz. That is,Pr(y, z). To assemble this
from the previously presented components, we first rewrite
the observation model given in Section II in the form of
a probability distribution of the observationsy given the
ground truthz. That is, Pr(y|z). Using these, we have
joint probability

Pr(y, z) = Pr(y|z)Pr(z) (3)

where the first term is the observation model and the second
term is the image prior model. Hence we have for the first
term in (3):

Pr(y|z) ∝ exp

{

−
1

2σ2
(y − Wz)T (y − Wz)

}

(4)

This is also called the modellikelihood, because it expresses
how likely it is that a givenz produced the observedy
through the transformationW . The second term of (3)
will be instantiated with either one of the image priors
discussed in Section III. To achieve our goal, we need to
’invert’ the causality described by our model, to infer the
latent variablesz from the observed variablesy.Again, this
encodes knowledge about high resolution images in general,
without any reference to the actual observed imagesy.
Recall that our task is to infer or estimate the high resolution
image from its low resolution versions. To achieve this, now
that we have formalised the problem, we need to ’invert’
the causality described by our model, to infer the latent
variablesz from the observed variablesy.
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C. Inverting the model to estimatez

We can invert the causality encoded in a probabilistic
model by the use of Bayes’ rule.

Pr(z|y) =
Pr(y|z)Pr(z)

Pr(y)
(5)

This is called theposterior probability of z given the
observed datay. Eq. (5) says that, the probability thatz is
the hidden image that gave rise to what we observed, i.e.y,
is proportional to the likelihood that thisz fits the datay
and the probability that this bunch ofN intensity values, i.e.
the vectorz, actually ’looks like’ a valid image. Note that
the latter is desperately needed in underdetermined systems,
since there are infinitely many vectorsz that fit the data.

D. Maximum A Posteriori Inference through Optimisation

To obtain the most probable estimate ofz that conforms
to our model and data, we need to maximise (5) as a
function of z. Observe that, the denominator,Pr(y) does
not depend onz. Hence, the maximum value of the fraction
(5) occurs for exactly the samez for which the maximum
of the numerator does. That is, the most probable estimate
is given by:

ẑ = argmax
z

Pr(y|z)Pr(z)

Pr(y)
(6)

= argmax
z

Pr(y|z)Pr(z) (7)

Further, this maximisation is also equivalent to maximising
the logarithm in the right hand side, since the logarithm
is a monotonic increasing function. We can also turn the
maximisation into minimisation, by flipping the signs, as
in the following equivalent rewriting:

ẑ =arg min
z

{− log[Pr(y|z)] − log[Pr(z)]} (8)

In words, the most probable high resolution image is the
one for which the negative log of the joint probability
model takes its minimum value. Thus, our problem is now
solvable by performing this minimisation. The expression
to be minimised, i.e. the negative log of the joint probability
model may be interpreted as an error objective, and shall
be denoted as:

Obj(z) = − log[Pr(y|z)] − log[Pr(z)] (9)

The most probable estimate is thêz that has highest
probability in the model. Equivalently the one that achieves
the lowest error. Since our model has had two factors
(the likelihood or observation model, and the image prior),
consequently our error-objective also has two terms: the
misfit to observed data, and ’penalty’ for violating the
smoothness and/or other characteristics encoded in the
prior. By plugging in the functional forms for the obser-
vation model and for the various possible priors into (9),
we now give the specific form of this objective function
below, so the interpretation of the individual error terms is

more evident. We will make use of the following notation,
taking the log of eq. (4):

l(z) := − logPr(y|z) + const. (10)

=
1

2σ2
(y − Wz)T (y − Wz) (11)

III. PRIOR IMAGE MODEL: MARKOV RANDOM FIELDS

The main characteristic of any natural image is a local
smoothness. That is, the intensities of neighbouring pixels
tend to be very similar. A MRF is a joint distribution over
all the pixels on the image that captures spatial dependen-
cies of pixel intensities. A first-order MRF assumes that,
for any pixel, its intensity depends on the intensities of
its closest cardinal neighbours but does not depend on any
other pixel of the image. Here we will adopt the 1-st order
MRF that conditions each pixel of intensity on its four
cardinal neighbours in the following way. For any one pixel
zi we define:

Pr(zi|z−i) = Pr(zi|z4neighb(i)) (12)

= Pr(zi −
1

4

∑

j∈4neighb(i)

zj) (13)

where the notationz−i means all the pixels excluding the
i-th, and the set of four cardinal neighbours ofzi was
denoted as 4neighb(i). This is a univariate probability
distribution.

Consequently, for the whole image ofN pixels, the MRF
represents the joint probability over all the pixels on the
image — a multivariate probability distribution.

Pr(z) ∝

N
∏

i=1

Pr(zi|z4neighb(i)) (14)

=

N
∏

i=1

Pr(zi −
1

4

∑

j∈4neighb(i)

zj) (15)

The notation ’∝’ means ’proportional to’, i.e. there is a
division by a constant that makes the probability density
integrate to one. This constant may depend on various
parameters of the actual instantiation of the building block
probability densities, but it does not depend onz. Since
in this work we only need to estimatez, therefore we
can ignore the expression of the normalising constant
throughout.

This form of MRF has been previously employed with
success in e.g. [5], [6]. Alternatives include the so-called
total variation model, employed e.g. in e.g. [8],which is
based on image gradients, also quite simple. In [7], an
experimental comparison of these two alternatives suggests
these have comparable performance, the former being
slightly superior though.

The simplicity of (15) is also intuitively appealing.
One can think of the difference between a pixel
intensity and the average intensity of its neighbours, i.e.
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zi −
1
4

∑

j∈4neighb(i) zj, as a feature. Considering that we
want to encode the general smoothness property of images,
it is easy to see that this feature is very useful: Whenever
this difference is small in absolute value, we have a smooth
neighbourhood. Whenever it is large in absolute value, we
have a discontinuity. Hence, to express smoothness, we
just need to instantiate the probability distribution over
this feature, i.e. the uni-variate densities in the product
(15), Pr(zi −

1
4

∑

j∈4neighb(i) zj), with symmetricdensities
around zero, which give high probability to small values.
The Gaussian is a good example. In the same time, to
allow for a few discontinuities, we need to use heavy tail
densities, such as the Huber or the Pearson type VII density.

To simplify notation and it is conveniently to create
the symmetricN × N matrix D to encode the above
neighbourhood structure, with entries:

dij =







1 if i = j;
−1/4 if i and j are neighbours;
0 otherwise.

Then we may write thei-th feature in a vector form, with
the aid of thei-th row of this matrix (denotedDi) as the
following:

zi −
1

4

∑

j∈4neighb(i)

zj =
N

∑

j=1

dijzj (16)

= Diz (17)

Again, this is thei-th neighbourhood feature of the image,
and there arei = 1, . . . , N such features on anN -pixel
image.

The studies of data visualisation of the neighbour-hood
features (Diz) from several natural images are presented
in a histogram. We now turn to instantiate the functional
form of the probability densities that describe the shape of
the likely values of these features. Figure 1 shows a few
examples of observed histograms of these features, from
natural images. The probability densities that we employ
in our image priors should ideally have similar shapes.

A. Gaussian-MRF

The Gaussian MRF is the most widely used image prior
density. It has the following form:

Pr(z) ∝

N
∏

i=1

exp

{

−
1

2λ
(Diz)2

}

(18)

= exp

{

−
1

2λ

N
∑

i=1

(Diz)2

}

(19)

whereλ is the variance parameter.

B. Huber-MRF

The Huber density is defined with the aid of the Huber
function. It takes a threshold parameterδ, specifying the
value at which it diverts from being quadratic to being
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Fig. 1. Examples of histograms of the distribution of neighbourhood
featuresDiz, i = 1, · · · , N from natural images.

linear. A generic variableu in the definition of this function
will be instantiated later as a neighbourhood-featureDiz

within the image prior use.

H(u|δ) =

{

u2, if |u| < δ
2δ|u| − δ2, otherwise.

(20)

The Huber-MRF prior is then defined in (22) whereλ is
similar to a variance parameter.

Pr(z) ∝
N
∏

i=1

exp

{

−
1

2λ
H(Diz|δ)

}

(21)

= exp

{

−
1

2λ

N
∑

i=1

H(Diz|δ)

}

(22)

IV. PEARSONTYPE VII-MRF

A. The univariate Pearson Type VII-MRF

The Pearson-MRF made of univariate building blocks: A
zero mean univariate Pearson prior, is defined as:

Pr(z) ∝

N
∏

i=1

{

(Diz)
2 + λ

}−( 1+ν

2
)

(23)

whereν andλ control the shape of the distribution.
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B. The multivariate Pearson Type VII-MRF

A zero mean multivariate Pearson-MRF density in a
generic N-dimensional vector ofDiz, has the following
form:

Pr(z) ∝

{

N
∑

i=1

(Diz)2 + λ

}−( ν+N

2 )

(24)

C. Discussion on the two versions of Pearson-MRF

The version devised in Section IV-A may be regarded as
having independent Pearson-priors on each neighbourhood-
feature. Of course, we ought to point out that the
neighbourhood features are not independent in reality.
However, since each pixel only depends on four others, it
may be a reasonable approximation.

The version gave in section IV-B, in turn, does not
allow such independence interpretation. Conversely, this
can has the advantage that the spatial dependencies are not
broken up, but more reliably accounted for. However, on the
downside, the heavy tail behaviour is more advantageous
to have on the pixel level, i.e., on the distribution of
neighbourhood features. Indeed, it is the distribution of
neighbourhood features the one in which the edges from
the image creates outliers. In turn, the multivariate Pearson-
MRF is a density on images. Hence, its heavy tail behaviour
would be well suited to account for outlying or atypical
images. Including both of these versions in our comparison
will therefore uncover to us which of these pros or cons
are more important for recovering quality high resolution
images.

V. EXPERIMENTS AND DISCUSSION

A. Experimental Setting

We present two set of a single frame image super
resolution experiments illustrating the performance of
the hyper-parameters for testing the Pearson prior. We
compare the state of the art image priors such as Gaussian
and Huber. The LR image is blurred by the unifrom
blur matrix of size 3x3, down-sampled by factor 4 and
contaminated by standard deviation of Gaussian noise of
0.001, 0.01, 0.05 and 0.1. All images are in size [100x100]
and the pixel intensities are scaled to interval [-0.5, 0.5].
The initial guess is initialized with Gaussian-MRF with
σ2/λ set to 1 and was used as a starting point for the
recovery algorithm in previous work [3].

In this paper, we address the issue of parameter selection
in [3] and improved it by estimatingν and λ. For this
automated estimation, we initialised with a product of
the inverse transformation matrix and the low resolution.
We employed a conjugate gradient type method1, which
requires the gradient vector of the objectives.

1We made use of the efficient implementation available from
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/

Previously in paper [4], we applied the compressive
matrix of W to find out how well is the proposed image
prior based MRF in comparison with the state of the art
image priors, and hyper-parameters is manually tuned to
acquire the optimum mean square error for all methods. We
then observe how good the new approach of our automated
parameter estimation for univariate Pearson type VII and
other prior as well in under-determined problem.

B. Parameter Estimation Algorithm and Results

The performance of the image recovery of high
resolution is depending on how good selection value of
hyper-parameters in image prior. Bad estimation can lead
to produce a bad recovery. Since we are assessing the
performance for bothν and λ, the recovery algorithm
is assuming knowing the true noise varianceσ2. From
the observation in [3] using the constructed blur and
down-sampling matrix W, we found practical range ofλ
and ν. We made use this good range in our automated
estimation to reduce the cost computation.

Recap, our parameter selection forν and λ are found
from the lowest mean square error from a several possible
search space. Therefore, we overcome this issue by
implementing hold out estimation and cross validation.
Hold out and cross validation is a statistical method of
evaluating and comparing learning algorithms by dividing
data into two partitions: (i) one used to learn or train a
model and the remainder used to validate the model [9].
Validation is done by estimating its minimum error of the
mean squared error on how likely is the observed data,y
with the modelWz.

For compressive measurements, we develop hold out
estimation in terms of reducing cost computation to recover
the best solution. It is due of the variable itself that requires
more computation to be done. Hence, it is sufficient to
propose this method for random transformation. On the
other hand, we implement k-folds cross validation for the
classical transformation because the structured is sparse
and this made the algorithm faster to be executed. To
reduce variability, five rounds of cross-validation are
performed using different folds, and the validation results
are averaged over the rounds.

In k-fold cross validation technique, the data set is
randomly partitioned intok groups. The learning algorithm
is then trainedk times, using all the training set data point
except those in thekth group.Both form of the algorithms
are described as follow in Algorithm 1 and 2. Indeed, in
the approach described, the algorithm is less expensive and
more precise search space is tested. Figure 2 presents the
variation performance using proposed Algorithm 1. Then
followed by Algorithm 2 which applied 5-folds for classical
transformation. The performance of 3-dimensional among
ν, λ and MSE are illustrated in Figure 3 and 4.
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Algorithm 1 : Hold out estimation
1: Goal: To find optimal ν and λ by training a model

using the training data set and finding the minimum
error is found from the validation data set.

2: Inputs: training data, validation data, number ofk-
groups,ν andλ range, varianceσ2

3: Outputs: optimal ν, optimalλ, optimal error(MSE)
4: Randomize and divide data set into two groups: 5% for

validation and the remainder is used for training set.
5: for i = 1 to length(ν) do
6: for j = 1 to length(λ) do
7: Minimise with respect toz using training set.
8: Compute performance (error): mean((y(validate)-

w(validate)*z(training))2)
9: Record the performance matrix error.

10: end for
11: end for
12: Find ν andλ that belong with the minimum error.
13: Minimise with respect toz using the whole data set

together with optimalν andλ.

To compare the performance fairly, this hold out
estimation is applied to all method image priors in this
experiment. Here we test two different set of images and
size to find out the effectiveness of Pearson prior in those
two cases. In general, it is well known that no best image
prior can bests fit on every data. Nevertheless, these results
in Figure 3 do demonstrate that our method is competitive
with the state of the art on that type of data when other
image priors are estimated automatically too.

Note that the loops need not completely converge. It is
sufficient to increase and not neccesaraily minimise the
objective at each combination. Nevertheless, we observed
the final minimisation is converge faster by letting more
iterations once the algorithm used the optimal value of
ν and λ. Next, we estimate paramete usingk-folds cross
validation as described in Algorithm 2 for the conventional
and complicated transformation matrix W.

Our proposed algorithm for classical transformation
illustrates the performance result over 5-folds cross
validation in Figure 4. All the competing image priors
used this automated estimation and the comparison is to
find out how good is the Pearson prior when the parameter
estimation is no longer choose by the best manual selection
as presented work in [3]. These results are presented in
Figure 5 and we can see that the univariate Pearson type
VII based MRF can achieve state-of-the-art performance
and give a competitive solution to Huber-MRF across the
four levels of noise.

We also observe how does this automated hyper-
parameter estimation of our Pearson type VII based MRF
prior compare to these manual selections best results. Figure
6 shows the best manual results with reference to the ground

Algorithm 2 : k-fold cross validation for estimatingν and
λ

1: Goal: To find optimal ν and λ by training a model
using the training data set and finding the minimum
error is found from the 5-folds cross validation.

2: Inputs: training data, validation data, number ofk-
groups,ν andλ range, varianceσ2

3: Outputs: optimal ν, optimalλ, optimal error
4: Randomize and divide data set intok-groups.
5: for k = 1 to k − groups do
6: validate = find(group==k)
7: training = find(group̃=k)
8: for i = 1 to length(ν) do
9: for j = 1 to length(λ) do

10: Minimize with respec to z using training set.
11: Compute the performance found

using the k-th set: mean((y(validate)-
w(validate)*z(training))2)

12: Record the performance matrix error.
13: end for
14: end for
15: Report the mean error over allk test sets.
16: end for
17: Findν andλ that belongs to the minimum 5-folds error

value.
18: Minimize with respect toz using the whole data set

based on the optimalν andλ found.

truth image and the proposed Algorithm 2. The significance
result indicates that this proposed algorithm perform well
without gaining access the true image when evaluating
the performance image. Final, Figure 7 presents the image
recovery of super resolution using Pearson type VII based
MRF.
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Fig. 2. 3-dimensional plot varyingν, λ and its mean squared error with variance: (a) 0.005, (b) 0.01, (c) 0.05 and (d) 0.1 using random transformation
for data generation using cameraman image. Smaller noise shows a stable performance while higher noise performed inconsistently. However, both
optimal values are found in a smaller range. We see the error performance is increasing rapidly whenλ is searched from range 1 and its reaching the
stability performance.
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Fig. 3. Comparative MSE performance for under-determined system for two different images and size (a)synthetic data, (b) real data varying four
level of noise using the best values of hyper-parameter for every image prior found using held out estimation. Once repetition shows that Pearson
prior is superior in higher noise(right), however it is vice versa for W[3000,10000]. For lower noise, Pearson prior achieves its best performance when
having less observation data in (b).
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Fig. 4. Example of mean error over allk test sets (left) and mean and standard deviation over 5-folds repetition (right) for variance, 0.005 using
transformation matrix of blur and down-sampled version.
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Fig. 6. Comparing the MSE performance of the fully automated Pearson
type VII based MRF apparoch with the best MSE found by manual
selection of the hyper-parameters in previous work [3]. The error bars
are over 10 independent trials where additive noise and the transformation
W was blurred and down-sampled. Note that the number of observation for
manual selection is differ from automated estimation. W size for manual
selection previously used is [2500,10000] while the automated estimation
using 5-folds cross validation has [2601,10000]. Despite of having less
number of measurements, our proposed estimation still perform better than
the one with manual tuning with one of the parameter is fixed.

VI. CONCLUSION

Compressive measurement and classical super resolution
has been considered from a probabilistic model based
framework. We tested this on both synthetic data and
real data in under-determined system. In this paper we
formulated two versions of Pearson-MRF image priors, and
conducted a comparative experimental study between these
and state of the art methods of image prior from a single
noisy version of low resolution image. We demonstrate
that our proposed prior, univariate Pearson Type VII-MRF
is competitive with Huber-MRF in terms of qualitative
measurement mean square error. Our proposed algorithm

True image Initial guess Recovered

True image Initial guess Recovered

Fig. 7. Example image recovery of ’cameraman’ (10000 pixels) from
blurred and down-sampled to 2601 pixels and additive noise withσ2 =
1e-3

for parameter estimation is conceptually simple, automated
and easy to implement. The recovered image is always
consistent although it has several local optima and we
asses two set of images. Our motivation for Pearson-MRF
prior has been the heavy tail property of the Pearson type
VII-distribution, which indeed seems to be a good way
of preserving the edges too while imposing smoothness.
Future work is aimed towards recovering several images
from multiple scenes for under-determined system too.
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