

A Verification of the Correspondence between
Design and Implementation Quality Attributes Using

a Hierarchal Quality Model

Raed Shatnawi and Ahmad Alzu’bi

Abstract—software verification is very important activity to
prolong software quality. Many software systems deviate from
their design when implemented. Typically, software engineers
expect a high correspondence between design and
implementation artifacts to ensure the quality of the final
product. In this paper, we validate the use of a quality model to
verify the correspondence between the artifacts of a software
design and implementation. The model uses software metrics to
measure the differences between the design graphical models
(UML diagrams) and the source code for three external quality
attributes: reusability, extendibility and understandability. The
significance of the differences is verified using inferential and
descriptive statistical tests. The proposed model is validated on a
real open-source system that was developed in C++. The
proposed model can be used to investigate the differences in a
software quality either at the system or component levels. Many
differences in quality attributes have been identified in the case
study. The correspondence model has shown many
characteristics; it is flexible, extendible and accepts different
forms of design (UML diagrams) and code notations.

Index Terms—design correspondence, software quality,

QMOOD, quality models.

I- INTRODUCTION

Object-oriented (OO) construction makes people think that
software can be constructed like a building. However,
software systems are intangible and the match between design
and implementation is not guaranteed as in conventional
engineering sense. Therefore software complexity is high and
even when software is well-planned by following a strict
software development process. Software quality assurance is
very important activity to maintain software quality. A
software system should maintain quality attributes such as
extendibility, reusability and understandability.

These quality attributes can be a essential characteristics of
software systems. For example, extendibility is very important
for modular design where classes in a system have the suitable
level of abstraction , are loosely coupled, and show a dynamic
behavior (late binding) via polymorphism. Such characteristics
can be measured using software metrics which give indicators
of the level of the software quality. Software quality
assurance, however, is time-consuming activity especially if
worked at later stages. The correspondence between software
artifacts is considered an indication of the quality assurance.
However, software systems are intangible and few business
requirements are stable [1]. Changes on a software system and
its constituents hinder the consistency between software
artifacts. Changes has ripple effects, i.e., changes in a part of
the system break other parts of the system. Changes are not
necessarily caused by bad practices, rather it might be caused
by complexity. Moreover, systems evolve continuously,
leading to more complexity [2][3]. Many factors can cause a
lack of correspondence such as implementation mismatch (e.g.
by mistake or by purpose), change of requirements, and the
necessity to remove the bugs [4]. The inconsistency between
implementation and design leaves the software unattached to
the planned design. In addition, these changes causes the
software to deviate from the external quality attributes such as
understandability, reusability, and extendibility. Therefore, the
software process should involve a quality assurance activity to
ensure the match between design and implementation.

Software quality can be measured directly and indirectly for
the artifacts of design and code. The object-oriented paradigm
includes internal properties such as inheritance,
polymorphism, and encapsulation. The internal properties
reflect what we can measure directly in the software systems.
Assessing quality by measuring internal properties offers an
objective and an independent view of software quality [5]. OO
paradigm deals with components such as classes, methods,
and attributes. These components are measurable and require
suitable metrics to use for quality assurance purposes. These
internal properties can be used to indirectly assess software
external attributes (i.e. quality factors) such as reusability,
extendibility and understandability. The external quality
attributes measure the product quality based on the viewpoint
in consideration. In fact, we are interested in the properties
and the attributes of the design and the implementation phases.
Both phases are important to produce high quality software.
They form the core of the quality assurance in the early
development phases.

Dr. R. Shatnawi is an assistant professor in the Software

Engineering Department, Jordan University of Science and
Technology, Irbid, Jordan 22110, (phone: 011962777562690,
e-mail: raedamin@just.edu.jo.)

Ahmad Alzu’bi finished his master thesis from the
Computer Science Department, Jordan University of Science
and Technology, Irbid, Jordan 22110, (e-mail:
agalzoubi06@cit.just.edu.jo)

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

The aim of this research is to propose and validate a
hierarchal quality model to verify the correspondence between
OO design models and its implementation. The model uses
metrics to measure the internal properties and external
attributes to achieve this goal. The proposed model is
validated empirically on an open-source system—
Turaya.Crypt—that was developed in C++. Statistical tests
were conducted at several levels (system and subsystems
levels) to provide an evidence of the correspondence. The
proposed model is a Quality Model for Object-Oriented
Design (QMOOD) that was proposed and validated on
commercial software systems [6]. QMOOD has shown that the
properties and the attributes of a software system can be used
to investigate the differences between the design and
implementation artifacts from two perspectives, internal and
external. In addition, software designers expect that the
implementation will conform to their designs. The model
helps them to draw a link between design and implementation
phases to verify their expectations. Furthermore, the model
can be applied to various object-oriented programming
languages such as C++, Java and C#.

The rest of this paper is organized as follows: in Section 2,
we discussed the related work. In Section 3, the verification
methodology and the experiment model are illustrated. In
Section 4, research hypotheses are stated. In Section 5, the
case study and how data is collected are described. In Section
6, the correspondence model is applied on an OO software
system. The conclusions and future trends are discussed in
Section 7.

II- RELATED WORK

Many techniques were developed to assess the conformance
between design and code. These techniques were based on
different measures and models. Dennis et al. [4] have
developed a quantitative technique for the assessment of
correspondence between UML design and its implementation.
Their technique proposed a maximal matching algorithm that
uses three elements: classifier names, metric profiles, and
structural properties of classifiers (i.e. Package information).
Deniss et al [4] used the software reflexion model to visualize
the differences between design and implementation using
implementation relationships as inputs. In another study,
Antoniol et al. [7] have compared different traceability
recovery methods based on different properties. This
technique complements their previous works described in
[8][9], which focused on the traceability procedure itself. Both
design and code were modeled using a Abstract Object
Language (AOL) and then they compared both products to
find inconsistencies by providing a similarity measure. In
another related model, a software reflexion model [10]
technique was developed. The engineer defines a high-level
model of interest, extracts a source model (such as a call graph
or event interactions) from the source code, and defines a
mapping between the two models. A software reflexion model
is then computed. The engineer then look for three kinds of
relationships: convergence, Absence, and divergence. All
these studies about the correspondence between software

design and implementation focus on similarities and
differences between two artifacts. However, in our work we
focus on the deviations in quality factors such as reusability,
extendibility and understandability. We use a hierarchal
quality model to verify the correspondence between design
and implementation artifacts. Our model considers the
relationship between the internal and external characteristics
of a software system. Our model uses object-oriented metrics
to measure the internal properties and external attributes to
characterize the correspondence between the design and
implementation.

III- THE CORRESPONDENCE MODEL

Many software quality models were proposed to verify the
evolution of software quality. McCall has proposed a quality
model to assess software products [11]. The model has a
hierarchical nature of defining software product qualities
based on metrics of measurable components. In 2001, ISO
9126 [12] has developed standards for measuring software
quality that are similar to the McCall’s model [11]) in
complexity, but differ in the definition of model processes.
ISO 9126 classifies software quality into set of structured
characteristics that are decomposed into sub-characteristics.
Dromey built a bottom-up quality model [5] that links and
explores the relationship between internal software
characteristics and external software quality attributes using
the appropriate metrics. Dromey’s model fixes some problems
of earlier models such as the dependency between quality
attributes, and the effect of each attribute on the whole or
some of quality attributes of software. In general, Dromey’s
model identifies the quality in three stages: identify high-level
quality attributes, identify the product’s components with its
quality-carrying properties, and link the quality attributes to
the product properties. QMOOD model [6] extends the
Dromey’s model. It is based on the ISO 9126 six attributes
which are reviewed by QMOOD authors to get a new set of
attributes. Design quality in QMOOD is assessed using six
quality attributes: effectiveness, understandability,
extendibility, reusability, and flexibility. These attributes are
identified based on the author’s experience and empirical
knowledge from working on object-oriented systems.
QMOOD can be used to measure the quality of software when
evolves. Therefore we use the QMOOD in our research to
evaluate the evolution from deign to implementation. The
QMOOD model have been used to assess software quality in
many studies. For example, O’Keeffe and O´Cinneide [13]
have evaluate alternative designs that can produce a better
quality using QMOOD. In another study, Hsueh et al. [14]
have used QMOOD to validate the effectiveness of design
patterns as heuristics for good quality. QMOOD provides an
assessment of the quality of the software artifacts after
evolution, which is consistent with the measurements of the
external quality factors mentioned above; it gives one
measurement for each quality factor.

QMOOD was proposed by Bansiya and Davis [6] to assess
software evolution. QMOOD provides a direct and indirect
measurement of the software quality. Fig. 1 depicts the use of

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

the QMOOD in our effort to find inconsistencies in the quality
of design and code. The QMOOD model is used to determine
the internal and external properties of software components
and their relationships. An OO system has many components
such as classes, objects, and the relationships between them. A
software design and implementation artifacts share many
internal properties such as: inheritance, encapsulation, and
polymorphism. They also share external quality attributes such
as: reusability, extendibility and understandability. These OO
properties and attributes are used in this research to verify
software quality. In this section, we select the OO internal
properties, OO quality attributes, and OO metrics to be used in
the verification model. The selected properties are:
inheritance, encapsulation, polymorphism, abstraction,
coupling, cohesion, messaging, composition, design size, and
complexity. QMOOD model is composed of a combination of
six attributes: reusability, flexibility, understandability,
extendibility, functionality and effectiveness [6]. We select
three attributes, reusability, extendibility, and
understandability to be used in the verification. Table 1 shows
the definitions of these attributes. The verification technique
uses the same OO metrics defined in QMOOD [6]. Table 2
lists the definitions of ten metrics that are defined in QMOOD.

As shown in Fig. 1, the methodology deals with the artifacts
of two phases of the software development life cycle, design
models and source code. Software metrics are collected from
both artifacts. The process of data collection and preparing
information as inputs to the assessment model should be well-
planned to ensure accuracy. In this research, as discussed in
previous sections, the data will be collected for two phases in
software development (design and implementation). The data
is collected for design phase from UML design diagrams and
specification, and from source files written by C++ language
for implementation phase. In the design phase, metrics are
collected from class diagrams that depict the object-oriented
software in a hierarchical view with each class contains
methods and attributes. In the design phase, class diagrams
depict the object-oriented software in a hierarchical view.
These class diagrams were prepared by the designers of
Turaya.Crypt1 software [15]. The collected data and metrics
from class diagrams uses information such as class definition,
methods, and attributes. Also the relationships between class
diagrams give information about class collaborations,
dependencies, inheritance, aggregation, and other properties of
object oriented paradigm. In the implementation phase, the
representative form is the source code which is written in
C++.

In the data collection process, multiple tools were used to
achieve higher accuracy. For instance, more than one tool was
used to collect metrics from the source code: Resource
Standard Metrics (RSM2) and Understand 2.0 tool3.

1http://www.emscb.com/contents/pages/turaya.downloads.htm
2 http://msquaredtechnologies.com
3 http://www.scitools.com/prodcts/understand

Fig. 1. The methodology of the correspondence verification.

TABLE 1

 The definition of external attributes
Attribute Definition

Reusability
Defines how we can reuse a pre-defined component in a
new problem in object-oriented design and
implementation with low effort.

Extendibility
Allows the incorporation of new requirements in design
and implementation with existing properties.

Understandability
Measures the level of ability and easiness of learning the
design and implementation, and it measures the degree
of complexity.

Metrics of design diagrams are collected manually. In our

methodology, to verify the correspondence between design
and implementation through internal and external properties in
each phase, we collect these metrics in both phases. QMOOD
represents the link between the OO internal properties and OO
quality attributes using the formulas that are shown in Table 3.
The internal properties are measured by a set of metrics, i.e.,
every property has a precise mathematical formula. The
metrics are used to generate a measurable link between
internal and external attributes. These formulas show how
object-oriented software’s internal properties (in design and
implementation) influence and affect the three external quality
attributes [16].

IV- RESEARCH HYPOTHESES

To achieve the goals of this work, many hypotheses are
stated for the internal properties and external quality attributes.
The hypotheses for the internal properties were validated and
discussed previously in [17]. We repeat the discussion of the
internal properties in this work to connect it properly with the
external quality factors. The hypotheses are divided into two
groups to verify the correspondence at two levels (system and
subsystem). The following list of hypotheses are validated for
both levels.

The Null hypotheses of the internal properties are:

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

 There is no significant difference in a quality property
(inheritance, polymorphism, encapsulation, abstraction,
cohesion, composition, messaging, complexity, or
coupling) between design and implementation at the
system level.

TABLE 2

OO metrics to measure OO design and implementation properties

METRIC Definition

Average Number of
Ancestors (ANA)

The average number of classes from which
a class inherits information. It is determined
by class inheritance structure in design by
computing the number of classes along all
paths from the root class to other classes in
the inheritance structure. In implementation,
DIT (Depth of Inheritance Tree) metric is
equivalent to ANA metric in design.

Data Access Metric (DAM)

The ratio of the number of private and
protected attributes to the total number of
attributes declared in the class. Range is 0
to 1, and high values of DAM are desired.

Direct Class Coupling
(DCC)

Count the different number of classes that a
class is directly related to. It is determined
through attributes declaration and message
passing in methods.

Cohesion Among Methods
of Class (CAM)

Computes the relatedness among methods
of a class based upon the parameter list of
the methods. The metric is computed using
the summation of the intersections of
parameters of a method with the maximum
independent set of all parameter types in the
class. A metric closed to 1 is preferred
(Range 0 to1).

Measure of Aggregation
(MOA)

Counts the number of data declaration
whose types are user defined classes, and it
is realized by using attribute declaration.

Measure of Functional
Abstraction (MFA)

The ratio of the number of methods
inherited by a class to the total number of
methods of the class (Range 0 to 1).

Number Of Polymorphic
Methods (NOP)

This metric is a count of the methods that
can exhibit polymorphic behavior, and such
methods in C++ are marked as virtual.

Class Interface Size (CIS) The number of public methods in a class.

Number of Methods (NOM)
The number of all methods defined in a
class. It is equivalent to WMC (Chidamber
and Kemerer, 1994).

TABLE 3

Indexes for external attributes.

Index Property/ Attribute Equation

Reusability
-0.25*Coupling + 0.25*Cohesion + 0.5 Messaging +
0.5*Design Size

Extendibility
0.5*Abstraction – 0.5*Coupling + 0.5*Inheritance +
0.5*Polymorphism

Understandability

-0.33*Abstraction+0.33*Encapsulation–
0.33*Coupling + 0.33*Cohesion –
0.33*Polymorphism - 0.33*Complexity – 0.33*
Design Size

 There is no significant difference in a quality property

(inheritance, polymorphism, encapsulation, abstraction,
cohesion, composition, messaging, complexity, or
coupling) between design and implementation at the
subsystem level.

The Null hypotheses of the external attributes are:
 There is no significant difference in an external

attribute (reusability, extendibility, and
understandability) between design and implementation
at the system level.

 There is no significant difference in an external
attribute (reusability, extendibility, and
understandability) between design and implementation
at the subsystem level.

To accept or reject these hypotheses, we use the paired t-test

[18][19]. The paired t-test assesses weather the means of two
groups are statistically different from each other. The
statistical tests are conducted at the 95% confidence level. A
hypothesis is rejected if the statistical difference is significant
(p-value ≤ 0.05). Otherwise, the hypothesis cannot be rejected.
The assumption of the paired t-test is that the observations for
each pair should be made under the same conditions. This is
achieved in our assessment since the data were collected
within the same environment. Also, we have a large number of
classes (N=75), i.e. large degrees of freedom.

V- THE CASE STUDY AND DATA COLLECTION

Our model is validated on an object-oriented system—
Turaya.Crypt (Secure Linux Hard-Disk Encryption). The
system is based on the microkernel-based EMSCB [15]
security kernel. This allows an architecture, Fig. 2, where the
key critical information of a hard-disk encryption system is
stored and handled in a special EMSCB service outside of
Linux. This EMSCB service is the main part of the
Turaya.Crypt project. This system consists of five subsystems
which are listed in Table 4. Both the UML diagrams for the
design phase and the source code files are available on
EMSCB online repository1. Such system is built for reuse in
Linux systems, therefore the system should have attributes
such as reusability, extendibility, and understandability.
Reusability of the system is critical and the design is built for
reuse. The extendibility is required to extend the system into
variants of other operating systems. Finally understandability
is important to integrate this system with other operating
systems. Fig. 2 shows the architecture of the system as
provided in the software specification document.

TABLE 4

Turaya.Crypt subsystems.
Subsystem Name Number

of Classes

LinuxStub 5
HddEncServer 21

Server GUI 19
Launcher 5
LibUtils 25
Total number of classes 75

1 http://svn.emscb.org/svn/emscb/trunk/apps/hddenc

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

Fig. 2. The architecture of the secured Linux hard-disk encryption system

VI- RESULTS AND VERIFICATION

In this section, our verification technique is applied. The
computed measurements of internal properties and external
attributes are described using some descriptive statistics. Then,
they are verified using the paired t-test at two levels: all
classes in the system, and all classes for each subsystem.

A. Descriptive Verification

The descriptive statistics for the Turaya.Crypt system are
shown in Table 5. These statistics can be used to investigate
the main internal properties that the software system has in
design and implementation. These descriptive statistics also
help in conducting how the observed properties change from
design to implementation. The differences between the group
means could be used to depict how the property looks in
design and implementation. For example, the difference in the
inheritance property is 0 (both mean equal 0.06), i.e., there is
no significant change between design and its implementation
for inheritance property. We can conclude that the average of
inheritance tree depth is the same in design and code. Another
case, the difference in the complexity property (NOM metric)
is 1.933; there is a deviation between design and its
implementation for this property. NOM metric represents the
complexity property, so there is a change for the number of
methods in design and code classes. Fig. 3 depicts the
differences between the means for each property. We can
observe that for the metrics’ means there is a deviation
between the design classes and its counterparts in
implementation for the properties: messaging, coupling, and
complexity. The remaining properties show no deviations. But
this descriptive investigation cannot be reliable to decide if
those deviations represent significant differences or not. Fig. 4
depicts the differences for external quality attributes in design
and code. We can observe that there is a deviation between
means of metrics in design and code for the properties:
extendibility and understandability, whereas there are no
noticeable differences in reusability. This observation

indicates that software reusability is sustained whereas
extendibility and understandability degenerate from design.

TABLE 5

Descriptive statistics for all classes of Turaya.Crypt system.

Properties

Mean

Std.
dev Max

Min

Des. Imp. Des. Imp. Des. Imp. Des. Imp.

Abstraction 0.15 0.24 0.36 0.49 1 2 0 0

Encapsulation 0.58 0.49 0.44 0.41 1 1 0 0

Inheritance 0.06 0.06 0.19 0.19 1 1 0 0

Messaging 5.85 6.73 5.67 7.14 35 36 0 0

Polymorphism 0.20 0.15 0.55 0.75 3 5 0 0

Composition 1.48 1.43 1.49 1.44 8 8 0 0

Coupling 1.60 2.75 1.46 3.71 8 23 0 0

Cohesion 0.42 0.47 0.37 0.36 1 1 0 0

Complexity 6.40 8.33 6.11 7.73 35 38 0 0

Average Difference

Abs
tra

ct
io

n

Enc
ap

su
la

tio
n

In
he

rit
an

ce

M
es

sa
gi

ng

Pol
ym

or
ph

ism

Com
po

sit
io

n

Cou
plin

g

Coh
esio

n

Com
ple

xit
y

PROPERTY

Design

Code

Fig. 3. The Means of internal properties.

Fig. 4. The means of quality attributes.

B. Internal Properties Verification

In this section, we discuss the t-test results for the internal
properties. Table 6 summarizes the paired t-test results for all
internal properties. Calculations and results of all properties in

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

Table 6 are computed by SPSS1. The results of inheritance
property (Pair 1) do not appear in the Table 6 because the
standard error of the mean equals zero. So, the statistics
cannot be computed. It indicates that there is a fully
conformance between design and code for inheritance
property. Therefore, inheritance structure is sustained as
presumed in design.

For each null hypothesis, the letter (a) stands for system
level and the letter (s) stands for subsystem level. From Table
6, the decisions for the null hypotheses stated for the internal
properties are:

 H01a, H02a, and H07a hypotheses are accepted, i.e.

there are no significant differences in inheritance,
polymorphism and composition in design and implementation.
We can notice that these properties measure the structure of
the system and indicates a sustainability of the system shape,
.i.e., high level design is sustained.

 H03a, H04a, H05a, H06a, H08a, and H09a

hypotheses are rejected, i.e. there are significant differences in
these properties in design and implementation. The properties
that have deviations are involved in method implementation.
Therefore, low-level design is not sustained in code.

The previous results are for all classes in design and its
implementation. In the following, the calculations are repeated
for the class pairs at the subsystems level. Turaya.Crypt
consists of five subsystems. For each subsystem, the paired t-
test is applied on its classes. Table 7 contains the results of
paired samples t-test on the Server subsystem for the internal
OO properties. Inheritance and polymorphism properties (i.e.
pairs 1 and 2 respectively) do not appear in Table 7. In this
test, statistics cannot be computed. Therefore, there is a full
conformance between the design and the implementation for
inheritance and polymorphism properties

Based on these results, the stated hypotheses of the internal
properties of the server subsystem are:

 H01s, H02s, H07s, and H09s are accepted (i.e. there are

no significant differences). These results are consistent
with the whole system except the complexity is sustained
in code.

 H03s, H04s, H05s, H06s, and H08s are rejected (i.e.
there are significant differences). Again the low level
properties are not consistent with design. Therefore, the
low-level design is not sustained as presumed.

The t-tests have been applied for all other subsystems and

then summarized in Table 8 for conciseness. Table 8
concentrates on the differences, for each OO property,
between the design and the implementation of each subsystem.
If the hypothesis is accepted, it is indicated by () symbol.
Otherwise, the hypothesis is rejected (i.e. sig<0.05). As shown

1 www.spss.com

in Table 8, LinuxStub and Launcher subsystems have the
highest degree of correspondence for their internal properties
in design and code. By reviewing the nature of these
subsystems, each one has only five classes and structs with
simple functionality; these subsystems are manageable, easy
to understand, and easy to transform into code. In contrast, the
Server subsystem is the core of the Turaya.Crypt system it
may not be easy to achieve the conformance when the
developer transforms the design diagrams into code. The
Server subsystem has more coupling than other subsystems.
Therefore, the Server subsystem is less reusable, extendible
and understandable than other subsystems.

TABLE 6

Paired t-test’s results of all internal properties.

Property

Paired Differences
Sig.
(2-

tailed)

Mean
Diff.

Std.
Dev.

Std.
Error

95% CI

Lower Upper

Inheritance - - - - - -

Polymorphism -0.067 0.379 0.044 -0.154 0.021 0.133

Encapsulation 0.095 0.333 0.038 0.019 0.172 0.016

Abstraction -0.093 0.335 0.038 -0.170 -0.016 0.019

Coupling -1.133 3.146 0.363 -1.859 -0.409 0.003

Cohesion -0.052 0.181 .0209 -0.093 -0.011 0.015

Composition 0.053 0.279 .0322 -0.011 0.117 0.103

Messaging -0.880 3.157 0.364 -1.606 -0.154 0.018

Complexity -1.933 3.260 0.376 -2.685 -1.183 0.000

TABLE 7

The results of paired t-test applied on properties of the Server subsystem.

Property

Paired Differences Sig.
(2-

tailed)

Mean
 Diff.

Std.
Dev.

Std.
Error

95% CI

Lower Upper

Abstraction -0.190 0.402 0.087 -0.373 -0.007 0.042

Encapsulation 0.324 0.337 0.073 0.170 0.477 0.000

Coupling -2.809 5.095 1.111 -5.128 -0.490 0.020

Cohesion -0.106 0.217 0.047 -0.205 -0.007 0.036

Composition 0.190 0.512 0.111 -0.042 0.423 0.104

Messaging -1.619 2.132 0.465 -2.589 -0.648 0.002

Complexity -0.666 2.955 0.644 -2.011 0.678 0.314

TABLE 8

Results of Paired t-test applied for OO internal properties of subsystems.

Property LinuxStub Server GUI Launcher LibUtils

Inheritance

Polymorphism

Encapsulation

Abstraction

Coupling

Cohesion

Composition

Messaging

Complexity

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

C. External Attributes Verification

In this section, the same tests are applied for the external
quality attributes. Tests will be applied on two levels as
discussed in the previous section: system’s classes and
subsystem levels. Table 9 summarizes the paired t-test for the
external quality attributes. From Table 9, the decisions for the
hypotheses stated for the external quality attributes are:

 H12c, and H13c are rejected, i.e. there are significant

differences of extendibility, and understandability
respectively.
 H11c: sig > 0.05; Accepted, i.e. there are no

significant differences of reusability.

Two external attributes were affected by the changes made

to the software code. From the mean difference, we can
observe improvements on extendibility and understandability.
The reusability is sustained in the code, whereas
understandability and extendibility are not sustained. The
statistical tests are also calculated for the external quality
attributes of each subsystem. The tests of the hypotheses
related to those attributes are also verified. Table 10
summarizes the results of applying the paired t-test on the
external quality attributes in each subsystem. Again, the
LinuxStub and Launcher have a full correspondence between
the design and the implementation for its external quality
attributes. It is observed that although the hypothesis of
encapsulation is rejected in the class level, it is accepted in
three of five subsystems. This leads to conclude that the
subsystem in design and its package in implementation could
have a high correspondence, but if at a system level they show
low correspondence. The variety of property or attribute
metrics in design and implementation decide if there is a
significant difference between both phases. So, it is a good
strategy to verify the correspondence of OO properties and
attributes at the two levels. This verification discovers where
the software developer has a difficulty in transforming the
design artifacts into source code. The process of adapting
changes, specifying none conformable units, and making
changes will be easier for the future evolutions.

D. Results Discussion

Once all hypotheses are tested for correspondence, the
differences in the software system between design and
implementation can be determined. The results can be used to
specify which parts (i.e. subsystem and classes) of the
software system have differences and their effects on the
software structure and quality needs. There are some
properties and attributes that have an explicit evidence of the
correspondence, but others have a lack of correspondence.
Inheritance, polymorphism, abstraction, composition,
understandability, and extendibility have the highest
correspondence. The remaining properties and attributes have
a relative correspondence. The most suitable and reliable way
to determine why the software have a lack of correspondence
in a certain property or attribute is to examine their

relationships to design and implementation. The differences
and their possible effects on external quality attributes are as
follows:
 Changes in the complexity: Software designers may have

no complete conception of all methods required to achieve the
functionality of the class or the object, and to achieve software
needs. New additional methods (i.e. larger NOM) are
introduced in the implementation but missed in the design.
One reason for adding methods is the change of software (or
part) needs, but this change is not propagated back to the
design. For Turaya.Crypt, there are 145 additional methods in
the implementation (i.e. 66 public, 68 private, and 11
protected) and therefore implementation classes tend to be
more complex than those in the design. The effect of adding or
removing methods depends on their type; adding public
methods increases the accessibility for other classes to those
methods. If public methods are used by another software
component (e.g. class), this causes an additional dependencies
between software components, which increases the probability
of coupling and decreases system understandability. The effect
of new public methods is propagated to the functionality of
classes and the software at all.

 Changes in the encapsulation: Introducing new (i.e.

extra) private and protected attributes (i.e. larger DAM) in
implementation (78 public, 87 private, and 3 protected
attributes) have less impact on the correspondence than public
methods. This is because the private attributes are accessible
only by other members in the class, and the protected
attributes are accessed locally. Encapsulation and information
hiding are considered to be a convenient programming tactic
in object-oriented software; the lack of correspondence for this
OO property in Turaya.Crypt has significant effect on
understandability. The lack of encapsulation violates the
security of classes and unexpected side effects may happen,
which increases the possibility of software defects.

 Changes in the coupling: Having extra public methods

means extra dependencies, which increases the probability that
a class has more coupled classes. Introducing additional
attributes in implementation may cause extra relationships
between classes or methods, especially if they are public
attributes. The introduced methods and attributes in the case
study actually cause these changes in coupling (i.e. larger
DCC). An increase in coupling causes degenerations of the
software reusability, extendibility and understandability.

 Changes in the cohesion: High cohesion is desired in a

object-oriented software. In Turaya.Crypt, introducing extra
related methods causes more relatedness between class
methods in implementation. High coupling in the source code
violates the desired convention to have low coupling (i.e.
CAM is close to 1) and high cohesion. This is caused by
introducing additional attributes in the implementation. A
decrease in a class cohesiveness causes degenerations in
software reusability and extendibility.

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

 Changes in the messaging: Introducing additional public
methods (66 methods) causes more message passing (i.e.
larger CIS) between classes through those methods’ interfaces.
The impact of large messaging in implementation affects the
coupling between classes and their complexity. Deviations in
the class interface have negative effects on software
reusability.

 Changes in abstraction : introducing new subclasses

during software implementation adds more specializations and
does not leave the room for flexibility of change. If an
inheritance hierarchy is long then the complexity of software
increases and becomes harder to understand and maintain.

 Changes in inheritance: changing the inheritance

structure has a major effect on software design. It changes the
shape of software and affects software reusability.

 Changes in polymorphism: The number of children

represents the number of specializations and uses of a class.
Changing parent classes (superclasses) also changes the
polymorphism in the inheritance hierarchy. These changes
could affect the degree of extendibility in a source code.
Therefore, deviations in polymorphism have great effect on
software structure and quality.

 Changes in composition: changes on the software

compositions affect an important characteristic which can
change the whole shape of the software. The aggregation
model is very important to be consistent between design and
code to maintain the level of comprehension and
understandability of the software structure.

VII- CONCLUSIONS AND FUTURE WORK

This research proposed and validated an empirical
verification of consistency between design and code. A quality
model, QMOOD, that connects the internal properties and
external attribute was used to detect the inconsistencies in
code. QMOOD uses OO metrics to directly measure software
properties and indirectly measure software external attributes
such as reusability, extendibility and understandability. The
verification process helps in saving time, effort, and rework
for future evolutions of the system. The model provides a
quantitative indicator to the correspondence between low-level
and high-level design and implementation. The technique uses
internal properties of software (e.g. encapsulation, inheritance,
and coupling) and external quality attributes (e.g. reusability,
and understandability) that are measured using object-oriented
metrics. The model was validated on OO open-source system
developed to work under Linux system. The system shall
support security functions at the kernel level, therefore the
system is part of a large scale system. The studied system
should have characteristics that allow the developers to reuse,
extend and understand it. The reusability and extendibility are
very important to use it for variations of Linux. In addition,
the understandability is vital to achieve these attributes. The

results of application of the proposed model gave indications
of sustainability of the reusability at the system and subsystem
levels, whereas the extendibility and understandability were
not sustained in the code. These results help the developers to
understand the nature of deviations from design and to
understand the level of deviation: low-level or high-level
designs. From our analysis, the core components of software
tend to have high probability of differences in source code
from its design. Their roles in the software increase their
tendency to the change; they maybe edited frequently in
implementation but not in design. The developed verification
model is extendible. Improvements can be done to enhance the
efficiency of this technique. Some of these intended works
are:
 In QMOOD quality model (as part of our calculations),

there is only one object-oriented metric represents a certain
internal property. It maybe more effective if we select more
than one metric to represent the properties in design and
implementation, and this requires more extensive work.
 Our verification model verifies only three high-level

quality attributes. Other quality attributes can be verified in
the same manner. This requires more empirical analysis for
any additional attributes and their relationships to the selected
internal properties and its metrics.
 The verification model has been applied on one case

study because there is a limitation to access full UML
software designs without a discloser agreement with the
software authors. Applying the verification model on many
systems provides more effective results and conclusions about
the correspondence.

REFERENCES

[1]. I. Sommerville, Software Engineering, 8th ed. Addison Wesley, 2006.
[2]. M. Lehman and L. Belady, “Program Evolution: Processes of Software

Change,” London Academic Press, London, 1985.
[3]. S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented

Reengineering Patterns, Morgan Kaufmann, 2002.
[4]. J. Dennis, F. Christian and R. Michel, “Quantitative Techniques for the

Assessment of Correspondence between UML Designs and
Implementations,” Proceedings of the 9th QAOOSE workshop, co-
located with ECOOP, 2005.

[5]. G.R. Dromey. “A Model for Software Product Quality,” In IEEE
Transactions of Software Engineering, vol. 21, no. 2, 1995, pp. 146-162.

[6]. J. Bansiya and C. Davis, “A Hierarchical Model for Quality Assessment
of Object-Oriented Designs,” In IEEE Transactions of Software
Engineering, vol. 28, no. 1, 2002, pp. 4-17.

[7]. G. Antoniol, B. Caprile, A. Potrich and P. Tonella, “Design-code
traceability recovery: selecting the basic linkage properties,” Science of
Computer Programming, vol. 40, no. 2-3, 2001, pp. 213–234.

[8]. G. Antoniol, A. Potrich, P. Tonella and R.Fiutem. “Evolving Object
Oriented Design to Improve Code Traceability,” In Proc. of the
International Workshop on Program Comprehension, Pittsburgh, PA.
1999, pp. 151–160.

[9]. G. Antoniol, B. Caprile, A. Potrich and P. Tonella, “Design-code
traceability for object-oriented systems,” Annals of Software
Engineering, vol. 9, 2000, pp. 35–58.

[10]. C. Murphy, N. David and S. Kevin, “Software reflexion models:
bridging the gap between source and high-level models,” SIGSOFT
Software. Eng. Notes, vol. 20, no.4, 1995, pp.18–28.

[11]. J. McCall, P. Richards and G. Walters, Factors in Software Quality.
Nat’l Tech. Information Service. Springfield, Va. vols. 1, 2, and 3,
AD/A-049-014/015/055, (1977).

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

[12]. ISO, International Organization for Standardization (2001). ISO/IEC
9126-1:2001, Software engineering – Product quality, Part 1: Quality
model. JTC Information technology.

[13]. M. O’Keeffe, M. O´Cinneide, “Search-Based Refactoring for Software
Maintenance,” The Journal of Systems and Software, vol. 81 no. 4, 2008
pp. 502–516.

[14]. N. Hsueh, P. Chu, W. Chu, “A Quantitative Approach for Evaluating the
Quality of Design Patterns,” The Journal of Systems and Software, vol.
81, no. 8, 2008, pp. 1430–1439.

[15]. EMSCB -European Multilaterally Secure Computing Base (2006). Turaya: Secure
Linux Hard-Disk Encryption. Milestone No1. Documentation is available at
http://www.emscb.com/content/pages/turaya.downloads.htm. (Accessed 27/6/2009).

[16]. J. Bansiya (1997). A Hierarchical Model for Quality Assessment of
Object-Oriented Designs. PhD Dissertation, Univ. of Alabama in
Huntsville.

[17]. R. Shatnawi and A. Alzu’bi, “A Quantitative Verification of the
Correspondence between Design and Implementation Artifacts Using
Software Metrics,” Lecture Notes in Engineering and Computer
Science:Proceedings of The International MultiConference of Engineers
and Computer Scientists 2011, IMECS 2011, 16-18 March, 2011, Hong
Kong,, pp. 721-725.

[18]. C. Goulden (1956). Methods of Statistical Analysis, 2nd ed. New York:
Wiley, pp. 50-55.

[19]. E. Pearson and M. Kendall, Studies in the History of Statistics and
Probability, Darien, Conn: Hafner Publishing Company, 1970.

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_06

(Advance online publication: 24 August 2011)

__

