
 
 

 

 
Abstract— The information about a neural activity is 

encoded in a neural response and usually the underlying 
stimulus that triggers the activity is unknown. This paper 
presents a numerical solution to reconstruct stimuli from 
Hodgkin-Huxley neural responses while retrieving the neural 
dynamics. The stimulus is reconstructed by first retrieving the 
maximal conductances of the ion channels and then solving the 
Hodgkin-Huxley equations for the stimulus. The results show 
that the reconstructed stimulus is a good approximation of the 
original stimulus, while the retrieved the neural dynamics, 
which represent the voltage-dependent changes in the ion 
channels, help to understand the changes in neural 
biochemistry. As high non-linearity of neural dynamics renders 
analytical inversion of a neuron an arduous task, a numerical 
approach provides a local solution to the problem of stimulus 
reconstruction and neural dynamics retrieval. 
 

Index Terms—stimulus reconstruction, Hodgkin-Huxley 
neuron, neural response inverse, neural dynamics retrieval.  
 

I. INTRODUCTION 

The relationship between a neural response and its 
stimulus has been studied over the recent years to 
understand the encoding and decoding mechanisms adopted 
by neurons. Not much is known about how neurons 
specifically encode and decode information. It is thought 
that either the firing time or the rate of fire of a neuron 
carries specific neural response information [1-3]. A parallel 
line of research exists which aims to reconstruct the stimulus 
from a neural response. A stimulus represents a trigger for a 
neural activity which underlines any neural response. The 
ability to reconstruct a stimulus hence offers to retrieve 
stimulus parameters that can help extend our understanding 
of neuronal encoding /decoding.  

Previous work on input reconstruction has been carried 
out across many fields like digital filters, neural networks, 
algorithms and complexity, and digital signal processing [4-
13]. Similar approach can be considered for stimulus 
reconstruction however, due to the high non-linearity of 
neural dynamics, it is very difficult to obtain an analytic 
solution. Periodic signals, unlike aperiodic signals, can be 
recovered using conventional filters [4]. Artificial neural 
networks are used to treat the Hodgkin-Huxley (HH) neuron 
as a black box and reconstruct the stimulus by learning the 
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dynamics [5]. Other implementations use a reverse filter that 
predicts the sensory input from neuronal activity and 
recursive algorithms to reconstruct stimulus from an 
ensemble of neurons [6-7]. The principles of a Time 
Encoding and Decoding Machines for signal recovery have 
been explored to reconstruct a neural stimulus whereas, a 
more direct approach to recover stimulus focuses to make  
the HH neuron Input-Output (IO) equivalent to an Integrate 
and Fire (IF) neuron [8-13]. These approaches establish a 
relationship between the neural response and the stimulus 
but are not designed to capture or retrieve the neural 
dynamics. In other words, they offer some starting point for 
stimulus reconstruction but it is quite a challenge to 
analytically invert a neuron. However, it is possible to 
reconstruct stimulus from a neural response using numerical 
approximations and small time-steps for integration.  

This paper aims to reconstruct constant-current and 
periodic stimuli by a) extracting the maximal conductances 
from a trace of neural response and b) solving the neural 
equations for the stimulus. To reconstruct the stimulus, it is 
imperative that linearization is carried out. This paper 
demonstrates the above approach using a Hodgkin-Huxley 
(HH) neuron [14] and Euler integration. The results show 
that for a small time-step ߜ, the accuracy of extracted 
maximal conductances is very high. Also, the reconstructed 
stimulus matches the original stimulus accurately. As 
reconstruction of the stimulus involves solving the neural 
equations, this approach can replicate the neural dynamics, 
the time-dependent changes in the voltage-gated ionic 
channels of  Na+, K+ and Cl-. This technique, though 
computationally demanding, offers a local solution to the 
problem of inverting a neural response [31].  

II. NEURONAL MODEL AND SYNAPSE 

A. The neuron model 

The computational model and stimulus for an HH neuron 
is replicated from [15]. The differential equations of the 
model are the result of non-linear interactions between the 
membrane voltage V and the gating variables m, h and n for 
ܰܽା, ܭା and ି݈ܥ. 
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The variable V is the resting potential of the membrane 

and NaV , KV and LV are the reversal potentials of the Na , 
K channels and leakage. The values of the reversal 

potentials .5.54,77,50 mVVmVVmVV LKNa   The 

conductance for the ionic channels are 2/120 cmmSg Na  , 
2/36 cmmSg K   and 2/3.0 cmmSgL  . The capacitance of the 

membrane is 2/1 cmFC  . 
  

B. The synaptic current 

An input spike train give by [16]  is considered to generate 
the pulse component of the external current.   
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n

fai ttVtU )()(              (4) 

where, 
ft is the firing time and is defined as 
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T represents the ISI of the input spike train and can be 
varied to generate a different pulse current. The spike train 
is injected through a synapse to give the pulse current PI . 

)()( syna
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synsyn Vg , are the conductance and reversal potential of the 

synapse. [32] define the function  as 

),()/()( / tett t                             (8) 

where,   is the time constant of the synapse and )(t is 

the Heaviside step function. ,30mVVa  mssyn 2 , 
2/5.0 cmmSgsyn   and mVVsyn 50 . 

  

C. The total external current 

The total external current applied to the neuron is a 
combination of static and pulse component 

 PSi III                                        (9) 

where, 
SI is the static and pI is the pulse current,  is the 

random Gaussian noise with zero mean and standard 
deviation 025.0 .  

On injection of a periodic or sinusoidal stimulus the 

steady state response of a neuron is no longer preserved [17-
25].  The self-excited oscillations of the HH neuron [14] 
may become chaotic when a sinusoidal stimulus is applied 
with proper choices of magnitude and frequency [20-21, 25-
26]. Physiological experiments on squid giant axons [18-19] 
and Onchidium neurons [22] have confirmed the occurrence 
of chaotic oscillations. It is understood that distinct 
sinusoidal stimuli induce different chaotic oscillations which 
result in dissimilar neural responses [27-29]. 

III. STIMULUS RECONSTRUCTION 

Let ܸሺݐሻ be the neural response of the HH neuron to a 
synaptic stimulus ܫሺݐሻ and ionic conductances ݃ே௔, ݃௄and 
݃௅. Assuming that ܫሺݐሻ is unknown and only the neural 
response and the reversal potentials are known, the aim is to 
reconstruct the stimulus ܫ′ሺݐሻ such that ܫሺݐሻ and ܫ′ሺݐሻ are 
identical. Therefore the target is to retrieve ݃′ே௔, ݃′௄and ݃′௅ 
and get ܫ′ሺݐሻ without any information of ܫሺݐሻ. 

A. Extracting Maximal Conductances 

Equations (1-3) show that the gating variables ݉, ݊ and ݄ 
only depend on the instantaneous voltage at time ݐ. The 
instantaneous voltage at time ݐ is given by  
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To retrieve the three ionic conductances, linear equations 

in three unknowns need to be solved. The formulation of the 
equations is proposed as an algorithm in [30]. Given a small 
voltage trace ݒሺݐሻ, select three times ݐ௜, ݅ ൌ 1, 2, 3. As the 
voltage trace ݒሺݐሻ is known over all ݒ ,ݐሺݐ௜ሻ is known for 
݅ ൌ 1, 2, 3. 

Let functions 3,2,1),( jtf j be defined as 
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and ܾሺݐሻ defined as  
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t
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Hence,  
)(')(')(')( 321 tfgtfgtfgtb LKNa        (13) 

If 
t

dttI
0

')'( is a known analytic function, the value of 

)(tb is known for all values of ݐ. Hence, for a voltage trace 

 ሻ, approximations to theݐሺܫ ሻ and external stimulusݐሺݒ
gating variables, ݉, ݊ and ݄ are obtained by integrating the 
HH equations. If ݉′, ݊′ and ݄′ are the gating-variables’ 
estimates and ݂ᇱ

௝
ሺݐሻ is the resultant approximation of ௝݂ሺݐሻ, 

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_11

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



 
 

 

then the retrieving maximal conductances can be defined as 
a solution to the linear system  
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This is an overdetermined system of linear equations in 
the form ݔܣ ൌ ܾ. An approximate solution can be obtained 
by using the full set of data generated during the integration 
of the HH equations and treating (14) as a linear least 
squares problem.  

Hence, the best fit solution in the linear least squares 
sense is obtained by solving 
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If ܣఋ߳Թேൈଷis the matrix whose entries are ܽ௜,௝
ఋ ൌ

݂ᇱ
௝
ሺݐ௜ሻ, ݅ ൌ 1…ܰ and ܾ߳Թே, 

2
min bxA

x
              (16) 

As the equations ݔܣ ൌ ܾare linear in ݔ, a solution is 
obtainable.  

B. Reconstructing the stimulus  

The approach defined above requires the knowledge of 
both the voltage ݒሺݐሻ and the external stimulus ܫሺݐሻ, for all 
time ݐ. In principle, it is unrealistic to know the stimulus for 
all times ݐ and in majority cases, the stimulus ܫሺݐሻ remains 
unknown. Therefore, retrieving the maximal conductances 
using the equations (11-16) is specific when all parameters 
are known. 

However, it is possible to reconstruct the stimulus entirely 
without the knowledge of corresponding ܫሺݐሻfor a neural 
response ܸሺݐሻ. As the type of the neuron and the reversal 
potential for Na+, K+ and Cl- is known, we propose that the 
neural stimulus can be reconstructed without the knowledge 
of the original stimulus ܫሺݐሻ. 

1. Record any neural response ܸሺݐሻ whose 
stimulus, say ܫሺݐሻ, requires to be reconstructed 

2. Inject a supra-threshold stimulus, ܫ௦ሺݐ௦ሻ for a 
small time duration ݐ௦ 

3. Record the corresponding voltage trace 
generated, ݒ௦ሺݐ௦ሻ 

4. Retrieve the maximal conductances using 
equations (11-16) and ܫ௦ሺݐ௦ሻ as the external 
stimulus 

5. Using the approximated maximal conductances, 
݃′ே௔, ݃′௄and ݃′௅, solve the HH equations using 
the recorded neural response ܸሺݐሻand the 
stimulus as the only unknown to get the 
reconstructed stimulus ܫ′ሺݐሻ 

 
The HH equations can be re-written as  











dt

dv
CVtvg

VtvtngVtvthtmgtI

LL

KKNaNa

))(('

))(()(''))()((')('')(' 43

 (17) 

where, ݃′ே௔, ݃′௄and ݃′௅ are the approximated maximal 
conductances calculated from ݒ௦ሺݐ௦ሻ and ݉′, ݊′ and ݄′ are 
the estimates of the gating variables ݉, ݊ and ݄ 
respectively. 

As ܸሺݐሻ is known for all times ݐ, the rate of change of 

voltage (
ௗ௩

ௗ௧
) can be numerically approximated.  
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This approach provides a local solution to reconstructing 

the neural stimulus of a HH neuron and also approximates 
the gating variables. In addition to the retrieval of stimulus 
parameters, it also estimates the neural dynamics which are 
important represent the open-close mechanism of ionic 
gates. 

IV. COMPUTATIONAL RESULTS 

A. Generating a Voltage Trace 

Let ܫ௦be a small supra-threshold step current that evokes 
an action potential. The resultant voltage trace ݒ௦is sufficient 
to retrieve the maximal conductance values.  

 
Fig.1: The voltage trace ݒ௦generated by a small step-current ܫ௦. This small 
trace of neural voltage is sufficient to retrieve the maximal conductances. 

 

B. Retrieving Maximal Conductances 

Given the voltage trace ݒ௦and the corresponding external 
stimulus ܫ௦, near approximation of the maximal conductance 
values can be obtained using equations (11-16). Let ߜ be the 
time-step of the Euler integration. It is observed that the 
accuracy of the approximated conductances is dependent on 
 chosen is close to 0. These ߜ Accuracy increases if .ߜ
approximated conductances are consistent with the 
observations of [30]. As (15) is an overdetermined system of 
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linear equations, an exact solution cannot be obtained for all 
values of ߜ. 
 
 
Table 1: Retrieved maximal conductance values for various values of ߜ. 
The conducances are highly accurate as ߜ becomes close to 0. 

Original↓/Retrieved→ ߜ ൌ 0.01 
ߜ
ൌ 0.001 

ߜ
ൌ 0.0001 

݃ே௔ ൌ 120 
݃′ே௔
ൌ 120.49 

݃′ே௔
ൌ 120.05 

݃′ே௔
ൌ 120

݃௄ ൌ 36 ݃′௄ ൌ 36 ݃′௄ ൌ 36 ݃′௄ ൌ 36 

݃௅ ൌ 0.30 
݃′௅
ൌ 0.33

݃′௅
ൌ 0.30 

݃′௅
ൌ 0.30

 
The relative error of the approximations decreases as ߜ 
becomes close to 0. 
 
Table 2: The relative error ߝ decreases as  ߜ becomes close to 0. 

 (ߝ) Relative error ߜ
0.01 0.0037 

0.001 0.00038 
0.0001 0 

 
The voltage traces reconstructed from the approximated 

conductances are shown in fig. 2. The estimated maximal 
conductance values produce a good fit to the original trace 
 .௦ݒ

 
Fig.2: The reconstructed voltage trace using the approximated maximal 
conductance values for different time-steps ߜ. As ߜ becomes close to 0, the 
approximations approach the actual conductance values. For ߜ ൌ 0.0001, 
the approximated conductance values are equal to the original values. 
Hence the trace generated by ߜ ൌ 0.0001 overlaps with the original trace 
 .௦ݒ

C. Stimulus Reconstruction 

The retrieval of maximal conductance values such that a 
good fit of the original voltage trace is produced indicates 
that the approximations are nearly accurate. Using equations 
(17-19), a linearised reconstruction of a stimulus can be 
obtained.  
 

1) Constant-Current Stimulus 
Let the HH neuron be stimulated by an unknown step-
current ܫ௦௧௘௣such that it evokes a series of action potentials 

௦ܸ௧௘௣. The maximal conductances are approximated in Table 
1. The reconstructed stimulus is shown in fig. 3. 

 
Fig.3: The reconstructed stimulus is good fit to the original stimulus. The 
original stimulus is very well approximated if chosen ߜ is close to 0. 
 

 
Fig.4: The approximations become less accurate with an increase in ߜ. 
 

Results show that if the time-step of Euler integration is 
sufficiently small i.e. 0.0001 ~ ߜ, the maximal 
conductances can be accurately retrieved. The stimulus 
reconstructed  using these maximal conductance values, is a 
near approximation of the original unknown stimulus. 
 

2) Periodic Stimulus 
 
If  the HH neuron is stimulated by an unknown periodic 
stimulus ܫ௣௘௥௜௢ௗ௜௖, the resultant neural response is ௣ܸ௘௥௜௢ௗ௜௖. 
Generating a trace voltage to retrieve the maximal 
conductance values, the unknown stimulus can be 
reconstructed using (17-19). 

 
Fig. 5: The reconstructed periodic stimulus for ߜ close to 0. For ߜ ൌ
0.0001, the reconstructed stimulus is a near-fit of the original stimulus. 
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Fig.6: The approximation of the reconstructed stimulus become less 
accurate with an increase in (0.001~ߜ) ߜ. The numerical approximation of 
the derivatives causes some jitters. 

 

 
Fig. 7: Due to the presence of noise in original stimulus, the reconstructed 
stimulus cannot be an exact match. The jitters are due to the numerical 
approximation to the rate of change of voltage. However, the reconstruction 
is very close to the original stimulus for ߜ close to 0. 

 
It is observed that the unknown stimulus can be predicted 

accurately if ߜ is small and close to 0. As a result, the 
computational time required by this approach is directly 
proportional to the choice of ߜ. However, this is approach 
provides a local solution to reconstructing unknown stimuli 
using the knowledge of the computational model of a 
neuron. It is also possible to retrieve the neural dynamics 
which cannot be retrieved by a purely analytical approach 
(fig. 8). 

 

 
Fig.8: The reconstructed neural dynamics. This numerical solution can 
retrieve the gating variables ݉,݊ ܽ݊݀ ݄ and their time constants 
߬௠, ߬௡ ܽ݊݀ ߬௛. 

V. CONCLUSIONS 

The neural dynamics of the HH neuron have been the 
subject of research for many years now. The dynamics put 
forth by Hodgkin and Huxley have been well studied and 
replicated by many researchers. In much the same way, 
inverting the HH neural equations has attracted interest in 
recent years. The equations of the HH neuron are highly 
non-linear due to the incorporation of probability of the 
gating variables ݉, ݊ ܽ݊݀ ݄ which regulate the open-close 
mechanism of ionic channels. 

Previous research has addressed the problem of inverting 
this non-linear neuron by using digital filters, neural 
networks, algorithms and complexity, and digital signal 
processing. Other approaches point to the use of 
reconstruction algorithms, time encoding/decoding 
machines or an IF neuron. These approaches establish a 
relationship between the neural response and the stimulus 
but they are not designed to capture or retrieve the neural 
dynamics.   

The approach described in this paper provides a 
numerical solution to reconstruct an unknown neural 
stimulus. An unknown stimulus can be numerically 
reconstructed by 

1. Recording any neural response ܸሺݐሻ whose 
stimulus, say ܫሺݐሻ, requires to be reconstructed 

2. Injecting a supra-threshold stimulus, ܫ௦ሺݐ௦ሻ for a 
small time duration ݐ௦ 

3. Recording the corresponding voltage trace 
generated, ݒ௦ሺݐ௦ሻ 

4. Retrieving the maximal conductances using 
equations (11-16) and ܫ௦ሺݐ௦ሻ as the external 
stimulus 

5. Using the approximated maximal conductances, 
݃′ே௔, ݃′௄and ݃′௅, solve the HH equations using 
the recorded neural response ܸሺݐሻand the 
stimulus as the only unknown to get the 
reconstructed stimulus ܫ′ሺݐሻ 

 
It is observed that the accuracy of maximal conductances 

retrieved by solving an overdetermined system of linear 
equations depends on the time-step (ߜ) of Euler integration. 
A small value of 0.0001~ߜcan reproduce almost exact 
maximal conductances. Accurate maximal conductance 
values help reconstruct a near-fit approximation of the 
original stimulus. Due to the nature of numerical 
approximation and the inherent non-linearity in the neural 
dynamics, the reconstructed stimulus shows some jitters. 
Also, it is noticed that if the original stimulus carries any 
noise, an exact match of the stimulus cannot be 
reconstructed. However, the reconstructed stimulus still 
matches the original stimulus to a high degree of accuracy. 
The choice of ߜ is very important and there is a trade-off 
between computational time and accuracy. The accuracy 
increases with a decrease in ߜ. 

The approached described in this paper can reconstruct 
very good approximations of the original stimuli. The results 
show that the unknown periodic and constant current stimuli 
are well approximated by this reconstruction method. It is 
also worth mentioning that although establishing an IO 
relationship can provide some information of the stimulus 
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parameters, the current approach can accurately reconstruct 
the neural dynamics in addition to an unknown stimulus.  
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