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Abstract—As a major concern in designing various data
mining applications, privacy preservation has become a critical
component seeking a trade-off between mining performances
and protecting sensitive information. Data perturbation or
distortion is a widely used approach for privacy protection.
Many privacy preservation approaches were developed, either
by adding noises or by matrix decomposition methods. In this
paper, we intensively studied Singular Value Decomposition
(SVD) based data distortion strategy and feature selection
techniques, and conducted experiments to explore how feature
selection technique could be used and better serve for privacy
preservation purpose. Sparsified Singular Value Decomposition
(SSVD) and filter based feature selection are used for data
distortion and reducing feature space. We design a modified
version of Exponential Threshold Strategy (ETS) as our thresh-
old function for matrix sparsification process, and implement
several metrics to measure data perturbation level. We also
propose a novel algorithm to compute rank and analyze its
lower running time bound. The mining utility of distorted data
is tested with a well known Classifier, Support Vector Machine
(SVM).

Index Terms—SVD; SSVD; SVM; feature selection; pertur-
bation

I. INTRODUCTION

PRIVACY preserving data mining (PPDM) and privacy
preserving data publishing (PPDP) are two closely re-

lated research directions. The former concentrates on privacy
issues when data miners requesting real data for the mining
purpose; the latter stresses on an application-free protection
of data whenever in need of publishing data for business
transactions or research purpose. Both of them disguise
dataset in an effort to replace the original dataset for data
publications and data mining applications. With the rapid
growth of data exchange technology, collaborations with
information between different parties become essential ap-
proach in many situations for business and research activities.
Without an acceptable level of privacy of sensitive informa-
tion, many data mining applications would not be applicable.
How can an entity be entrusted with access to sensitive
personal or business information, and how can sensitive
datasets be sufficiently protected from unauthorized access
without undermining accuracy of mining knowledge are the
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important issues. Data privacy preservation is premised on
the maintenance of data analytical values. Preserving privacy
of data sets while still being able to extract valid data mining
results is a very challenging task. Among the widely used
approaches, Singular Value Decomposition (SVD) is one of
the most popular techniques to the above addressed issues. Its
derivative, Sparsified Singular Value Decomposition (SSVD)
concept was firstly introduced by Gao and Zhang in [2] for
reducing the storage cost and enhancing the performance
of SVD in text retrieval applications. Xu et al. applied
SVD and SSVD methods in a terrorist analysis system [3].
SSVD was further studied in [4] in which matrix structural
partition strategies were proposed and used to partition the
original data matrix into submatrices. The computational
cost incurred by matrix decomposition phase is substantially
reduced. In [5], Wang suggested that significance of features
for analysis purposes should be taken into consideration
and all features were ranked by using feature selection
methods. The objective of feature selection is to select most
correlated features regarding mining target while eliminating
the unrelated data and reducing dataset dimensionality and
hence, saving computational expense and achieving better
accuracy of mining results. However, the questions are that
can analysis results of data be preserved by performing
data distortion technique on selected features using feature
selection methods? And how can feature selection methods
produce better result or result in tolerable error rate on
perturbed data? Is it better to perform feature selection
before data distortion or is it better the other way around?
In our work, we take a close look at these interesting
questions. Mainly, three experiments are conducted in our
work to answer the questions above. We select subfeature
set according to their significance ranked by using filter
based feature selection method. The selected subset is then
distorted by using SVD modification approaches. We carry
out experiments by interchanging the sequence of feature
selection and SVD data distortion procedure. The Support
Vector Machine (SVM) and several distortion metrics are
used in the experiments to measure for data mining quality
and data distortion level respectively.

The remainder of the paper is organized as follows.
Sect.II briefly introduces related knowledge such as privacy
preserving data mining, essential SVD and SSVD processes,
feature selection methods, and SVM method. Sect.III dis-
cusses various data distortion metrics, their usages and we
propose a novel algorithm to compute rank and estimate its
run time complexity. The experiments are carried out and
the results are presented and discussed in Sect.IV. We finally
sum up this paper and bring our future plans in Sect.V.
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Fig. 1. PPDM, UOD and UMD denote for utility of original data and
Modified data, respectively

II. BACKGROUND AND RELATED WORK

A. Privacy Preserving Data Mining

Data mining is a recently growing field which merges
the knowledge of databases, statistics and machine learning
together. It is also known as knowledge discovery and
attempts to extract meaningful information and useful
patterns from raw data. As the data mining techniques
gaining popularity and widely being used in business and
research, there has been a raising concern for disclosure
of security and privacy. The recent advances in data
collection and dissemination through Internet or other media
have made threats against the privacy very common on a
daily basis [11]. For example, two parties each having a
private databases with sensitive contents, wish to work in
collaboration by applying a data mining algorithm on the
union of their databases. Indeed, neither party wants their
private data to be known to other party. In such scenario,
Privacy preserving data mining (PPDM) can be used to hide
sensitive information. In general, the main consideration
in PPDM is two folds: hiding sensitive features such as
age, salary, or personal medical conditions and sensitive
knowledge that can be discovered by data mining algorithms.
PPDM develops algorithms for modifying the original data
in some way that the private data and private knowledge
remain private even after the mining process [12]. Common
techniques include data perturbation, blocking feature
values, swapping tuples, or merging feature values into
an aggregated and coarser granularity, etc. However, It is
also important to realize that modifying data will results
in degradation of the data utility. As illustrated in the
Figure 1, a PPDM scheme should be able to maximize the
degree of data modification, while retain the maximum data
utility level. In the next sub-section, we briefly discuss the
well-known SVD matrix decomposition technique that has
been used in [3,4] to achieve this objective.

B. Singular Value Decomposition

Without loss of generality, we let A be a matrix in Rm×n

with m ≥ n (the following results in this paper also hold
for the assumption that m ≤ n). Let r denote the rank of
A, where r ≤ n. We use lower case letters for scalar, lower
case letters with under bar for vector, and capital letters for
matrix, e.g., A is a matrix, a is a scalar, a is a column vector,
and the row vector is denoted as aT . Those notations will
be used throughout this paper.

• Def: Any matrix A ∈ Rm×n can be decomposed
uniquely as:

A = UDV T (1)
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Fig. 2. Singular Value Decomposition

Where U is m×m orthonormal matrix, V is n×n or-
thonormal matrix. D is m×n diagonal matrix whose non-
negative entries on its diagonal are called singular values.
This is called singular value decomposition method and can
be proved constructively. The interested readers can refer to
[13] for details.

SVD has various important mathematic properties. Let
δ(σ1, σ1, . . . , σk) = diag(D), where k = min(m,n), the
singular values are ordered such that σ1 ≥ σ2, . . . ,≥ σk.
Correspondingly, we have λi ⊆ (σ2

1 , σ
2
2 , . . . , σ

2
k), where

i = 1, . . . , k and λi represents the egienvalues of ATA. Let
xi be the eigenvector belonging to λi. It follows that:

‖Axi‖
2

= xTi A
TAxi = λix

T
i xi = λi ‖xi‖

2 (2)

Hence

λi =
‖Axi‖

2

‖xi‖
2 (3)

The equation (3) indicates that the induced operator two
norm of A equals σ1, the largest singular value. Since
the rank of A equals the number of singular values, it
further implicates that the main characteristics of A can
be captured by lower rank items. On the other hand, the
singular values around the bottom of the diagonal of D are
relatively small and can be considered insignificant. If we
introduce perturbations on those insignificant singular values
i.e., making them zero, we can represent A in a perturbed
form Ā. In addition, the removed part E, where E = A− Ā,
can be considered as noise in A [7]. Thus, Ā can be seen as
both a distorted copy of A and a faithful representation of
the original data [4].

SVD also has numerous applications in data mining,
information retrieval and image compression in which it is
often used to approximate a given matrix by a lower rank
matrix with the minimum distance between them. As an
example, the space storage for the m × n data A, would
require much less with SVD technique, i.e., A requires m×n
storage, whereas the three decomposed matrices U , D and
V only requires m× r+ r× r+ r×n storage (see Figure 2
for reference), where r is much smaller than n. Generally
speaking, SVD technique is often chosen to determine a
matrix approximation with smaller rank.

C. Sparsified SVD

The sparsification process of a matrix A is to set a
threshold and the entry values of A less than the threshold
are zeroed out. We apply this strategy to the decomposed
matrix D to get perturbed diagonal matrix D̃. Essentially,
we keep k largest singular values and set the rest zero. Since
the number of singular value equals the rank of the matrix,
it can be seen from Figure 2 that a distorted matrix Ā of low
rank can be composed by simple block matrix operations:

Ā = UDV T (4)
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To increase distortion level, we also perform sparsification
process on U and V . The sparsification operation is referred
to as dropping operation in [2]. We then multiply all three
sparsified matrices Ũ , D̃ and Ṽ to get Ã :

Ã = ŨD̃Ṽ T

If we denote S the sparsification function for U and V , then
it is easy to see that:

Ã = S(A)

And since after sparfication process, many small column
vectors in U and V are dropped to zero, then we have:

Ã = S(A1) + S(A2)+, . . . ,+S(Ak)

= S(u1σ1v
T
1 ) + S(u2σ2v

T
2 )+, . . . ,+S(ukσkv

T
k )

= σ1S(u1)S(vT1 ) + σ2S(u2)S(vT2 )+, . . . ,+σkS(uk)S(vTk )

= S(A1)+, . . . ,+0 + S(Aj)+, . . . ,+0+, . . . ,+S(Ak)

Therefore, the Ã by SSVD process can be seen as a matrix
from further perturbing A:

A = Ã+ E1 + E2 (5)

Where E1 = A − A and E2 = A − Ã. After operating
sparsification process on U and V , the significant values are
still kept, thus the mining utility of A is well preserved and
its entry values are distorted twice at the same time[4].

D. Sparsification Strategy

Three sparsification strategies were proposed in [2], where
the Exponential Threshold Strategy (ETS) showed the best
empirical results. In our work, we design a modified ETS
threshold function named METS. METS, as in (6), defines a
smooth threshold function using an exponential function in
which the threshold value is customized for each column of
the matrix.

Tj =
ε

m

m∑
i=1

|aij | ej·r
−2

(6)

The original ETS threshold formula is modified in METS by
having parameter α redefined. Rather than setting different
value for α every time, we substitute it with a fraction
number r−2, whose magnitude is determined by r, which
is the number of the singular values kept. The computed
threshold value for each column is adjustable with scaling
factor ε. Note that different from ETS, the absolute value of
aij is computed in METS. This is because that during SVD
decomposition, some of the entries in decomposed matrices
U and V might be negative. As a result, the threshold
calculated based on the original ETS formula may be large
for low rank items and small for high rank items. Calculating
threshold value with absolute entry value ensures that larger
threshold values are computed for entry value with higher
column index. Therefore, the most important entries are kept,
whereas more trivial entries will be zero[2].

E. Feature Selection

Feature selection research has found applications in many
fields where large volumes of data present challenges to
effective data analysis and processing. As data evolves to be
ubiquitous and abundant, new challenges arise everyday and
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Fig. 3. Feature Selection Process

expectations of feature selection are also elevated. Feature
selection algorithms have two main components: feature
search and feature subset evaluation.

Feature search strategies have been widely used for
searching feature space. An exhaustive search would cer-
tainly find the optimal solution; however, for a dataset of
N features, a search on 2N possible feature combinations is
obviously computationally impractical. More realistic search
strategies have been studied to make the problems more
tractable. Sequential search methods generally use greedy ap-
proach and result in an O(N2) worst case search. Marill and
Green [5] proposed the sequential backward selection, which
starts with full feature space and sequentially eliminates the
feature that contributes least to the criterion function one at
a time. Whitney [6] introduced sequential forward selection,
which starts with empty set and sequentially adds one feature
at a time. Random search methods such as genetic algorithms
add some randomness in the search procedure to escape from
a local optimum. Individual search methods evaluate each
feature individually and select features that either satisfy the
condition or are top-ranked. In our work, a sequential search
Best First Search (BFS) is used in the experiments.

Feature subset evaluation process as in Figure 3 is
used to identify irrelevant and redundant features. In
classification, the feature evaluation criterions are naturally
related to the labeled classes, thus filter based methods
are often used. In clustering where class labels may be
unavailable, either filter or wrapper approaches are used. As
shown in Figure 4, the wrapper approach wraps the feature
search with learning algorithms whereas filter approach
utilizes the intrinsic property of the data alone to select
feature subspace. Intuitively, wrapper approach may result
in a better performance. However, wrapper methods are
more expensive since they run the learning algorithm for
each candidate feature subset. In our experiments, we use
filter method selecting features for data classification and
employ support vector machine (SVM) for the data utility
measurement.

F. Support Vector Machine

Support Vector Machine (SVM) is chosen in our work as
the data utility metric to assess how much a dataset keeps
the analytical values of data mining techniques after a data
perturbation process. SVM is a method for classification. It
uses a nonlinear mapping to transform the original training
data that are linearly inseparable into a higher dimension. It
then searches for the linear optimal separating hyperplane.
A hyperplane that separates data from different classes can
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always be found by mapping data into a sufficiently high
dimension. The basic SVM process is shown in Figure 5.
Essentially, two hyperplanes H1, H2 with maximum margin
are defined for every class pairs. Any training tuples that fall
on H1 or H2 are called support vectors. Tuples that falls on
or above H1 belong to class A, and tuples that falls on or
below H2 belong to class B. The SVM finds the hyperplane
using support vectors and maximum margins (see Figure 5
for reference).

III. DATA DISTORTION MEASUREMENTS

Data distortion metrics are used to measure the degree of
data distortion. In this paper, we implemented the metrics
that were introduced in the literatures [3,4]. These metrics
are designed to assess the difference between original data A
and its perturbed counterpart Ã in terms of Value Difference
and Rank Difference.

A. Value Difference(VD)

After a data distortion process, the value changes between
original data and perturbed data is measured by (7), where
Frobenius norm is used to quantify matrix A ∈ Rm×n to R.

V D =

∥∥∥A− Ã∥∥∥
F

‖A‖F
(7)

B. Rank Difference(RD)

To measure data position changes, the values in each
column are ranked in an ascending order. The ranks change
between original data and perturbed data after distortion.
Rank Position (RP) and Rank Maintenance (RM) [3,4] are

used to measure the average change of rank for all the data
values and the percentage of elements that keep their ranks
of magnitude in each column after the distortion respectively
[3].

One may infer the content of one feature from its relative
value difference compared with the other attributes. Thus it is
desirable that the order of the average value of each attribute
varies after the data distortion [4]. The rank of a feature is
assigned according to its average value. Change of Rank of
Features (CP) and Maintenance of Rank of Features (CK)
[3,4] are used in our work to indicate the changes of rank of
the average value of the features and assess the percentage of
the features that keep their ranks after the distortion. Table I
listed all the metric formulas. Interested readers might refer
to [3,4] for a detailed description.

C. Compute Ranks(CR)

We now propose a novel algorithm (CRK) to compute
ranks, as shown below.

Algorithm 1 Compute Ranks (CRK)
Require: m× n DataSet S, A[m][n][3]
Ensure: Numerical Data Type

1: for i = 1 to n do
2: for j = 1 to m do
3: A(j, i)[1]← S(j, i)
4: A(j, i)[2]← j
5: end for
6: end for
7: Sort Col(A) by A(, n)[1]
8: for i = 1 to n do
9: for j = 1 to m do

10: A(j, i, 3)← j
11: end for
12: end for
13: Sort Col(A) by A(, n)[2]
14: return A(, )[3]

In the Algorithm 1, A is a multidimensional array, and each
cell can hold up to 3 values. We use notation A(m,n)[x] to
represent each value in A. For example, A(i, j)[k] denotes
for the kth value of the entry in ith row and jth column,
where k∈[1, 3]. Similarly, S(i, j) denotes the data entry in
ith row and jth column of S. If m and n are not specified,
the whole row or the whole column is being considered. For
example, A(, j)[k] denotes for the kth value in jth column
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TABLE I
LIST OF DATA PERTURBATION METRICS

Metric Formula Parameter Description

V D =
‖A−Ā‖

F
‖A‖F

where A ∈ Rm×n

RP =

∑m

i=1

∑n

j=1

∣∣Ranki
j−(Ranki

j)∗
∣∣

m×n
(Rankij)∗ is the rank for perturbed data

RM =

∑m

i=1

∑n

j=1
RKi

j

m×n
RKi

j =

{
1 if Rankij = (Rankij)∗

0 otherwise

CP =

∑m

i=1
|RAVi−(RAVi)

∗|
m

RAVi is the rank of the average value of feature i

CK =

∑m

i=1
CKi

m
CKi =

{
1 if RAV i = (RAVi)

∗

0 otherwise

and A(, n)[k] denotes for the kth value of each entry in all
the columns.

In the steps 1-6 of the Algorithm, the 1st and 2nd values
of entry in A are assigned with the data values in S and
their corresponding row index respectively. We then sort each
column of A in ascending order by the first value in each
entry in step 7. In the steps 8-12 we assign the 3rd value of
each entry in A with the current corresponding row index.
Finally, we sort each column of A in ascending order by the
second value in corresponding entry in step13. Step13 is to
rearrange A back to the original form. The 3rd values in a
newly arranged order after step13 form a nice rank table.

We also define that if two elements in the data table have
the same value, the element with the lower row index to
have the higher rank. Assuming that the data set is an n×n
square matrix, since comparison based sorting algorithms
have lower bound o(nlog(n)) and CRK sorts the data twice
for each column, the estimated time is o(2n2log(n)). Since
it is not growing exponentially, for a large scale data set, this
is an acceptable computational cost.

IV. EXPERIMENTS AND RESULTS

We conduct experiments to test the performance of the
SVM on distorted data produced by feature selection and
data perturbation procedure in different sequence. The results
are compared with outcomes produced by performing SVM
on original data without any distortion. The perturbation
sequence that generates closer result to the result produced
from original data without perturbation is considered pre-
serving better mining utility. The data distortion level and
degree of feature selection are measured and compared with
metrics discussed in Sect.III.

A. Setup and Dataset

We implemented threshold function METS for matrix
sparsification, data distortion metrics described in [3,4] and
the SVD matrix decomposition process. In order to provide
a comprehensive, adequate and convincing empirical result,
we conducted experiments on three real data sets and one
synthetic data set. We download “Wisconsin Breast Cancer
(Diagnostic)” data set, Connectionist Bench (Sonar, Mines
vs. Rocks) data set and Ionosphere Radar data set from
[8,9,14]. The Wisconsin Breast Cancer data set has 32
features, such as diagnosis, texture, smoothness, concavity,
concave points, fractal dimension, etc. These features are
computed from a digitized image of a fine needle aspirate

(FNA) of a breast mass. They describe characteristics of
the cell nuclei present in the image. The target feature is
Diagnosis: “B” = benign, “M” = malignant. The dimension of
the data matrix is 569×32. Connectionist Bench data set has
60 features and 208 instances. This data set contains patterns
obtained by bouncing sonar signals off a metal cylinder or
rocks at various angles and under different conditions. Each
pattern is a set of 60 numbers in the range from 0.0 to 1.0,
which represents the energy within a particular frequency
band integrated over a certain period of time. For the target
feature, the label associated with each record is letter “R”
if the object is rock and “M” if it is a metal cylinder. The
Ionosphere radar data was collected by a system in Goose
Bay, Labrador. This system consists of a phased array of 16
high-frequency antennas with a total transmitted power on
the order of 6.4 kilowatts. The targets were free electrons
in the ionosphere. “Good” radar returns are those showing
evidence of some type of structure in the ionosphere. “Bad”
returns are those that do not, i.e., their signals failed to pass
through the ionosphere. For the synthetic data, we use a
data generator that produces data randomly by producing
a decision list. The decision list consists of rules. Instances
are generated randomly one by one. If decision list fails to
classify the current instance, a new rule according to this
current instance is generated and added to the decision list.
A new rule is rejected and discarded when the total number
of rules reached the maximum parameter setting.

Correlation-based feature evaluator is used to assess the
worthiness of a feature subset by considering the individual
predictive ability of each feature along with the degree of re-
dundancy between them. We choose Best First Search (BFS)
to search the feature space by greedy hill climbing either
augmented with a forward tracking facility or decremented
with a backward searching facility.

B. Experiment 1

In experiment 1, we perform feature selection (Fs) on
original data (Org) without any data distortion. We then use
SVM to generate the correct predict rate. Ten folds cross
validation is set to split the data in 10 approximately equal
parts D1, . . . , D10. Training set Dt

i is obtained by removing
part of Di from D.

The results are shown in Table II, 1st and 2nd rows.
The SVM correct predict rate for both Wisconsin Breast
Cancer (WBC) data set and Ionosphere Radar data set with
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TABLE II
SVM RESULTS

DataSet: WBC Sonar Ionosphere Synthetic Data

exp# F Size SVM Rate F Size SVM Rate F Size SVM Rate F Size SVM Rate
Org 32 97.89% 60 75.96% 33 88.61% 36 78.17%
Fs 12 96.66% 19 77.40% 14 87.75% 5 78.17%
Ep2 12 92.26% 19 76.44% 14 85.76% 5 78.17%
Ep3 7 90.86% 13 75.00% 15 86.32% 4 78.17%

reduced feature space dropped slightly after performing
feature selection method, whereas the same correct predict
rate is generated for synthetic data before and after feature
selection. For ”Sonar” data set, 16 out of 60 features
were selected and the correct predict rate, on the contrary,
increased by 1.44 percent. This is due to the fact that those
irrelevant features which can be regarded as noise are singled
out and discarded with feature selection process. We also
observe that the feature space is reduced significantly for
both data sets after feature selection with only insignificant
effects on correct predict rate, which indicates that both data
sets consist of large proportion of unwanted information that
has very little perturbation values. Applying data distortion
procedure on selected feature space can result in better
performance.

C. Experiment 2

In experiment 2, we carried out the experiment in the
sequence that performing feature selection before data dis-
tortion. After feature selection, the data consist of reduced
feature space that is most relevant to the target class. The se-
lected features are considered to have high data perturbation
value in comparison to the discarded features. We treat data
as a matrix and perform SVD matrix decomposition on it.
We then sparsify the three decomposed matrices U, D and V.
For each singular values σi on the diagonal of decomposed
matrix D, we define the sparsification rule as follows:

σi =

{
σi if σi > 1
0 otherwise (8)

Only the singular values greater than one are kept. In the case
where σi > 1 for all i ∈ [1, r], we define the sparsification
rule as:

σi =

{
σi if σi > 3

5r

∑r
j=1 σj

0 otherwise
(9)

Note that the sparsification rule (9) states that if all singular
values are greater than zero, then we keep approximately
d7/10e of the total number of singular values, i.e., for a
decomposed matrix D with 100 singular values, approx-
imately 70 largest singular values are kept. Furthermore,
since the number of singular values is equal to r which is
the rank of the matrix A, the recomposed matrix A will
be rank of about d7r/10e. For the decomposed matrices
U and V, we use MEST to compute threshold value ζ for
each column. The scaling parameter ε of METS is set to
be 0.6. The entry values in U and V less than ζ are set to
zero, or remain untouched otherwise. To be consistent, all
data sets are perturbed using the same parameter settings.
After sparsification, a perturbed data matrix is recomposed

by multiplications of the sparsified matrices Ũ , D̃ and Ṽ T .
We then assess its distortion levels with the distortion metrics
discussed in Sect. III. The data distortion level results are
shown in Table III, Table IV, Table V, and Table VI, where
NSV stands for number of singular values, and SK stands for
number of singular values kept after sparsification.

TABLE III
WISCONSIN BREAST CANCER DATA

exp#
Level Of Distortion

VD RP RM CP CK SK NSV
Ep2 0.03 140.5 0.022 2.0 0.33 7 12
Ep3 0.33 84.95 0.015 0.0 1.0 15 31

TABLE IV
SONAR DATA

exp#
Level Of Distortion

VD RP RM CP CK SK NSV
Ep2 0.20 32.49 0.022 1.263 0.631 7 19
Ep3 0.18 19.63 0.033 0.308 0.769 22 60

TABLE V
IONOSPHERE DATA

exp#
Level Of Distortion

VD RP RM CP CK SK NSV
Ep2 0.28 37.31 0.018 0.29 0.71 11 14
Ep3 0.19 25.58 0.053 0.65 0.5 33 34

TABLE VI
SYNTHETIC DATA

exp#
Level Of Distortion

VD RP RM CP CK SK NSV
Ep2 0.18 39.81 0.011 0.8 0.4 5 5
Ep3 0.13 34.63 0.009 1.2 0.4 35 36

We can see from results that VD and RP values for all four
data sets appear to be small due to the small data entry
values. The RM values and CK values, on the other hand,
explicitly indicate that these data sets are well perturbed.
From the data utility results shown in Table II, there is
no significant changes in overall correct predict rate. The
interesting thing is that, after feature selection, the predictive
power of SVM for FS is increased compared to the SVM
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results for original data (Org). This demonstrates feature
selection’s ability to rule out trivial values and noises. After
removing those insignificant features, the data are ”purified”
and thus result in better mining performance.

D. Experiment 3

In comparison to experiment 2, we carried out the ex-
periment 3 in a reversed sequence. We instead, distort
original data using SVD first, and then select features on
perturbed data. The parameter settings and configuration for
sparsification and SVM are the same as in the Experiment 1
and Experiment 2 for consistency purpose.

The Figure 6 shows the SVM results for all the data sets in
different experiments. As we can see, There is no significant
differences in SVM predict rates for all experiments. From
the feature selection’s perspective, Experiment 3 has better
results for both data sets. The sizes of selected feature space
for both data sets have evident drops with only insignificant
impacts on SVM results.

E. Summary

By comparing the empirical results, some important and
interesting facts can be observed.

• The results in our experiments indicate that, for classi-
fication purpose, data owner publishing perturbed data
before feature selection results in no significant dif-
ference in correct prediction rate than the other way
around.

• Data distortion process should be done on selected
feature space, since the discarded features by feature
selection procedure have very little perturbation values
and perturbing data with reduced feature space reduces
computational expenses.

• Applying SSVD and performing sparsification process
on small entries of decomposed matrices has potential
to eliminate garbage information and improve mining
qualities.

• From Feature Selection perspective, performing feature
selection process after sparsification process by SSVD
would result in better outcomes, i.e. more irrelevant
features can be identified.

V. CONCLUSION AND FUTURE PLANS

We conclude that performing feature selection before data
perturbation is a better approach than the other way around

for classification purpose, since there is no major distinguish-
able contrast in prediction outcomes and discarded features
have little perturbation values. Furthermore, perturbing a data
with reduced feature space is more cost-effective. On the
other hand, the perturbed data published by data owner also
have little effects on correct prediction rate, but could result
in better feature selection results. Empirical tests are required
for choosing the rank of SVD and setting proper threshold
parameters. How many singular values to keep or how large
a threshold should be set is different from applications to
applications and, of course, is dependent on the nature of
the data to be distorted. In the future, we would like to
design and develop various algorithms or schemes in order
to further exploring how we could use feature selection, in
combined with matrix decomposition techniques, to serve
privacy preserving data mining.
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