
 
 

 

  
Abstract— To develop an automated diabetic retinopathy 

screening system, a detection of lesions in digital fundus 
photographs is needed. Microaneurysms are the first clinical 
sign of diabetic retinopathy. The number of microaneurysms is 
used to indicate the severity of the disease. Early 
microaneurysm detection can help reduce the incidence of 
blindness. This paper investigates a set of optimally adjusted 
morphological operators used for microaneurysm detection on 
non-dilated pupil and low-contrast retinal images. The detected 
microaneurysms are validated by comparing with 
ophthalmologists’ hand-drawn ground-truth. As a result, the 
sensitivity, specificity, precision and accuracy were 81.61, 99.99, 
63.76 and 99.98%, respectively. 

 
Index Terms— diabetic retinopathy, microaneurysms, 

mathematical morphology.  

I. INTRODUCTION 
Diabetic retinopathy (DR) is the commonest cause of 

blindness in people of working age. The global prevalence of 
diabetes is expected to rise to 4.4% of the global population 
by 2030 [1]. An effective treatment to prevent vision loss is 
available, but diabetic retinopathyis asym ptomatic until late 
in the disease process.  The screening of diabetic patients for 
the development of diabetic retinopathy can reduce t he risk 
of blindness by 50% [2]-[4]. With a large number of patients, 
the number of ophthalmologists is not sufficient to cope with 
all patients, especially in rural areas o r if th e workload of 
local ophthalmologists is substantial. The damage caused by 
DR can be prevented if it is treated in early stages. Therefore, 
automated early d etection could limit the severity of the 
disease and assi st ophthalmologists in investigating and 
treating the disease more efficiently.  

The appearance of m icroaneurysms (MA), haemorrhages 
and exudates would represent the degree of DR. MA are focal 
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dilations of retinal capillaries and appear as small round dark 
red dots as shown in Fig. 1(a) and 1(b). Haemorrhages occur 
when blood leaks from the retinal vessels and appear as 
round small red dot s or bl ots indistinguishable from MA. 
Exudates are proteins or l ipids leak from blood vessel and 
appear as yellowish color. It is difficult to detect MA because 
their pixels are similar to that of blood vessels. MA is hard to 
distinguish from noise or background variations because it 
has typically low contrast. In this paper we concent rate on 
MA detection as the earliest clinically localized characteristic 
of DR [5]. Their detection can be used to grade the DR stage 
into four stages: no DR, mild DR, moderate DR, and severe 
DR as shown in Table 1 [6].   

A number of m ethods for M A detection have been 
published. T. Spencer et al. [7],  M.J. Cree et al. [8] and A. 
Frame et al. [9] propose a m athematical morphology 
technique to segment MA within fluorescein angiograms. 
J.H. Hipwell et al. [10] use Gaussian matched filters to retain 
candidate MA for cl assification. Gardner et  al. [11] use a 
back propagation neural network on sub-images (20x20 or 
30x30 pixel windows).  C. Sinthanayothin et al. [12] propose 
an automated system of det ection of di abetic retinopathy 
using recursive region growing segmentation (RRGS). D. 
Usher et al. [13] employ a com bination of R RGS and 
adaptive intensity thresholding to detect candidate lesion 
regions and a neural  network is used for classification. T. 
Walter et al. [14] propose a m ethod based on diameter 
closing and kernel  density estimation for automatic 
classification. B. Dupas et al . [6] use a diameter-closing to 
segment MA candidate regions and k-nearest  neighbours 
(kNN) to classify MA. M. Niemeijer et al. [15] combine prior 
works by T. Spencer et al. [7] and A. Frame et al. [8] with a 
detection system based on pi xel classification and new 
features are proposed. A kNN classifier was used in the final 
step. B. Zhang et al. [1 6] use multi-scale correlation 
coefficients (MSCF). They detect coarse MA candidate using 
MSCF and fine MA using features classification. 

Most techniques mention earlier work on fl uorescein 
angiographies or color images taken on patients with dilated 
pupils in which the MA and other retinal features are clearly 
visible. The examination time and effect on the patient could 
be reduced if the detection system could succeed on im ages 
taken from patients with non-dilated pupils. However, t he 
quality of these images will be worse and it greatly affects the 
performance of those mentioned algorithms.  
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Automatic MA detection on images acquired without pupil 
dilation is investigated in this work with the aim of providing 
decision support in addition to  reducing the workload of 
ophthalmologists.  

In our previ ous work, we have presented methods for 
automatic exudate detection using a mathematical 
morphological technique, a FC M clustering technique, a 
combination of FCM and mathematical morphology, a naive 
Bayesian classifier, a SVMs classifier and a nearest neighbor 
classifier [17]-[20]. A preliminary MA detection system is 
published [21]. To improve the overall ability of DR 
detection system, a MA detection method is proposed. 

 

 
(a) (b) 

Fig. 1. (a) and (b) Retinal image containing microaneurysms. 
 
 

TABLE I  
CRITERIA USED FOR GRADING DIABETIC RETINOPATHY 

DR stage 
  
Grade 0 (no DR) MA = 0 and H =0 
Grade 1 (mild) 1≤ MA ≤ 5 and H =0 
Grade 2 (moderate) 5< MA < 15 or 0< H ≤ 5 
Grade 3 (severe)  MA ≥ 15 or H > 5 

MA = microaneurysm, H = haemorrhage 

II. METHOD 
All digital retinal images taken from patients with 
non-dilated pupils were obt ained from a KOWA-7 
non-mydriatic retinal camera with a 45° field of view. The 
image size is 752 x 500 pixels with 24 bits per pixel.  

The proposed system has three main steps. The 
preprocessing step includes noise removal, contrast 
enhancement and shade correction. Candidate retinal features 
which may cause a false detection, i.e., exudates and vessels 
are detected in the second step. And t he last step is MA 
detection by using a set of optimally adjusted mathematical 
morphology. The overal l procedure of MA detection is 
shown in Fig. 2. 

Retinal Image obtained from
KOWA-7 non-mydriatic 

retina camera

Apply median filter on G band

Apply contrast enhancement 

Apply shade correction

Apply extended-minima transform

Exudate detection and elimination

Vessel detection and elimination

Result image = object which 
smaller or equal to 10 pixels

Clinical Validation

Fig. 2. Procedure of microaneurysm detection. 
 

A. Preprocessing 
Retinal images used in this experiment have poor contrast, 

noise and non-uniform illumination. A preprocessing step is 
needed to improve the image quality prior to the detection 
step. The green plane (fg) of the original image in RGB plane 
is used as red lesions such as MA and blood vessels have the 
highest contrast with the background in this color plane [22]. 
This is shown in Fig.3, which represents image in original 
RGB image, red plane, green plane and blue plane, 
respectively. A median filtering operation is applied on fg to 
attenuate the noise before a C ontrast Limited Adaptive 
Histogram Equalization was appl ied for cont rast 
enhancement. A dark region (including noise and MAs) may 
dominate after contrast enhancement. To account for this a 
shade correction algorithm is applied to the green band in 
order to remove slow background vari ation due t o 
non-uniform illumination. An illumination variation involves 
only low spatial frequencies. A shade corrected im age is 
accomplished by subtracting the image with a low pass filter, 
in this experiment, the result of a 35x35 median filter applied 
to the image to correct for background variation. 

The green band image after removal of noise and contrast 
enhancement, and the shade corrected image (fsc) are shown 
in Fig. 4 (a) and 4 (b). C loseups MA are shown in Fig. 5 (a) 
through Fig. 5 (d). 

 

(a) (b) 

(c) (d) 
Fig. 3. Retinal images. (a) Original RGB plane (b) red plane (c) green plane 
(d) blue plane. 
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(a) (b) 

Fig. 4. Preprocessing steps. (a) Green band after contrast enhancement (b) 
Shade corrected image. 
 

 
(a) (b) 

 
(c) (d) 

 
Fig. 5. Closeups of microaneurysm (a) Original RGB Image. (b) Green band. 
(c) Green band after contrast enhancement. (d) Shade corrected image. 

B. Exudate Detection 
MA detection is our m ain purpose, however we have t o 

remove bright lesions such as exudat es prior to the process 
because when they lie close together, small islands are 
formed between them and they can be wrongl y detected as 
MAs. Mathematical morphological methods (proposed in our 
previous work [16]) was used due to its computationally low 
cost. High contrast vessels are first eliminated from intensity 
image, and then the resulting image is th resholded. 
Morphological reconstruction is used for exudat e detection. 
Examples of exudat e detection results overlaid on the 
original image are shown in Fig. 6. 

 

 
  

Fig. 6. Exudate detection results shown overlaid on original images. 
 

C. Vessel Detection 

Vessels are another elem ent in the image that needs to be 
removed prior the MA detection since MA and vessels both 
appear in a reddish color and MAs cannot occur on vessels. 
They appear as isolated pa tterns and disconnected from the 
vessels.  

To detect vessels, two intermediate images are generated. 
The first image is obtained using a closing operator (φ) on the 

shade corrected image (fsc) to eliminate the details and dark 
patterns (vessels) from  the im age.  A flat disc-shaped 
structuring element with a fixed radius of ten (B1) is used. A 
second image is obtained by filled-in small black dots on the 
shade corrected image (fsc) with diameters smaller than size 
of MA in order to remove small red objects and fill holes in 
the vessel. The diameter of a M A lies between 10 and 100 
μm, but it always smaller then a diameter λ < 125 μm [6]. In 
our image set of size 752 x 500 pi xels, the size of a MA is 
about 10 pixels. Vessel candidate areas are obt ained by the 
difference between the first image and the second image from 
the previous step. The closing image and filled in image are 
shown in Fig. 7 (a) and Fig. 7 (b). 
 

1( ) ( ) ( )B
vesselDiff sc scf f fill fφ= −             (1) 

where B1 is the morphological structuring element. 
 

The candidate vessels are then binarized by thresholding at 
grey level α1 as in (2). Let T = {tmin,…,tmax} be an ordered set 
of grey levels, we have 

 

1 max[ , ] ( )vesselT t vesselDifff T fα=                             (2) 

As a result shown in Fig. 7 (c), there are som e small 
isolated objects left. The objects which have size smaller than 
10 pixels (size of MA, as mentioned above) are then removed 
from fvesselT. The result is shown in Fig. 7 (d). 

 

D. Microaneurysm Detection 
Retinal MAs are fo cal dilatations of retinal capillaries. 

They are discrete, localized saccular distensions of the 
weakened capillary walls and appear as small round dark red 
dots on the retinal surface.  

According to the medical definition of MA [5], [6], it is a 
reddish, circular pattern with a diameter λ < 125 μm. We aim 
to find an MA by its diameter and isolated connected red 
pixels with a const ant intensity value, and whose external 
boundary pixels all have a higher value; in the green plane of 
a RGB image. 

A preprocessed retinal image is used as preliminary image 
for MA detection. The ext ended-minima transform is the 
regional minima of h-minima transform [23]. It is applied to 
the fsc image. This transformation is a thresholding technique 
that brings most of t he valleys to zero. The h-minima 
transform suppresses al l the minima in the intensity image 
whose depth is less than or equal to a predefined threshold. 
The output image fE is a binary image with the white pixels 
represent the regional minima in the original image. Regional 
minima are connected pixels with the same intensity value, 
whose external boundary pixels all have a higher value. The 
output is a binary image. The extended minima transform on 
the fsc image with threshold value α2 is shown in (3). 

 

2( , )E scf EM f α=                                          (3) 

where  fE is the output image. 
 
 The selection of t hreshold is very important where t he 
higher value of α2 will lower the number of regions and a 
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lower value of α2 will raise the number of regions. The result 
is shown in Fig. 7 (e).  A slight change in threshold value can 
cause the method either over-segment or under-segment the 
MA. The previ ous detected exudates and vessels were 
removed from the resulting image. The result is shown in Fig. 
7 (f). 
 

_VE removed E vesselT exf f f f= − −                           (4) 

where  fex is the exudate detected image. 
 
Then the objects with a size smaller or equal to 10 pixels are 
selected and classified as MAs. The result is shown in Fig. 7 
(g). 
  There are parameters used in this experim ent. They are, 
namely, the size of structuring elem ent (B1) used for the 
closing operation, threshold values (α1 and α2,).  α1 was 
calculated automatically using the Otsu algorithm. B1 and α2 
were varied and tested in order t o assess t he algorithm 
performance in an experiment. Each parameter was varied as 
follows: 

 
B1 ∈ {7, 9, 10, 11, 12} 
α2 ∈ {0.01, 0.03, 0.05, 0.07, 0.09} 
 

All parameters in this proposed method are set using the 
values that gave highest sensitivity and specificity in the 
previous experiment. The experiment showed that the value 
of B1=10 and α2 = 0.05 gave a good bal ance between the 
number of detected MAs and the number of detected spurious 
objects.   

 

III. RESULTS 
Data sets of 45 non-dilated retinal images are tested on an 

AMD Athlon 1.25 GHz PC  using the MATLAB program. 
Each image took approximately 6 m inutes to process 
(included exudates detection). Detected MAs are compared 
with the ophthalmologists’ hand-drawn ground-truth images 
for verification. In order to facilitate the experts to produce a 
ground-truth image, a fi rst draft of ground-t ruth image is 
created by us. We marked the very obvious MA pixels which 
are normally red dot  areas, pi xel by pixel, using a photo 
manipulation program with one colour. Then, this first draft 
image is shown to two expert ophthalmologists together with 
the original image. The opht halmologists then made some 
changes by adding some missing MA pixels and/or removing 
some misunderstood non-MA pixels until it is agreed by both 
experts.  

Sensitivity, specificity, precision and accuracy are chosen 
as measurement of the accuracy of the algorithm s. All 
measures can be calculated based on four values, namely the 
true positive (TP) rate, the false positive (FP) rate, th e false 
negative (FN) rate, an d the true negative (TN) rate. These 
values are defined in Table 2. Sensitivity is the percentage of 
the actual MA pixels that are de tected, and specificity is the 
percentage of non-MA pixels that are correctly classified as 
non-MA pixels. Precision is the percentage of detected pixels 
that are actually MAs. Accur acy is th e overall per-pixel 
success rate o f the classifier.  Th e sensitivity, sensitivity, 
precision and accuracy are com puted using (5) though (8), 
respectively. 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

  

 

(g) (h)  
Fig. 7. Microaneurysm detection (a) Image after closing (b) F illed-in image (c) Difference image (d) Image after removal of object smaller than the size of 
microaneurysm from image (c) (e) Extended-minima transform image (f) Image after removal of vessels (g) Detected microaneurysms  (h) Microaneurysms 
superimposed on original image. 
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TABLE II  
PIXEL BASED EVALUATION 

 
Test Result 

Disease Status 

Present Absent 
Positive True Positive (TP) False Positive (FP) 
Negative False Negative (FN) True Negative (TN) 

 
TPSensitivity

TP FN
=

+
 (5) 

 
 

 
TNSpecificity

TN FP
=

+
 (6) 

 
 

  
TPPrecision

TP FP
=

+
 (7) 

 
 
 

TP TNAccuracy
TP FP FN TN

+
=

+ + +
 (8) 

 
 
Sensitivity, specificity, precision and accuracy in this 

experiment are 81.61, 99.99, 63.76 and 99.98%, respectively. 
The numbers of MAs are also counted for automated grading 
of the severity of the DR. Example resulting images of MA 
detection are shown in Fig. 8.  

VI. CONCLUSION AND DISCUSSION 
Our work concentrates on microaneurysm detection from 

diabetic retinopathy patient’s non-dilated pupil digital 
images. It is an ext ension to our previously proposed 
automated DR screening system. The system intends to help 
the ophthalmologists in the diabetic retinopathy screening 
process to detect sym ptoms faster and m ore easily. The 
algorithm could detect MAs on very poor quality images.  

There are some incorrect MA detections which are caused 
by the artifacts, too small MA, too blurred MA, faint blood 
vessels which cannot detected/removed or MA that appear 
very faint. There are som e missing MAs located next to or 
nearby blood vessels which are removed as wrongly detected 
as blood vessels. They are also faint blood vessels which are 
not removed in vessel detection step; MA could be wrongly 
detected on those vessels. For example, as shown i n Fig.9 
faint blood vessels can be i ncorrectly detected as MA. The 
results of M A detection depend on t he success of vessel 
detection. A main weakness of the algorithm arises from the 
fact that the algorithm depends on vessel  detection. This 
indicates the further necessity of improving the robustness of 
this task. Hemorrhages detection could be also added to the 
system in order to increase its ability to verify the degree of 
diabetic retinopathy. 

Although further developm ent of this algorithm  is still 
required, the results are satisfyin g. The outcome is quite 
successful with sensitivity and specificity of 81.61% and 
99.99%, respectively. The sy stem also provided 
ophthalmologists with the number of M As for grading the 
DR stage. In order t o apply to a clinical application, the 
proposed method will be combined with an exudate detection 
system. 

 

  

 
  

 
  

 
 

 
(a) (b) 

Fig. 8. Example of microaneurysm detection results. (a) Original images. (b) 
Detected results.  

 

 
   
Fig. 9. Example of false microaneurysm detection on faint blood vessels.  
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TABLE III  
THE MICROANEURYSMS DETECTION RESULTS OF DISEASED RETINAL IMAGES 

24 bit images TP TN FP FN Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)
Image1 51 4 4 375941 92.73 100.00 92.73 99.99
Image2 56 7 0 375937 100.00 100.00 88.89 99.99
Image3 60 6 0 375934 100.00 100.00 90.91 99.98
Image4 38 40 15 375907 71.70 99.99 48.72 99.99
Image5 181 143 23 375653 88.73 99.96 55.86 99.95
Image6 127 64 6 375803 95.49 99.98 66.49 99.96
Image7 65 110 8 375817 89.04 99.97 37.14 99.98
Image8 39 10 0 375951 100.00 100.00 79.59 99.99
Image9 275 28 39 375658 87.58 99.99 90.76 99.92
Image10 25 82 0 375893 100.00 99.98 23.36 99.99
Image11 120 0 6 375874 95.24 100.00 100.00 99.97
Image12 9 23 8 375960 52.94 99.99 28.13 100.00
Image13 28 41 12 375919 70.00 99.99 40.58 99.99
Image14 57 26 14 375903 80.28 99.99 68.67 99.98
Image15 51 0 18 375931 73.91 100.00 100.00 99.98
Image16 77 49 25 375849 75.49 99.99 61.11 99.97
Image17 19 122 13 375846 59.38 99.97 13.48 99.99
Image18 44 9 6 375941 88.00 100.00 83.02 99.99
Image19 31 142 4 375823 88.57 99.96 17.92 99.99
Image20 38 25 2 375935 95.00 99.99 60.32 99.99
Image21 31 0 30 375939 50.82 100.00 100.00 99.98
Image22 72 49 9 375870 88.89 99.99 59.50 99.98
Image23 48 70 10 375872 82.76 99.98 40.68 99.98
Image24 77 17 9 375897 89.53 100.00 81.91 99.98
Image25 48 45 27 375880 64.00 99.99 51.61 99.98
Image26 37 195 20 375748 64.91 99.95 15.95 99.98
Image27 57 110 12 375821 82.61 99.97 34.13 99.98
Image28 53 20 28 375899 65.43 99.99 72.60. 99.98
Image29 81 142 30 375747 72.97 99.96 36.32 99.97
Image30 76 56 0 375868 100.00 99.99 57.58 99.98
Image31 159 73 44 375724 78.33 99.98 68.53 99.95
Image32 40 25 31 375904 56.34 99.99 61.54 99.98
Image33 216 95 14 375675 93.91 99.97 69.45 99.94
Image34 255 102 24 375619 91.40 99.97 71.43 99.93
Image35 139 90 15 375756 90.26 99.98 60.70 99.96
Image36 123 22 0 375855 100.00 99.99 84.83 99.97
Image37 7 2 6 375985 53.85 100.00 77.78 100.00
Image38 19 0 0 375981 100.00 100.00 100.00 99.99
Image39 14 5 5 375976 73.68 100.00 73.68 99.99
Image40 99 20 15 375866 86.84 99.99 83.19 99.97
Image41 128 69 6 375797 95.52 99.98 64.97 99.96
Image42 79 40 12 375869 86.81 99.99 66.39 99.98
Image43 65 43 30 375862 68.42 99.99 60.19 99.97
Image44 35 19 36 375910 49.30 99.99 64.81 99.98
Image45 38 40 15 375907 71.70 99.99 48.72 99.99

AVERAGE 81.61 99.99 63.76 99.98
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