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Abstract—software verification is very important activity to 
prolong software quality. Many software systems deviate from 
their design when implemented. Typically, software engineers 
expect a high correspondence between design and 
implementation artifacts to ensure the quality of the final 
product. In this paper, we validate the use of a quality model to 
verify the correspondence between the artifacts of a software 
design and implementation. The model uses software metrics to 
measure the differences between the design graphical models 
(UML diagrams) and the source code for three external quality 
attributes: reusability, extendibility and understandability. The 
significance of the differences is verified using inferential and 
descriptive statistical tests. The proposed model is validated on a 
real open-source system that was developed in C++. The 
proposed model can be used to investigate the differences in a 
software quality either at the system or component levels. Many 
differences in quality attributes have been identified in the case 
study. The correspondence model has shown many 
characteristics; it is flexible, extendible and accepts different 
forms of design (UML diagrams) and code notations. 
 

Index Terms—design correspondence, software quality, 

QMOOD, quality models. 

 

I- INTRODUCTION 

Object-oriented (OO) construction makes people think that 
software can be constructed like a building. However, 
software systems are intangible and the match between design 
and implementation is not guaranteed as in conventional 
engineering sense. Therefore software complexity is high and 
even when software is well-planned by following a strict 
software development process. Software quality assurance is 
very important activity to maintain software quality. A 
software system should maintain quality attributes such as 
extendibility, reusability and understandability. 
 

  
 

These quality attributes can be a essential characteristics of 
software systems. For example, extendibility is very important 
for modular design where classes in a system have the suitable 
level of abstraction , are loosely coupled, and show a dynamic 
behavior (late binding) via polymorphism. Such characteristics 
can be measured using software metrics which give indicators 
of the level of the software quality. Software quality 
assurance, however, is time-consuming activity especially if 
worked at later stages. The correspondence between software 
artifacts is considered an indication of the quality assurance. 
However, software systems are intangible and few business 
requirements are stable [1]. Changes on a software system and 
its constituents hinder the consistency between software 
artifacts. Changes has ripple effects, i.e., changes in a part of 
the system break other parts of the system. Changes are not 
necessarily caused by bad practices, rather it might be caused 
by complexity. Moreover, systems evolve continuously, 
leading to more complexity [2][3]. Many factors can cause a 
lack of correspondence such as implementation mismatch (e.g. 
by mistake or by purpose), change of requirements, and the 
necessity to remove the bugs [4]. The inconsistency between 
implementation and design leaves the software unattached to 
the planned design. In addition, these changes causes the 
software to deviate from the external quality attributes such as 
understandability, reusability, and extendibility. Therefore, the 
software process should involve a quality assurance activity to 
ensure the match between design and implementation.  

Software quality can be measured directly and indirectly for 
the artifacts of design and code. The object-oriented paradigm 
includes internal properties such as inheritance, 
polymorphism, and encapsulation. The internal properties 
reflect what we can measure directly in the software systems. 
Assessing quality by measuring internal properties offers an 
objective and an independent view of software quality [5]. OO 
paradigm deals with components such as classes, methods, 
and attributes. These components are measurable and require 
suitable metrics to use for quality assurance purposes. These 
internal properties can be used to indirectly assess software 
external attributes (i.e. quality factors) such as reusability, 
extendibility and understandability. The external quality 
attributes measure the product quality based on the viewpoint 
in consideration. In fact, we are interested in the properties 
and the attributes of the design and the implementation phases. 
Both phases are important to produce high quality software. 
They form the core of the quality assurance in the early 
development phases.  
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The aim of this research is to propose and validate a 
hierarchal quality model to verify the correspondence between 
OO design models and its implementation. The model uses 
metrics to measure the internal properties and external 
attributes to achieve this goal. The proposed model is 
validated empirically on an open-source system—
Turaya.Crypt—that was developed in C++. Statistical tests 
were conducted at several levels (system and subsystems 
levels) to provide an evidence of the correspondence. The 
proposed model is a Quality Model for Object-Oriented 
Design (QMOOD) that was proposed and validated on 
commercial software systems [6]. QMOOD has shown that the 
properties and the attributes of a software system can be used 
to investigate the differences between the design and 
implementation artifacts from two perspectives, internal and 
external. In addition, software designers expect that the 
implementation will conform to their designs. The model 
helps them to draw a link between design and implementation 
phases to verify their expectations. Furthermore, the model 
can be applied to various object-oriented programming 
languages such as C++, Java and C#. 

The rest of this paper is organized as follows: in Section 2, 
we discussed the related work. In Section 3, the verification 
methodology and the experiment model are illustrated. In 
Section 4, research hypotheses are stated. In Section 5, the 
case study and how data is collected are described. In Section 
6, the correspondence model is applied on an OO software 
system. The conclusions and future trends are discussed in 
Section 7. 

II- RELATED WORK 

Many techniques were developed to assess the conformance 
between design and code. These techniques were based on 
different measures and models. Dennis et al. [4] have 
developed a quantitative technique for the assessment of 
correspondence between UML design and its implementation. 
Their technique proposed a maximal matching algorithm that 
uses three elements: classifier names, metric profiles, and 
structural properties of classifiers (i.e. Package information). 
Deniss et al [4] used the software reflexion model to visualize 
the differences between design and implementation using 
implementation relationships as inputs. In another study, 
Antoniol et al. [7] have compared different traceability 
recovery methods based on different properties. This 
technique complements their previous works described in 
[8][9], which focused on the traceability procedure itself. Both 
design and code were modeled using a Abstract Object 
Language (AOL) and then they compared both products to 
find inconsistencies by providing a similarity measure. In 
another related model, a software reflexion model [10] 
technique was developed. The engineer defines a high-level 
model of interest, extracts a source model (such as a call graph 
or event interactions) from the source code, and defines a 
mapping between the two models. A software reflexion model 
is then computed. The engineer then look for three kinds of 
relationships: convergence, Absence, and divergence. All 
these studies about the correspondence between software 

design and implementation focus on similarities and 
differences between two artifacts. However, in our work we 
focus on the deviations in quality factors such as reusability, 
extendibility and understandability. We use a hierarchal 
quality model to verify the correspondence between design 
and implementation artifacts. Our model considers the 
relationship between the internal and external characteristics 
of a software system. Our model uses object-oriented metrics 
to measure the internal properties and external attributes to 
characterize the correspondence between the design and 
implementation.  

III- THE CORRESPONDENCE MODEL 

Many software quality models were proposed to verify the 
evolution of software quality. McCall has proposed a quality 
model to assess software products [11]. The model has a 
hierarchical nature of defining software product qualities 
based on metrics of measurable components. In 2001, ISO 
9126 [12] has developed standards for measuring software 
quality that are similar to the McCall’s model [11]) in 
complexity, but differ in the definition of model processes. 
ISO 9126 classifies software quality into set of structured 
characteristics that are decomposed into sub-characteristics. 
Dromey built a bottom-up quality model [5] that links and 
explores the relationship between internal software 
characteristics and external software quality attributes using 
the appropriate metrics. Dromey’s model fixes some problems 
of earlier models such as the dependency between quality 
attributes, and the effect of each attribute on the whole or 
some of quality attributes of software. In general, Dromey’s 
model identifies the quality in three stages: identify high-level 
quality attributes, identify the product’s components with its 
quality-carrying properties, and link the quality attributes to 
the product properties. QMOOD model [6] extends the 
Dromey’s model. It is based on the ISO 9126 six attributes 
which are reviewed by QMOOD authors to get a new set of 
attributes. Design quality in QMOOD is assessed using six 
quality attributes: effectiveness, understandability, 
extendibility, reusability, and flexibility. These attributes are 
identified based on the author’s experience and empirical 
knowledge from working on object-oriented systems. 
QMOOD can be used to measure the quality of software when 
evolves. Therefore we use the QMOOD in our research to 
evaluate the evolution from deign to implementation. The 
QMOOD model have been used to assess software quality in 
many studies. For example, O’Keeffe and O´Cinneide [13] 
have evaluate alternative designs that can produce a better 
quality using QMOOD. In another study, Hsueh et al. [14] 
have used QMOOD to validate the effectiveness of design 
patterns as heuristics for good quality. QMOOD provides an 
assessment of the quality of the software artifacts after 
evolution, which is consistent with the measurements of the 
external quality factors mentioned above; it gives one 
measurement for each quality factor.  

QMOOD was proposed by Bansiya and Davis [6] to assess 
software evolution. QMOOD provides a direct and indirect 
measurement of the software quality. Fig. 1 depicts the use of 
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the QMOOD in our effort to find inconsistencies in the quality 
of design and code. The QMOOD model is used to determine 
the internal and external properties of software components 
and their relationships. An OO system has many components 
such as classes, objects, and the relationships between them. A 
software design and implementation artifacts share many 
internal properties such as: inheritance, encapsulation, and 
polymorphism. They also share external quality attributes such 
as: reusability, extendibility and understandability. These OO 
properties and attributes are used in this research to verify 
software quality. In this section, we select the OO internal 
properties, OO quality attributes, and OO metrics to be used in 
the verification model. The selected properties are: 
inheritance, encapsulation, polymorphism, abstraction, 
coupling, cohesion, messaging, composition, design size, and 
complexity. QMOOD model is composed of a combination of 
six attributes: reusability, flexibility, understandability, 
extendibility, functionality and effectiveness [6]. We select 
three attributes, reusability, extendibility, and 
understandability to be used in the verification. Table 1 shows 
the definitions of these attributes. The verification technique 
uses the same OO metrics defined in QMOOD [6]. Table 2 
lists the definitions of ten metrics that are defined in QMOOD. 

As shown in Fig. 1, the methodology deals with the artifacts 
of two phases of the software development life cycle, design 
models and source code. Software metrics are collected from 
both artifacts. The process of data collection and preparing 
information as inputs to the assessment model should be well-
planned to ensure accuracy. In this research, as discussed in 
previous sections, the data will be collected for two phases in 
software development (design and implementation). The data 
is collected for design phase from UML design diagrams and 
specification, and from source files written by C++ language 
for implementation phase. In the design phase, metrics are 
collected from class diagrams that depict the object-oriented 
software in a hierarchical view with each class contains 
methods and attributes. In the design phase, class diagrams 
depict the object-oriented software in a hierarchical view. 
These class diagrams were prepared by the designers of 
Turaya.Crypt1 software [15]. The collected data and metrics 
from class diagrams uses information such as class definition, 
methods, and attributes. Also the relationships between class 
diagrams give information about class collaborations, 
dependencies, inheritance, aggregation, and other properties of 
object oriented paradigm. In the implementation phase, the 
representative form is the source code which is written in 
C++.   

In the data collection process, multiple tools were used to 
achieve higher accuracy. For instance, more than one tool was 
used to collect metrics from the source code: Resource 
Standard Metrics (RSM2) and Understand 2.0 tool3. 

 

                                                 
1http://www.emscb.com/contents/pages/turaya.downloads.htm 
2 http://msquaredtechnologies.com 
3 http://www.scitools.com/prodcts/understand 

 
Fig. 1. The methodology of the correspondence verification. 

 
TABLE 1 

 The definition of external attributes 
Attribute Definition 

Reusability 
Defines how we can reuse a pre-defined component in a 
new problem in object-oriented design and 
implementation with low effort. 

Extendibility 
Allows the incorporation of new requirements in design 
and implementation with existing properties. 

Understandability 
Measures the level of ability and easiness of learning the 
design and implementation, and it measures the degree 
of complexity. 

 
Metrics of design diagrams are collected manually. In our 

methodology, to verify the correspondence between design 
and implementation through internal and external properties in 
each phase, we collect these metrics in both phases. QMOOD 
represents the link between the OO internal properties and OO 
quality attributes using the formulas that are shown in Table 3. 
The internal properties are measured by a set of metrics, i.e., 
every property has a precise mathematical formula. The 
metrics are used to generate a measurable link between 
internal and external attributes. These formulas show how 
object-oriented software’s internal properties (in design and 
implementation) influence and affect the three external quality 
attributes [16].  

IV- RESEARCH HYPOTHESES 

To achieve the goals of this work, many hypotheses are 
stated for the internal properties and external quality attributes. 
The hypotheses for the internal properties were validated and 
discussed previously in [17]. We repeat the discussion of the 
internal properties in this work to connect it properly with the 
external quality factors. The hypotheses are divided into two 
groups to verify the correspondence at two levels (system and 
subsystem). The following list of hypotheses are validated for 
both levels. 

The Null hypotheses of the internal properties are: 
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 There is no significant difference in a quality property 
(inheritance, polymorphism, encapsulation, abstraction, 
cohesion, composition, messaging, complexity, or 
coupling) between design and implementation at the 
system level. 

 
TABLE 2  

OO metrics to measure OO design and implementation properties 

METRIC Definition 

Average Number of 
Ancestors (ANA) 

The average number of classes from which 
a class inherits information. It is determined 
by class inheritance structure in design by 
computing the number of classes along all 
paths from the root class to other classes in 
the inheritance structure. In implementation, 
DIT (Depth of Inheritance Tree) metric is 
equivalent to ANA metric in design.  

Data Access Metric (DAM) 

The ratio of the number of private and 
protected attributes to the total number of 
attributes declared in the class. Range is 0 
to 1, and high values of DAM are desired. 

Direct Class Coupling 
(DCC) 

Count the different number of classes that a 
class is directly related to. It is determined 
through attributes declaration and message 
passing in methods. 

Cohesion Among Methods 
of Class (CAM) 

Computes the relatedness among methods 
of a class based upon the parameter list of 
the methods. The metric is computed using 
the summation of the intersections of 
parameters of a method with the maximum 
independent set of all parameter types in the 
class. A metric closed to 1 is preferred 
(Range 0 to1). 

Measure of Aggregation 
(MOA) 

Counts the number of data declaration 
whose types are user defined classes, and it 
is realized by using attribute declaration. 

Measure of Functional 
Abstraction (MFA) 

The ratio of the number of methods 
inherited by a class to the total number of 
methods of the class (Range 0 to 1). 

Number Of Polymorphic 
Methods (NOP) 

This metric is a count of the methods that 
can exhibit polymorphic behavior, and such 
methods in C++ are marked as virtual. 

Class Interface Size (CIS) The number of public methods in a class. 

Number of Methods (NOM) 
The number of all methods defined in a 
class. It is equivalent to WMC (Chidamber 
and Kemerer, 1994). 

 
TABLE 3 

Indexes for external attributes. 

Index Property/ Attribute Equation 

Reusability  
-0.25*Coupling + 0.25*Cohesion + 0.5 Messaging + 
0.5*Design Size 

Extendibility 
0.5*Abstraction – 0.5*Coupling + 0.5*Inheritance + 
0.5*Polymorphism 

Understandability 

-0.33*Abstraction+0.33*Encapsulation–
0.33*Coupling + 0.33*Cohesion – 
0.33*Polymorphism - 0.33*Complexity – 0.33* 
Design Size 

 
 There is no significant difference in a quality property 

(inheritance, polymorphism, encapsulation, abstraction, 
cohesion, composition, messaging, complexity, or 
coupling) between design and implementation at the 
subsystem level.  

The Null hypotheses of the external attributes are: 
 There is no significant difference in an external 

attribute (reusability, extendibility, and 
understandability) between design and implementation 
at the system level. 

 There is no significant difference in an external 
attribute (reusability, extendibility, and 
understandability) between design and implementation 
at the subsystem level.  

 
To accept or reject these hypotheses, we use the paired t-test 

[18][19]. The paired t-test assesses weather the means of two 
groups are statistically different from each other. The 
statistical tests are conducted at the 95% confidence level. A 
hypothesis is rejected if the statistical difference is significant 
(p-value ≤ 0.05). Otherwise, the hypothesis cannot be rejected. 
The assumption of the paired t-test is that the observations for 
each pair should be made under the same conditions. This is 
achieved in our assessment since the data were collected 
within the same environment. Also, we have a large number of 
classes (N=75), i.e. large degrees of freedom. 

V- THE CASE STUDY AND DATA COLLECTION 

Our model is validated on an object-oriented system—
Turaya.Crypt (Secure Linux Hard-Disk Encryption). The 
system is based on the microkernel-based EMSCB [15] 
security kernel. This allows an architecture, Fig. 2, where the 
key critical information of a hard-disk encryption system is 
stored and handled in a special EMSCB service outside of 
Linux. This EMSCB service is the main part of the 
Turaya.Crypt project. This system consists of five subsystems 
which are listed in Table 4. Both the UML diagrams for the 
design phase and the source code files are available on 
EMSCB online repository1. Such system is built for reuse in 
Linux systems, therefore the system should have attributes 
such as reusability, extendibility, and understandability. 
Reusability of the system is critical and the design is built for 
reuse. The extendibility is required to extend the system into 
variants of other operating systems. Finally understandability 
is important to integrate this system with other operating 
systems. Fig. 2 shows the architecture of the system as 
provided in the software specification document.  

 
TABLE 4 

Turaya.Crypt subsystems. 
Subsystem Name Number 

of Classes 

LinuxStub 5 
HddEncServer 21 

Server GUI 19 
Launcher 5 
LibUtils 25 
Total number of classes 75 

 

                                                 
1 http://svn.emscb.org/svn/emscb/trunk/apps/hddenc 
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Fig. 2. The architecture of the secured Linux hard-disk encryption system 

VI- RESULTS AND VERIFICATION 

In this section, our verification technique is applied. The 
computed measurements of internal properties and external 
attributes are described using some descriptive statistics. Then, 
they are verified using the paired t-test at two levels: all 
classes in the system, and all classes for each subsystem. 

A. Descriptive Verification 

The descriptive statistics for the Turaya.Crypt system are 
shown in Table 5. These statistics can be used to investigate 
the main internal properties that the software system has in 
design and implementation. These descriptive statistics also 
help in conducting how the observed properties change from 
design to implementation. The differences between the group 
means could be used to depict how the property looks in 
design and implementation. For example, the difference in the 
inheritance property is 0 (both mean equal 0.06), i.e., there is 
no significant change between design and its implementation 
for inheritance property. We can conclude that the average of 
inheritance tree depth is the same in design and code. Another 
case, the difference in the complexity property (NOM metric) 
is 1.933; there is a deviation between design and its 
implementation for this property. NOM metric represents the 
complexity property, so there is a change for the number of 
methods in design and code classes. Fig. 3 depicts the 
differences between the means for each property. We can 
observe that for the metrics’ means there is a deviation 
between the design classes and its counterparts in 
implementation for the properties: messaging, coupling, and 
complexity. The remaining properties show no deviations. But 
this descriptive investigation cannot be reliable to decide if 
those deviations represent significant differences or not. Fig. 4 
depicts the differences for external quality attributes in design 
and code. We can observe that there is a deviation between 
means of metrics in design and code for the properties: 
extendibility and understandability, whereas there are no 
noticeable differences in reusability. This observation 

indicates that software reusability is sustained whereas 
extendibility and understandability degenerate from design.  

 
TABLE 5 

Descriptive statistics for all classes of Turaya.Crypt system. 

Properties 

Mean 
  

Std.  
dev Max 

Min 

Des. Imp. Des. Imp. Des. Imp. Des. Imp. 

Abstraction 0.15 0.24 0.36 0.49 1 2 0 0 

Encapsulation 0.58 0.49 0.44 0.41 1 1 0 0 

Inheritance 0.06 0.06 0.19 0.19 1 1 0 0 

Messaging 5.85 6.73 5.67 7.14 35 36 0 0 

Polymorphism 0.20 0.15 0.55 0.75 3 5 0 0 

Composition 1.48 1.43 1.49 1.44 8 8 0 0 

Coupling 1.60 2.75 1.46 3.71 8 23 0 0 

Cohesion 0.42 0.47 0.37 0.36 1 1 0 0 

Complexity 6.40 8.33 6.11 7.73 35 38 0 0 
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Fig. 3. The Means of internal properties. 

 

 
Fig. 4. The means of quality attributes. 

 

B. Internal Properties Verification 

In this section, we discuss the t-test results for the internal 
properties. Table 6 summarizes the paired t-test results for all 
internal properties. Calculations and results of all properties in 
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Table 6 are computed by SPSS1. The results of inheritance 
property (Pair 1) do not appear in the Table 6 because the 
standard error of the mean equals zero. So, the statistics 
cannot be computed. It indicates that there is a fully 
conformance between design and code for inheritance 
property. Therefore, inheritance structure is sustained as 
presumed in design. 

For each null hypothesis, the letter (a) stands for system 
level and the letter (s) stands for subsystem level. From Table 
6, the decisions for the null hypotheses stated for the internal 
properties are: 

 
 H01a, H02a, and H07a hypotheses are accepted, i.e. 

there are no significant differences in inheritance, 
polymorphism and composition in design and implementation. 
We can notice that these properties measure the structure of 
the system and indicates a sustainability of the system shape, 
.i.e., high level design is sustained. 
 
 H03a, H04a, H05a, H06a, H08a, and H09a 

hypotheses are rejected, i.e. there are significant differences in 
these properties in design and implementation. The properties 
that have deviations are involved in method implementation. 
Therefore, low-level design is not sustained in code. 
 

The previous results are for all classes in design and its 
implementation. In the following, the calculations are repeated 
for the class pairs at the subsystems level. Turaya.Crypt 
consists of five subsystems. For each subsystem, the paired t-
test is applied on its classes. Table 7 contains the results of 
paired samples t-test on the Server subsystem for the internal 
OO properties. Inheritance and polymorphism properties (i.e. 
pairs 1 and 2 respectively) do not appear in Table 7. In this 
test, statistics cannot be computed. Therefore, there is a full 
conformance between the design and the implementation for 
inheritance and polymorphism properties 

Based on these results, the stated hypotheses of the internal 
properties of the server subsystem are: 
 
 H01s, H02s, H07s, and H09s are accepted (i.e. there are 

no significant differences). These results are consistent 
with the whole system except the complexity is sustained 
in code. 

 H03s, H04s, H05s, H06s, and H08s are rejected (i.e. 
there are significant differences). Again the low level 
properties are not consistent with design. Therefore, the 
low-level design is not sustained as presumed. 

 
The t-tests have been applied for all other subsystems and 

then summarized in Table 8 for conciseness. Table 8 
concentrates on the differences, for each OO property, 
between the design and the implementation of each subsystem. 
If the hypothesis is accepted, it is indicated by () symbol. 
Otherwise, the hypothesis is rejected (i.e. sig<0.05). As shown 

                                                 
1 www.spss.com 

in Table 8, LinuxStub and Launcher subsystems have the 
highest degree of correspondence for their internal properties 
in design and code. By reviewing the nature of these 
subsystems, each one has only five classes and structs with 
simple functionality; these subsystems are manageable, easy 
to understand, and easy to transform into code. In contrast, the 
Server subsystem is the core of the Turaya.Crypt system it 
may not be easy to achieve the conformance when the 
developer transforms the design diagrams into code. The 
Server subsystem has more coupling than other subsystems. 
Therefore, the Server subsystem is less reusable, extendible 
and understandable than other subsystems. 

 
TABLE 6 

Paired t-test’s results of all internal properties. 

 
Property  

Paired Differences 
Sig.  
(2-

tailed) 
 
 

Mean 
Diff.  

Std.  
Dev.  

Std.  
Error 

95% CI 

Lower Upper 

Inheritance - - - - - - 

Polymorphism -0.067 0.379 0.044 -0.154 0.021 0.133 

Encapsulation 0.095 0.333 0.038 0.019 0.172 0.016 

Abstraction -0.093 0.335 0.038 -0.170 -0.016 0.019 

Coupling -1.133 3.146 0.363 -1.859 -0.409 0.003 

Cohesion -0.052 0.181 .0209 -0.093 -0.011 0.015 

Composition 0.053 0.279 .0322 -0.011 0.117 0.103 

Messaging -0.880 3.157 0.364 -1.606 -0.154 0.018 

Complexity -1.933 3.260 0.376 -2.685 -1.183 0.000 

 
TABLE 7 

The results of paired t-test applied on properties of the Server subsystem. 

Property 

Paired Differences Sig.  
(2-

tailed) 
  
  

Mean 
 Diff. 

Std.  
Dev. 

Std.  
Error  

95% CI 

Lower Upper 

Abstraction -0.190 0.402 0.087 -0.373 -0.007 0.042 

Encapsulation 0.324 0.337 0.073 0.170 0.477 0.000 

Coupling -2.809 5.095 1.111 -5.128 -0.490 0.020 

Cohesion -0.106 0.217 0.047 -0.205 -0.007 0.036 

Composition 0.190 0.512 0.111 -0.042 0.423 0.104 

Messaging -1.619 2.132 0.465 -2.589 -0.648 0.002 

Complexity -0.666 2.955 0.644 -2.011 0.678 0.314 

 
TABLE 8 

Results of Paired t-test applied for OO internal properties of subsystems. 

Property LinuxStub Server GUI Launcher LibUtils 

Inheritance      

Polymorphism      

Encapsulation      

Abstraction      

Coupling      

Cohesion      

Composition      

Messaging      

Complexity      
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C. External Attributes Verification  

In this section, the same tests are applied for the external 
quality attributes. Tests will be applied on two levels as 
discussed in the previous section: system’s classes and 
subsystem levels. Table 9 summarizes the paired t-test for the 
external quality attributes. From Table 9, the decisions for the 
hypotheses stated for the external quality attributes are: 

 
 H12c, and H13c are rejected, i.e. there are significant 

differences of extendibility, and understandability 
respectively. 
 H11c: sig > 0.05; Accepted, i.e. there are no 

significant differences of reusability. 
 
Two external attributes were affected by the changes made 

to the software code. From the mean difference, we can 
observe improvements on extendibility and understandability. 
The reusability is sustained in the code, whereas 
understandability and extendibility are not sustained. The 
statistical tests are also calculated for the external quality 
attributes of each subsystem. The tests of the hypotheses 
related to those attributes are also verified. Table 10 
summarizes the results of applying the paired t-test on the 
external quality attributes in each subsystem. Again, the 
LinuxStub and Launcher have a full correspondence between 
the design and the implementation for its external quality 
attributes.  It is observed that although the hypothesis of 
encapsulation is rejected in the class level, it is accepted in 
three of five subsystems. This leads to conclude that the 
subsystem in design and its package in implementation could 
have a high correspondence, but if at a system level they show 
low correspondence. The variety of property or attribute 
metrics in design and implementation decide if there is a 
significant difference between both phases. So, it is a good 
strategy to verify the correspondence of OO properties and 
attributes at the two levels. This verification discovers where 
the software developer has a difficulty in transforming the 
design artifacts into source code. The process of adapting 
changes, specifying none conformable units, and making 
changes will be easier for the future evolutions. 

D. Results Discussion 

Once all hypotheses are tested for correspondence, the 
differences in the software system between design and 
implementation can be determined. The results can be used to 
specify which parts (i.e. subsystem and classes) of the 
software system have differences and their effects on the 
software structure and quality needs. There are some 
properties and attributes that have an explicit evidence of the 
correspondence, but others have a lack of correspondence. 
Inheritance, polymorphism, abstraction, composition, 
understandability, and extendibility have the highest 
correspondence. The remaining properties and attributes have 
a relative correspondence. The most suitable and reliable way 
to determine why the software have a lack of correspondence 
in a certain property or attribute is to examine their 

relationships to design and implementation. The differences 
and their possible effects on external quality attributes are as 
follows: 
 Changes in the complexity: Software designers may have 

no complete conception of all methods required to achieve the 
functionality of the class or the object, and to achieve software 
needs. New additional methods (i.e. larger NOM) are 
introduced in the implementation but missed in the design. 
One reason for adding methods is the change of software (or 
part) needs, but this change is not propagated back to the 
design. For Turaya.Crypt, there are 145 additional methods in 
the implementation (i.e. 66 public, 68 private, and 11 
protected) and therefore implementation classes tend to be 
more complex than those in the design. The effect of adding or 
removing methods depends on their type; adding public 
methods increases the accessibility for other classes to those 
methods. If public methods are used by another software 
component (e.g. class), this causes an additional dependencies 
between software components, which increases the probability 
of coupling and decreases system understandability. The effect 
of new public methods is propagated to the functionality of 
classes and the software at all. 

 
 Changes in the encapsulation: Introducing new (i.e. 

extra) private and protected attributes (i.e. larger DAM) in 
implementation (78 public, 87 private, and 3 protected 
attributes) have less impact on the correspondence than public 
methods. This is because the private attributes are accessible 
only by other members in the class, and the protected 
attributes are accessed locally. Encapsulation and information 
hiding are considered to be a convenient programming tactic 
in object-oriented software; the lack of correspondence for this 
OO property in Turaya.Crypt has significant effect on 
understandability. The lack of encapsulation violates the 
security of classes and unexpected side effects may happen, 
which increases the possibility of software defects. 
 
 Changes in the coupling: Having extra public methods 

means extra dependencies, which increases the probability that 
a class has more coupled classes. Introducing additional 
attributes in implementation may cause extra relationships 
between classes or methods, especially if they are public 
attributes. The introduced methods and attributes in the case 
study actually cause these changes in coupling (i.e. larger 
DCC). An increase in coupling causes degenerations of the 
software reusability, extendibility and understandability. 

 
 Changes in the cohesion: High cohesion is desired in a 

object-oriented software. In Turaya.Crypt, introducing extra 
related methods causes more relatedness between class 
methods in implementation. High coupling in the source code 
violates the desired convention to have low coupling (i.e. 
CAM is close to 1) and high cohesion. This is caused by 
introducing additional attributes in the implementation.  A 
decrease in a class cohesiveness causes degenerations in 
software reusability and extendibility.  
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 Changes in the messaging: Introducing additional public 
methods (66 methods) causes more message passing (i.e. 
larger CIS) between classes through those methods’ interfaces. 
The impact of large messaging in implementation affects the 
coupling between classes and their complexity. Deviations in 
the class interface have negative effects on software 
reusability. 

 
 Changes in abstraction : introducing new subclasses 

during software implementation adds more specializations and 
does not leave the room for flexibility of change. If an 
inheritance hierarchy is long then the complexity of software 
increases and becomes harder to understand and maintain. 

 
 Changes in inheritance: changing the inheritance 

structure has a major effect on software design. It changes the 
shape of software and affects software reusability. 

 
 Changes in polymorphism: The number of children 

represents the number of specializations and uses of a class. 
Changing parent classes (superclasses) also changes the 
polymorphism in the inheritance hierarchy. These changes 
could affect the degree of extendibility in a source code. 
Therefore, deviations in polymorphism have great effect on 
software structure and quality. 

 
 Changes in composition: changes on the software 

compositions affect an important characteristic which can 
change the whole shape of the software. The aggregation 
model is very important to be consistent between design and 
code to maintain the level of comprehension and 
understandability of the software structure. 

VII- CONCLUSIONS AND FUTURE WORK 

This research proposed and validated an empirical 
verification of consistency between design and code. A quality 
model, QMOOD, that connects the internal properties and 
external attribute was used to detect the inconsistencies in 
code. QMOOD uses OO metrics to directly measure software 
properties and indirectly measure software external attributes 
such as reusability, extendibility and understandability. The 
verification process helps in saving time, effort, and rework 
for future evolutions of the system. The model provides a 
quantitative indicator to the correspondence between low-level 
and high-level design and implementation. The technique uses 
internal properties of software (e.g. encapsulation, inheritance, 
and coupling) and external quality attributes (e.g. reusability, 
and understandability) that are measured using object-oriented 
metrics. The model was validated on OO open-source system 
developed to work under Linux system. The system shall 
support security functions at the kernel level, therefore the 
system is part of a large scale system. The studied system 
should have characteristics that allow the developers to reuse, 
extend and understand it. The reusability and extendibility are 
very important to use it for variations of Linux. In addition, 
the understandability is vital to achieve these attributes. The 

results of application of the proposed model gave indications 
of sustainability of the reusability at the system and subsystem 
levels, whereas the extendibility and understandability were 
not sustained in the code. These results help the developers to 
understand the nature of deviations from design and to 
understand the level of deviation: low-level or high-level 
designs. From our analysis, the core components of software 
tend to have high probability of differences in source code 
from its design. Their roles in the software increase their 
tendency to the change; they maybe edited frequently in 
implementation but not in design. The developed verification 
model is extendible. Improvements can be done to enhance the 
efficiency of this technique. Some of these intended works 
are: 
 In QMOOD quality model (as part of our calculations), 

there is only one object-oriented metric represents a certain 
internal property. It maybe more effective if we select more 
than one metric to represent the properties in design and 
implementation, and this requires more extensive work. 
 Our verification model verifies only three high-level 

quality attributes. Other quality attributes can be verified in 
the same manner. This requires more empirical analysis for 
any additional attributes and their relationships to the selected 
internal properties and its metrics. 
 The verification model has been applied on one case 

study because there is a limitation to access full UML 
software designs without a discloser agreement with the 
software authors. Applying the verification model on many 
systems provides more effective results and conclusions about 
the correspondence.  
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