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Abstract— This paper presents a new method of
curiosity-driven multi-swarm search, called multiple
particle swarm optimizers with inertia weight with
diversive curiosity (MPSOIWα/DC). Compared to
a plain MPSOIW, it has the following outstanding
features: (1) Decentralization in multi-swarm explo-
ration with hybrid search, (2) Concentration in eval-
uation and behavior control with diversive curios-
ity, (3) Practical use of the results of evolutionary
PSOIW, and (4) Their effective combination. This
achievement expands the applied object of coopera-
tive PSO with the multi-swarm’s decision-making. To
demonstrate the effectiveness of the proposal, com-
puter experiments on a suite of multidimensional
benchmark problems are carried out. We examine the
intrinsic characteristics of the proposal, and compare
the search performance with other methods. The ob-
tained experimental results clearly indicate that the
search performance of the MPSOIWα/DC is superior
to that by the EPSOIW, PSOIW, OPSO, RGA/E,
and MPSOα/DC for the given benchmark problems.
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1 Introduction

In a few words, optimization is to find the most suit-
able value of a function within a given domain. In con-
trast to traditional optimization methods such as steepest
descent method, conjugate gradient method, and quasi-
newton method, which may be good at solution accu-
racy and exact computation but have brittle operations
and necessary information to search environment, in gen-
eral, the methods of genetic and evolutionary computa-
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tion (GEC)1 provide a more robust, efficient, and ex-
pandable approach in treating with high-grade nonlinear,
multimodal optimization problems, and complex practi-
cal problems in the real-world without prior knowledge
[13, 18, 28].

As a new member of GEC, particle swarm optimization
(PSO) [8, 15] has been successfully applied in different
fields of science, technology, engineering, and applica-
tions [22]. This is because the technique has distinctive
features, i.e. information exchange, intrinsic memory,
and directional search in the mechanism and composi-
tion compared to the other members such as genetic al-
gorithms [12] and evolutionary programming [11].

For improving the convergence, solution accuracy, and
search efficiency of a plain particle swarm optimizer (the
PSO), many basic variants of the PSO such as a parti-
cle swarm optimizer with inertia weight [24], a canonical
particle swarm optimizer [5, 6], fully informed particle
swarm [16] etc. were proposed. The principal objective of
these optimizers (algorithms) was to put in enforcing the
search strategy and information transfer in the interior of
a particle swarm to increase diversification for realizing
efficient search. Especially, in recent years, the method of
multi-swarm search is rapidly developing from the basis
of the method of single swarm search. A large number of
studies and investigations on cooperative PSO2 in rela-
tion to symbiosis, interaction, and synergy are in the re-
searcher’s spotlight. Various kinds of algorithms on coop-
erative PSO, for example, hybrid PSO, multi-population
PSO, multiple PSO with decision-making strategy etc.,
were published [1, 10, 20, 32] for attaining high search
ability and solution accuracy more by deepening on group
searching with cooperative actions.

In comparison with those methods that only operate a
single particle swarm, it is an indisputable fact that dif-
ferent attempts and strategies to reinforcement of multi-

1GEC usually refers to genetic algorithms (GAs), genetic pro-
gramming (GP), evolutionary programming (EP), and evolution
strategies (ES).

2Cooperative PSO is generally considered as multiple swarms
(or sub-swarms) searching for a solution (serially or in parallel)
and exchanging some information during the search according to
some communication strategy.
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swarm search can be perfected well, which mainly focus
on the rationality of information propagation, coopera-
tion, optimization, hierarchical expression, and intelli-
gent control within these particle swarms for efficiently
finding an optimal solution in a wide search space. With
regard to the effect of them, a lot of publications and re-
ports have been shown that the methods of cooperative
PSO have better adaptability and extensibility than ones
of uncooperative PSO for dealing with different optimiza-
tion problems [4, 14, 20, 36].

Due to great requests to enlarge search performance, uti-
lizing the techniques of group searching, parallel process-
ing with intelligent strategy has become one of extremely
important approaches to optimization. For magnifying
cooperative PSO research and improving the search per-
formance of a plain multiple particle swarm optimiz-
ers with inertia weight (MPSOIW), this paper presents
multiple particle swarm optimizers with inertia weight
with diversive curiosity (MPSOIWα/DC), which is a new
method of cooperative PSO.

In comparison with the plain MPSOIW, the proposal
has the following outstanding features: (1) Decentral-
ization in multi-swarm exploration with hybrid search3

(MPSOIWα), (2) Concentration in evaluation and behav-
ior control with diversive curiosity (DC), (3) Practical use
of the results of evolutionary PSOIW (PSOIW∗), and (4)
Their effective combination. According to these features,
the MPSOIWα/DC could be expected to alleviate stag-
nation in the optimization, and to enhance search ability
and solution accuracy by enforcement of group decision-
making and managing the trade-off between exploitation
and exploration in the multi-swarm’s heuristics.

From the viewpoint of methodology, the MPSOIWα/DC
is an analogue of the method of multiple particle swarm
optimization with diversive curiosity [35], which has
been successfully applied to the plain multiple particle
swarm optimizers (MPSO) and multiple canonical parti-
cle swarm optimizers (MCPSO) [34]. Nevertheless, the
creation and actualization of the proposal are not only to
improve the search performance of the plain MPSOIW,
but also to expand the applied object and area of the
curiosity-driven multi-swarm search. This is just our mo-
tivation, and study purpose further to deepen the ap-
proach of cooperative PSO with an integration way, i.e.
reinforcement of hybrid search, parameter selection, and
swarm intelligence.

The rest of the paper is arranged as follows. In Section
2, the algorithms of the PSO and PSOIW are briefly de-
scribed. Section 3 introduces the structure and features
of the MPSOIWα/DC, and the adopted LRS and inter-
nal indicator, respectively. Section 4 analyzes and dis-
cusses the experimental results for a suite of the multi-

3The hybrid search, here, is compose of the particle swarm op-
timizer with inertia weight and the localed random search.

dimensional benchmark problems to verify the effective-
ness of the proposed method. Finally, the concluding
remarks appear in Section 5.

2 Basic Algorithms

For convenience to the following description of the PSO
and PSOIW, let the search space be N -dimensional, Ω ∈
<N , the number of particles in a swarm be P , the position
and velocity of the i-th particle be ~xi = (xi

1, x
i
2, · · · , xi

N )T

and ~v i = (vi
1, v

i
2, · · · , vi

N )T , respectively.

2.1 The PSO

In the beginning of the PSO search, the position and
velocity of the i-th particle are generated in random, then
they are updated by
{

~x i
k+1 = ~xi

k + ~v i
k+1

~v i
k+1 = w0~v

i
k+w1~r1 ⊗(~p i

k−~x i
k)+w2~r2 ⊗ (~qk−~xi

k)
(1)

where w0 is an inertial coefficient, w1 is a coefficient
for individual confidence, w2 is a coefficient for swarm
confidence. ~r1, ~r2 ∈ <N are two random vectors in
which each element is uniformly distributed over [0, 1],
and the symbol ⊗ is an element-wise operator for vec-
tor multiplication. ~p i

k(= arg max
j=1,···,k

{g(~x i
j)}, where g(·)

is the criterion value of the i-th particle at time-step k)
is the local best position of the i-th particle up to now,
and ~qk(= arg max

i=1,2,···
{g(~p i

k)}) is the global best position

among the whole swarm. In the original PSO, the pa-
rameter values, w0 = 1.0 and w1 = w2 = 2.0, are used
[15].

For preventing particles spread out to infinity in search, a
boundary value, vmax, is introduced into the above men-
tioned update rule to limit the biggest velocity of each
particle by

{
v ij

k = vmax, if v ij
k > vmax

v ij
k = −vmax, if v ij

k < −vmax

(2)

where vij
k is the j-th element of the i-th particle’s velocity

~v i
k at time-step k.

2.2 The PSOIW

As is commonly known, the weak convergence is a dis-
advantage of the PSO [2, 5]. This is because the value
of the inertial coefficient, w0 = 1.0, is not the best one
to manage the trade-off between exploitation and explo-
ration [30, 31, 32]. For improving the convergence of the
PSO by achieving a search shift which smoothly changes
from exploratory mode to exploitative mode in the op-
timization, Shi et al. modified the update rule of the
particle’s velocity in Eq. (1) by constant reduction of the
inertia coefficient over time-step [9, 24] as follows.

~v i
k+1 = w(k)~v i

k + w1~r1⊗(~p i
k−~x i

k) + w2~r2⊗(~qk−~x i
k) (3)
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Figure 1: A flowchart of the MPSOIWα/DC

where w(k) is a variable inertia weight which is linearly
reduced from a starting value, ws, to a terminal value,
we, with the increment of time-step k as follows.

w(k) = ws+
we−ws

K
×k (4)

where K is the maximum number of iteration for the
PSOIW search. In the original PSOIW, the boundary
values are adopted to ws = 0.9 and we = 0.4, respectively,
and w1 = w2 = 2.0 are still set as in the original PSO.
Since the terminal value, we, is smaller than 1.0, it is
perfectly obvious that the PSOIW has good convergence
than the PSO.

Based on the effect of the linearly damped inertia weight,
the weakness of the PSO is overcome, and besides the
solution accuracy is also improved by the PSOIW run.
However, the search results often converge to local solu-
tions in treating with multimodal problems. Moreover,
the phenomenon called stagnation in optimization is eas-
ily caused as much as the terminal value we becomes
small. Consequently, this fault is fatal for the use of the
PSOIW alone to treat with complex optimization prob-
lems.

3 The MPSOIWα/DC

In order to thoroughly conquer the above mentioned
shortcoming of the PSOIW, we propose to use the mul-
tiple particle swarm optimizers with diversive curiosity,
called MPSOIWα/DC. This is a powerful method of inte-
gration of different approaches, which includes the prac-
tical use of parameter selection, and intelligent, hybrid
and multi-swarm search to comprehensively managing

the trade-off between exploitation and exploration in the
multi-swarm’s heuristics and to alleviate stagnation by
group decision-making.

Concretely, Figure 1 illustrates a flowchart of the
MPSOIWα/DC, which shows the data processing and
information control in the method. It is the same as the
MPSOα/DC [35] in instruction just instead of the part of
implementing the PSO. The detailed characteristics on it
are described below.

In the PSOIWα/DC, the plural PSOIWs are executed
in parallel, and the localized random search (LRS) [35]
is implemented to find the most suitable solution from a
limited space for the solution found by each PSOIW. The
continuous action of the PSOIW and LRS, here, consti-
tutes a hybrid search (i.e. memetic algorithm [19]). Then
the best solution, ~q b

k , is determined with maximum selec-
tion from the whole solutions found by the multi-swarm
search (i.e. redundant search). Subsequently, it is put
in a solution set being a storage memory for information
processing.

As an internal indicator in the multi-swarm, its role is
to monitor whether the status of the best solution ~q b

k

continues to change or not at all time-step for making
up the concentration in evaluation and behavior control.
Concretely, while the value of the output yk is zero, this
means that the multi-swarm concentrates on exploring
the surroundings of the solution ~q b

k for “cognition”. If
once the value of the output yk become positive, it indi-
cates that the multi-swarm has lost interest, i.e. feeling of
boredom, to search the region around the solution ~q b

k for
“motivation”. The concepts of psychology, “cognition”
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Table 1: Functions and criteria to the given suite of the multi-benchmark problems. The search space for each
problem is limited to the search space Ω ∈ (−5.12, 5.12)N .

Problem Function Criterion N=2

Sphere fSp(~x) =
N∑

d=1

x2
d gSp(~x) =

1
fSp(~x) + 1

Griewank fGr(~x) =
1

4000

N∑

d=1

x2
d −

N∏

d=1

cos
( xd√

d

)
+ 1 gGr(~x) =

1
fGr(~x) + 1

Rastrigin fRa(~x) =
N∑

d=1

(
x2

d − 10 cos (2πxd) + 10
)

gRa(~x) =
1

fRa(~x) + 1

Rosenbrock fRo(~x) =
N−1∑

d=1

[
100

(
xd+1 − x2

d

)2 +
(
1− xd

)2
]

gRo(~x) =
1

fRo(~x) + 1

Schwefel fSw(~x) =
N∑

d=1

( d∑

j=1

xj

)2

gSw(~x) =
1

fSw(~x) + 1

Hybrid fHy(~x) = fRa(~x) + 2fSw(~x) +
1
12

fGr(~x) +
1
20

fSp(~x) gHy(~x) =
1

fHy(~x) + 1

and “motivation”, are further explained in formulation
later.

Due to the big reduction of boredom behavior in whole
multi-swarm search, the search efficiency finding an opti-
mal solution or near-optimal solutions will be drastically
improved. Here, it is to be noted that the repeat of ini-
tialization decided by the signal dk = 1 in Figure 1 is
a mere expression style which introduces the mechanism
of diversive curiosity for realizing a positive search. Of
course, the implementation style is not an isolated one, it
also can be performed by other operation ways in prac-
tice.

For convenience to understand the details of two impor-
tant parts, i.e. the LRS and internal indicator, their
mechanisms are minutely described in the next subsec-
tions.

3.1 The LRS

As be generally known, random search methods are
the simplest ones of stochastic optimization with undi-
rectional search, and are effective and robust in han-
dling many complex optimization problems [25]. To
efficiently obtain an optimal solution by using a hy-
brid search method, we introduce the LRS [34] into the
MPSOIWα/DC to find the most suitable solution from
a limited space surrounding the solution found by the
PSOIW. According to the additional operation, the prob-
ability of escaping from a local solution will be steeply
raised for efficient searching.

Concretely, the procedure of the LRS is implemented as
follows.

step-1: Let ~q s
k be a solution found by the s-th particle

swarm at time-step k, and set ~q s
now = ~q s

k . Give the
terminating condition, J (the total number of the
LRS run), and set j = 1.

step-2: Generate a random data, ~dj ∈ <N ∼ N(0, σ2
N )

(where σN is a small positive value given by user,
which determines the small limited space). Check
whether ~q s

k + ~dj ∈ Ω is satisfied or not. If
~q s
k + ~dj 6∈ Ω then adjust ~dj for moving ~q s

k + ~dj to
the nearest valid point within Ω. Set
~qnew = ~q s

k + ~dj .

step-3: If g(~qnew)>g(~q s
now) then set ~q s

now =~qnew.

step-4: Set j = j + 1. If j ≤ J then go to the step-2.

step-5: Set ~q s
k = ~q s

now to correct the solution found by
the s-th particle swarm at time-step k. Stop the
search.

Due to the complementary feature of the used hybrid
search, the correctional function seems to be close to the
HGAPSO [14] in search effect, which implements a plain
GA and the PSO with the mixed operations for improving
the adaptation to treat with various blended distribution
problems.
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Table 2: The major parameters used in the MPSOIWα/DC.
Parameter Value Parameter Value

the number of individuals, M 10 the number of iterations, K 400
the number of generation, G 20 the maximum velocity, vmax 5.12
the number of particles, P 10 the range of LRS, σ2

N 0.05
the number of particle swarms, S 3 the number of LRS run, J 10
the duration of judgment, L 10∼90 the tolerance coefficient, ε 10−6 ∼ 10−2

Table 3: The resulting appropriate values of parameters in the PSOIW to each given 5D benchmark problem.
Parameters

Problem
ŵs ŵe ŵ1 ŵ2

Sphere 0.7267±0.0521 0.1449±0.1574 1.2116±0.6069 1.9266±0.0651
Griewank 0.7761±0.0822 0.2379±0.2008 1.2661±0.6332 0.2827±0.0708
Rastrigin 2.0716±0.9143 0.8816±0.6678 12.942±7.9204 5.0663±1.5421

Rosenbrock 0.7702±0.1660 0.5776±0.2137 1.9274±0.3406 1.9333±0.4541
Schwefel 0.8552±0.3210 0.1253±0.2236 1.6106±1.3345 1.9610±1.3754
Hybrid 1.4767±0.2669 0.6101±0.5335 5.0348±1.7687 9.2134±5.0915

3.2 Internal Indicator

Curiosity, as a general concept in psychology, is an emo-
tion related to natural inquisitive behavior for humans
and animals, and its importance and effect in motivating
search cannot be ignored [7, 21]. Berlyne categorized it
into two types: diversive curiosity (DC) 4 and specific
curiosity (SC) 5 [3]. In the matter of the mechanism of
the former, Loewenstein insisted that “diversive curiosity
occupies a critical position at the crossroad of cognition
and motivation” in [17].

Based on the assumption of the “cognition” is the act
of exploitation, and the “motivation” is the intention to
exploration, Zhang et al. proposed the following internal
indicator for distinguishing and detecting the above two
behavior patterns in the multi-swarm search [?, 32, 33].

yk(L, ε) = max
(
ε−

L∑

l=1

∣∣g(~q b
k )−g(~q b

k−l)
∣∣

L
, 0

)
(5)

where ~q b
k (=arg max

s=1,···,S
{g(~q s

k )}, where S is the number of

plural particle swarms) denotes the best solution found
by the whole particle swarms at time-step k. As two
adjustable parameters of the internal indicator, L is du-
ration of judgment, and ε is the positive tolerance coeffi-
cient (sensitivity).

It is obvious that the bigger the value of the coefficient ε
is, the higher the probability of 1

L

∑L
l=1

∣∣g(~q b
k )−g(~q b

k−l)
∣∣ <

ε is, and vice verse. The change of the output yk reflects
4Diversive curiosity signifies instinct to seek novelty, to take

risks, and to search for adventure.
5Specific curiosity signifies instinct to investigate a specific ob-

ject for its full understanding.

the result of group decision-making generated by the
whole particle swarms about the present search. Since in-
effective behavior and useless attempt of the multi-swarm
search in the optimization is overcome by the reliable way
of alleviating stagnation, the search efficiency could be
greatly enhanced.

4 Computer Experiments

To facilitate comparison and analysis of the performance
indexes of the proposed method, we use a suite of the
multi-benchmark problems [27] and the corresponding
criteria in Table 1.

It is obviously displayed from the fitness functions of the
given benchmark problems with two dimensions in Table
1 that the distribution characteristics of these problems,
i.e. the Sphere problem is unimodal with axes-symmetry,
the Rosenbrock problem is unimodal with asymmetry, the
Schwefel problem is unimodal with line symmetry, the
Griewank and Rastrigin problems are multimodal with
different distribution density and axes-symmetry, and the
Hybrid composition problem is multimodal with different
distribution density and line symmetry.

For dealing with these problems, Table 2 gives the major
parameters in the MPSOIWα/DC employed in the next
computer experiments.

4.1 Preliminaries

In order to ensure higher search performance of the
MPSOIWα/DC, the optimized PSOIW is applied for ac-
complishment of the efficient multi-swarm search. For
doing this, we adopt the method of meta-optimization of
the PSOIW heuristics, called evolutionary particle swarm
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Figure 2: The distributions of average of criterion values and average of re-initialization frequencies with tuning the
parameters, L and ε, for each problem.

optimizer with inertia weight (EPSOIW) [38] estimates
appropriate values of parameters in the PSOIW corre-
sponding to each given problem. The method uses a real-
coded genetic algorithm and a cumulative fitness function
to stable estimation.

As the results of the meta-optimization run, Table 3
shows the obtained values of parameters in the estimated
PSOIW corresponding to each given 5D benchmark prob-
lem with 20 trials. We can see that the obtained average
of the parameter values of each PSOIW is quite different
from that of the original PSOIW. This fact indicates that
the parameter values in the original PSOIW are not the
best ones to these given problems, and different problem
should be solved by different proper values of parameters
in the PSOIW, and implementing the EPSOIW to find a
rational PSOIW with high performance is necessary.

Then the average of the parameter values, ŵe, are less
than 1 for each problem, it suggests that the search be-
haviors of particles finally converge at an optimal solu-
tion and a near-optimal solution. In contrast to this,
the average of the parameter values, ŵ1 and ŵ2, dras-
tically exceeds 1, this result indicates that the global

search have more randomization without restriction for
efficiently dealing with the Rastrigin and Hybrid prob-
lems by escaping from local minimum since both of them
are all complex multimodals.

Consequently, these estimated PSOIW in Table 3 as
the optimized optimizers, PSOIW∗, are used in the
MPSOIWα/DC for improving the convergence and
search accuracy, and certainly improving the search per-
formance of the proposed method to the given benchmark
problems.

4.2 Performance of the MPSOIW∗α/DC

For clarifying the characteristics of the proposed
method, Figure 2 gives the search performance of the
MPSOIW∗α/DC for each benchmark problem with 20
trials by tuning the parameters of the internal indica-
tor, L and ε. The following outstanding features of the
MPSOIW∗α/DC are observed.

• The average of re-initialization frequencies
monotonously increases with increment of the
tolerance parameter, ε, and decrement of the
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Figure 3: The performance comparison between the MPSOIW∗α/DC and MPSOIWα/DC.

duration of judgment, L, for each benchmark
problem.

• The average of criterion values do not change at all
with tuning the parameters, L and ε, for the Rastri-
gin and Hybrid problems.

• For obtaining better search performance, the recom-
mended range of parameters of the MPSOIW∗α/DC:
L∗Sp ∈ (10 ∼ 90) and ε∗Sp ∈ (10−6 ∼ 10−2) for the
Sphere problem; L∗Gr ∈ (10∼ 90) and ε∗Gr ∈ (10−5 ∼
10−3) for the Griewank problem; L∗Ra ∈ (10 ∼ 90)
and ε∗Ra ∈ (10−6 ∼ 10−2) for the Rastrigin prob-
lem; L∗Ro ∈ (10 ∼ 90) and ε∗Ro ∈ (10−5 ∼ 10−3)
for the Rosenbrock problem; L∗Ri ∈ (10 ∼ 90) and
ε∗Sw ∈ (10−6 ∼ 10−2) for the Schwefel problem; and

L∗Hy ∈ (10 ∼ 90) and ε∗Hy ∈ (10−6 ∼ 10−2) for the
Hybrid problem are available.

As to the results of the Rastrigin and Hybrid problems,
the obtained average of the criterion values in Figure 2(c)
and Figure 2(f) are mostly unchanged with tuning the
parameters, L and ε. This phenomenon suggests that
the optimized PSOIW∗ has powerful search ability to deal
with the two multimodal problems.

On the other hand, due to stochastic factor in the PSOIW
search and complexity of the Rosenbrock problem, some
irregular change of the experimental results can be dis-
covered in Figure 2(d). Moreover, because of the effect
of the used hybrid search, the fundamental finding, “the
zone of curiosity,” in psychology [7] is not distinguished
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Figure 4: The performance comparison between the MPSOIW∗α/DC and PSOIW∗α/DC.

except for the Rosenbrock problem. Hence, the surface of
“the average of criterion values” seems to be a plane with-
out the change of the parameters L and ε. This means
that the MPSOIW∗α/DC has good adaptability to effi-
ciently deal with the given benchmark problems under
the setting range of parameters, L and ε.

We also observe that the average of re-initialization fre-
quencies is over 300 times in the case of the parameters,
i.e. L=10 and ε = 10−2, for the Rosenbrock problem
in Figure 2(d). Since the average of the criterion val-
ues is the lowest than that in the other cases, this re-
sult shows that the search behavior of the multi-swarm
seems to have entered “the zone of anxiety,” [7] which
leads the search performance of the MPSOIWα/DC to
be lower. However, the average of re-initialization fre-
quencies is close to 150 times in the same case for the

Hybrid problem in Figure 2(f), the situation of anxiety
does not appear.

4.3 Performance Comparison

To declare the intrinsic characteristics and the respec-
tive effect of the multi-swarm and hybrid search in the
MPSOIWα/DC, the following experiments are carried
out.

4.3.1 Optimized Swarms vs. Non-optimized
Swarms

For confirming the effectiveness of the optimized PSOIW
used in the MPSOIWα/DC, Figure 3 shows the result-
ing difference, ∆ON = ḡ∗O − ḡ∗N (ḡ∗O: the average of
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Figure 5: The performance comparison between the MPSOIW∗α/DC and MPSOIW∗/DC.

criterion values of the MPSOIW∗α/DC, ḡ∗N : the aver-
age of criterion values of the MPSOIWα/DC). The ob-
tained results indicate that the search performance of the
MPSOIWα/DC are greatly improved by introduction of
the optimized PSOIW especially for the Rastrigin, Rosen-
brock, and Hybrid problems. Since all of the differences
are positive, the effect of the optimized PSOIW in the
optimization is remarkable.

4.3.2 Single Swarm vs. Multiple Swarms

For equal treatment in search, the number of particles
used in a single swarm is the same to the total number
of particles used in the multi-swarms. Figure 4 shows
the resulting difference, ∆PS = ḡ∗P − ḡ∗S (ḡ∗P : the average

of criterion values of the MPSOIW∗α/DC, ḡ∗S : the aver-
age of criterion values of the PSOIW∗α/DC). We can see
that the search performance of both the MPSOIW∗α/DC
and PSOIW∗α/DC seems to be the same for the Rast-
rigin and Hybrid problems. This is because the effect of
the EPSOIW, i.e. the optimized PSOIW are suitable to
efficiently deal with the Rastrigin and Hybrid problems.

In comparison with the differences between two meth-
ods for the Sphere, Rastrigin, Rosenbrock, and Hy-
brid problems, we observe that the search performance
of the MPSOIW∗α/DC is better than that by the
PSOIW∗α/DC under the low-sensitivity condition of ε ≤
10−5. This fact suggests that the superior search per-
formance can be obtained by operating singular swarm
under the high sensitivity condition of ε ≥ 10−4.
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Table 4: The mean and standard deviation of criterion values in each method for each 5D benchmark problem with
20 trials. The values in bold signify the best result for each problem.

Problem MPSOIW∗α/DC EPSOIW PSOIW OPSO RGA/E MPSOIW∗α/DC
Sphere 1.0000±0.000 1.0000±0.000 1.0000±0.000 1.0000±0.000 0.9990±0.000 1.0000±0.000

Griewank 1.0000±0.000 0.9847±0.006 0.8505±0.119 0.9448±0.043 0.9452±0.078 1.0000±0.000
Rastrigin 1.0000±0.000 1.0000±0.000 0.2325±0.159 0.2652±0.118 0.9064±0.225 1.0000±0.000

Rosenblock 0.9959±0.006 0.6070±0.217 0.5650±0.179 0.3926±0.197 0.3898±0.227 0.9893±0.012
Schwefel 1.0000±0.000 1.0000±0.000 1.0000±0.000 0.7677±0.412 0.9875±0.214 1.0000±0.000
Hybrid 1.0000±0.000 0.8025±0.405 0.3905±0.374 0.3061±0.359 0.1531±0.133 1.0000±0.000

4.3.3 Effect of the LRS

For investigating the performance difference between the
MPSOIW∗α/DC and MPSOIW∗/DC, Figure 5 shows
the obtained experimental results corresponding to same
problems. Note that the difference of them is defined by
∆PN = ḡ∗P − ḡ∗N (ḡ∗N : the average of criterion values of
the MPSOIW∗/DC). Dissimilar to the preceding results,
the search performance of the MPSOIW∗α/DC is better
than that of the MPSOIW∗/DC in the most cases for each
given benchmark problem except the Rastrigin problem.
This fact clearly indicates that the LRS plays an impor-
tant role in drastically improving the search performance
of the MPSOIW∗/DC.

On the other hand, the effect of the LRS is not remarkable
for the Sphere, Schwefel, and Hybrid problems in any case.
These results fit in with “no free lunch” (NFL) theorem
[29]. They suggest that the effect of the LRS closely
depends on the object of search, which related to how
to set the parameter values for the running number, J ,
and the search range, σ2

N , and the inherent feature of
the given benchmark problems. This is also a hot topic
regarding how to rationally manage the trade-off between
computational cost and search performance [26]. The
details on discussion for the issue are omitted here.

4.3.4 Comparison with Other Methods

For further illuminating the effectiveness of the proposed
method, we compare the search performance with the
other methods such as the EPSOIW, PSOIW, OPSO (op-
timized particle swarm optimization) [18], and RGA/E.

Table 4 gives the obtained experimental results of imple-
menting these methods with 20 trials. It is well shown
that the search performance of the MPSOIW∗α/DC is
better than that by the EPSOIW, PSOIW, OPSO, and
RGA/E. The results sufficiently reflect that the merg-
ing of both multiple hybrid search and the mechanism
of diversive curiosity takes the active role in handling
these benchmark problems. In particular, A big increase,
i.e. the average of criterion values by implementing the

MPSOIW∗α/DC steeply rises from 0.5650 to 0.9959, in
search performance is achieved well for the Rosenbrock
problem.

5 Conclusion

A new method of cooperative PSO – multiple particle
swarm optimizers with inertia weight with diversive cu-
riosity, MPSOIWα/DC, has been proposed in this paper.
Owing to the essential strategies of decentralization in
search and concentration in evaluation and behavior con-
trol, the combination of the adopted hybrid search and
the mechanism of diversive curiosity, theoretically, has
good capability to greatly improve search efficiency and
to alleviate stagnation in handling complex optimization
problems.

Applications of the MPSOIWα/DC to a suite of the 5D
benchmark problems well demonstrated its effectiveness.
The obtained experimental results verified that unifying
the both characteristics of multi-swarm search and the
LRS is successful and effective. In comparison with the
search performance of the EPSOIW, PSOIW, OPSO, and
RGA/E, the proposed method has an enormous latent
capability in treating with different benchmark problems
and the outstanding powers of multi-swarm search. Ac-
cordingly, the basis of the development study of coopera-
tive PSO research in swarm intelligence and optimization
is further expanded and consolidated.

It is left for further study to apply the MPSOIWα/DC
to data mining, system identification, multi-objective op-
timization, practical problems in the real-world, and dy-
namic environments.
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