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Abstract—The goal of this paper is to establish a link between
existing autofocus methodology and computational aesthetics.
Many existing autofocus methods are based on a sharpness
function, a real-valued estimate of the image’s sharpness. The
intensity-based sharpness function has already been applied
in computational aesthetics before. In this paper we apply a
wider range of sharpness functions for aesthetics measurement
in photographic images. Additionally, we use the full two-
dimensional result of the sharpness function in a visualization
technique we term “sublimation.”

Index Terms—image quality, image manipulation, sharpness
function, photography, computational aesthetics, image subli-
mation

I. I NTRODUCTION

A N image obtained with an optical device, such as a
photocamera, a telescope or a microscope, depends on

a given object’s geometry, known as theobject function,
and the optical devicecontrol variables(for instance,defo-
cus). The method of automatic defocus determination, such
that the recorded image isin-focus, is known asautofocus
method. Many existing autofocus methods are based on a
sharpness function, a real-valued estimate of the image’s
sharpness.

Aestheticsis the branch of philosophy that deals with the
nature and expression of beauty [1]. Certain visual properties,
such as sharpness, contrast, light and colorfulness make a
photograph more beautiful [2], [3]. A number of issues make
the measurement of aesthetics in pictures or photographs
extremely subjective. In [3] an example of an automated
aesthetics measurement has been demonstrated for a large
set of photographic images. In particular the aesthetics has
been measured by pixel intensity average, which is known in
autofocus applications asintensity-based sharpness function.

The goal of this paper is to establish a link between
existing autofocus methodology and computational aesthet-
ics. The sharpness functions we are applying for the aes-
thetics measurement are the generalized versions of the
intensity-based sharpness function. In addition to gradient-
based sharpness function investigated earlier in [4], we intro-
duce the variance-based and the histogram-based sharpness
functions. These functions are experimentally applied for
the computations of aesthetics in photographic images. Two
various applications within the field are considered, and a
sublimation operation is defined and tested.

The paper is set up as follows: Section II describes the
general image formation model. This model is used for
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Fig. 1. The image formation model.

the sharpness function definition and analysis of their basic
properties. Sections III, IV, V introduce derivative-based,
variance-based and histogram-based sharpness functions cor-
respondingly. Section VI presents the results of numerical
experiments: in Subsection VI-A we use as experimental data
the photographs collected from open websites with statistical
system of quality evaluation; in Subsection VI-B photographs
taken by one photographer within one photoshoot are used.
Section VII defines thesublimation transformation, which
enhances those sections of an image determined by the
sharpness function to be important. Section VIII provides
discussions and future recommendations.

II. M ODELLING

In this section we provide a brief explanation of the model
that has been used in the previous research on the autofocus
methods [4], [5]. The Fourier transform̂f of a functionf ∈
Ł2(R) is defined as follows

f̂(ω) =

∫ ∞

−∞

f(x)e−iωxdx,

wherex is a spatial coordinateandω is a frequency coordi-
nate. The vector of spatial coordinates in two-dimensions is
denoted byx := (x, y)T ∈ R

2. For a vectorw := (wi)
N
i=1

we define‖w‖ := (
∑

i |wi|
2)1/2. TheLp-norm of a function

is defined as

‖f‖Lp
:=

(

∫∫ ∞

−∞

|f |pdx
)1/p

, p = 1, 2, 3, . . .

andLp(R
2) is the space of functions with finiteLp-norm.

A. Linear image formation model

Images for which our sharpness function will be computed
are the output imagesf ∈ L2(R

2) of the so-calledimage
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formation modelrepresented by Figure 1. The object’s ge-
ometry (or theobject function) is denoted byψ. The filter
̺σ describes thepoint spread functionof an optical device.

The output of the̺σ filter is denoted byf0 and is
often post-processed by a PC. We assume that in such post-

processing a Gaussian filtergα(x) := 1
2πα2 e

−
‖x‖2

2α2 is applied
to the imagef0. Filtering with a Gaussian kernel is often
used for denoising purposes, which is an easy alternative to
more advanced techniques [6], [7], [8]. It has been shown
that the control variableα is useful not only for denoising
the imagef0; it also influences the approximation error when
the sharpness function is replaced by a quadratic polynomial
in an autofocus application [5].

We apply thelinear image formation model, which is often
used for different optical devices [9]. This implies that the
occurring filters are linear and space invariant which can
easily be described by means ofconvolutionproducts

f0 := ψ ∗ ̺σ, f := f0 ∗ gα. (1)

If no post-processing is applied,α = 0, andf = f0.
The point spread function can accurately be approximated

by a Lévi stable densityfunction for a wide class of optical
devices [10], [11]. The Lévi stable density function is im-
plicitly defined via its Fourier transform in one-dimension as
follows

ˆ̺σ(ω) := e−σ2ω2β/2, 0 < β ≤ 1. (2)

The parameterβ in (2) depends on the optical device. If
β = 1 in (2), the point spread function is a Gaussian function.
The parameterσ in (2) is known as thewidth of the point
spread function and has a linear relation with the optical
device defocus.

B. Discrete images

In real-world applications the imagef is always camera-
recorded, and therefore discrete and bounded. Assume for
X,Y ∈ R the support off is

X := [0, X ] × [0, Y ],

i.e., f(x) = 0 for x outside ofX. For i = 1, . . . , N , j =
1, . . . ,M and∆x := X

N , ∆y := X
M , we define the grid points

xi :=
∆x

2
+ (i− 1)∆x, yi :=

∆y

2
+ (j − 1)∆y.

Thus for the defaultX = Y = 1, ∆x = 1
N ,∆y = 1

M . In
practice∆x is often equal to∆y. The discrete images can
be represented by a matrix

F := (fi,j)
N
i,j=1, (3)

of the image pixel values

fi,j := f(xi, yj). (4)

We use themid-point rule for approximation of image
integration. Hence the integration of the image with compact
support over the image domain in two-dimension is approx-
imated by

∫

X

f(x)dx
.
= ∆x∆y

N,M
∑

i,j

f(xi, yj)

Fig. 2. Sharpness function reaches its optimum at the in-focus image. The
goal of the autofocus procedure is to find the value of the defocus.

=
∆x=1/N,∆y=1/M

1

NM

N,M
∑

i,j=1

fi,j , (5)

similarly

‖f‖Lp

.
=

( 1

NM

N,M
∑

i,j=1

fp
i,j

)1/p
.

For the given discrete image the sampling periods∆x, ∆y
are fixed. Thus considering higher order integration will not
decrease the integration error.

Below we discuss the numerical differentiation of the
discrete images. By dropping the limit in the definition of
the differential operator

∂

∂x
f(x) := lim

ǫ→0

f(x+ ǫ, y) − f(x, y)

ǫ

and keepingǫ fixed at a distance ofk ∈ N pixels, we obtain
a finite differenceapproximation at(xi, yj)

∂

∂x
f(xi, yj)

.
=

1

(k∆x)
(fi+k,j − fi,j). (6)

We refer tok as thepixel differenceparameter for the discrete
image derivatives.

Two alternative derivative interpolation solutions appear
commonly in the literature: fitting polynomial approxima-
tions [12] and smoothing with a filter, for instance a Gaussian
function [13]

∂

∂x
f(x)

.
= Dx :=

∂

∂x
(f ∗ g) = f ∗

∂

∂x
g. (7)

C. Sharpness functions

Many existingautofocusmethods are based on asharpness
function S : L2(R

2) → R, a real-valued estimate of the
image’s sharpness. In the literature a number of sharpness
functions have been considered and discussed for different
optical devices, such as photographic and video cameras [14],
[15], telescopes [16] and microscopes [17], [18], [19]. In
autofocus application for athrough-focus seriesof images
the sharpness function is computed for different values of
d given a fixed value ofα. A typical sharpness function
shape application is shown in Figure 2. The image at the
ideal defocus values is sharp orin-focuswhen the sharpness
function reaches its optimum. An image away from the
ideal defocus value is calledout-of-focus. An ideal sharp-
ness functionsshould have a single optimum (maximum or
minimum) at the in-focus image. The sharpness functions
are also used for other studies, for instance thehysteresis
in electromagnetic lenses [20] and reconstructions of three-
dimensional microscopic objects [8], [9].
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(a) In-focus image. (b) Out-of-focus image.

(c) In-focus image derivative. (d) Out-of-focus image deriva-
tive.

Fig. 3. In-focus and out-of-focus images, and their derivatives.

For the aesthetics study in photographic images in [3]
within a set of methods the intensity-based sharpness func-
tion is applied

S int[f ] := ‖f‖2
L2
. (8)

In this paper we consider an extended family of sharpness
functions for the computational aesthetics study.

III. D ERIVATIVE -BASED SHARPNESS FUNCTION

The advantage of using derivative-based sharpness func-
tions has been shown experimentally for various optical
devices [9], [18], [19], [21]. The use of these functions used
to be heuristic. Usually they are based on the assumption
that the in-focus image has a larger difference between
neighbouringpixels than theout-of-focusimage. Figure 3
shows in-focus and out-of-focus images and their numeri-
cally computed derivatives, which are images as well. We
can observe that the derivative of the in-focus image (Figure
3(c)) has stronger intensity (higher pixel values) than the
derivative of the out-of-focus image (Figure 3(d)).

The derivative-based sharpness function is defined (cf.[15],
[21])

S[f ] := ‖
∂n

∂xn
f‖p

Lp
, n ∈ Z

+, p = 1, 2. (9)

For n = 0 in (9) we obtain the intensity-based sharpness
function (8). In different literature sources different norms
are applied to the image derivatives for autofocus purposes,
i.e. p = 1 in [22], [23] or p = 2 in [14], [16]. We mostly
focus onp = 2 in (9). It will be explained below thatL2-
norm derivative-based sharpness functions are less sensitive
to noisethanL1-norm based. For the linear image formation

model (1), we have therefore

S = ‖
∂n

∂xn
(ψ ∗ ̺σ ∗ gα)‖2

L2
. (10)

Property 1. The sharpness function (10) can be expressed
as follows

S(σ) =
1

2π

∫ ∞

−∞

ω2n|ψ̂(ω)|2e−σ2βω2β

e−α2ω2

dω. (11)

Proof: For ψ̂, ĝ, f̂ , the Fourier transforms ofψ, g, f
respectively, it holds that̂f = ψ̂ ˆ̺σ ĝα. Then fromParseval’s
identity we find

S(σ) = ‖
∂n

∂xn
f‖2

L2 =
1

2π
‖ωnf̂‖2

L2 =

1

2π

∫ ∞

−∞

ω2n|ψ̂(ω)|2| ˆ̺σ(ω)|2|ĝα(ω)|2dω.

Property 1 is a generalized version of the property that has
been demonstrated before in [5]. The following corollaries
follow directly from Property 1.

Corollary 1. The sharpness function (10) is smooth, and
is strictly increasing forσ < 0 and strictly decreasing for
σ > 0.

Corollary 2. For α > 0 the sharpness function (10) has a
finite maximum atσ = 0

max
σ

S(σ) = S(0).

The property and corollaries described above are very
important for autofocus problem. They show that for the
suggested model with the noise-free image formation the
function (9) satisfies the properties of theideal sharpness
function. It is important to note that in computational aesthet-
ics the situation is more difficult because we would mostly
deal with the images recorded from recorded using different
object functionsψ. Moreover, even the amount of pixels in
the discrete images we are going to compare can appear to
be different. To deal with such situations in a proper way a
careful discretization of the sharpness functions is required.

A. Sharpness function discretization

In this paper we pay a special attention to the proper dis-
cretization of the sharpness functions (especially derivative-
based sharpness function), which has not been done in the
previous work [4], [5]. The proper normalization coefficient
in front of the discrete sharpness function is important if
we compare the sharpness function values of images with
different geometries.

It trivially follows from (6) that for the default∆x = 1/N

( ∂

∂x
f(xi, yj)

)p .
=

1

kpN−p
(fi+k,j − fi,j)

p. (12)

Using discrete integration (5), we obtain a discrete version
of the sharpness function (9) forn = 1

S
.
= sder

x :=
1

kpN1−pM

∑

i,j

|fi,j − fi,j+k|
p, (13)
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wherek (the pixel difference) adjusts the sensitivity of the
sharpness function to the noisy images. It is clear that
for n = 2 in (13) larger differences between pixels are
weighted more strongly than smaller ones. This leads to
the suppression of the contribution made by noise [24]. To
improve the robustness to noise a thresholdΘ is often applied
to the difference between pixels, which is taken into account
[23]

sder
x,Θ :=

1

N1−pMkp

∑

i,j

|fi,j − fi,j+k|
p
, (14)

|fi,j − fi,j+k|
p
> Θ, Θ > 0.

The thresholdΘ is determined experimentally [24]. In
scanning electron microscopes often the difference between
only the pixels in horizonal direction is taken into account,
because the scanning is performed in horizontal direction and
therefore noise is correlated there. This sharpness function
can fail for certain image geometries (for example, a number
or uniform horizontal stripes). Letsder

y,Θ be the function
that computes the norm of the pixel difference in vertical
direction. Then the form that generalizes derivative-based
sharpness function is

sder,c
Θ := sder

x,Θ + νsder
y,Θ, ν = {0, 1}. (15)

Usually in applications only pixel difference parameter val-
ues k = 1, 2 are used [21], [25]. However, it has been
experimentally shown that in some applications the larger
values ofk often provide better results [19].

If we consider derivative interpolation by a convolution
with a Gaussian derivative kernel (7), we obtain

sder,c
Θ =

∑

i,j

(

(F ∗ G1)
2
i,j + (F ∗ G2)

2
i,j

)

, (16)

(

(F ∗G1)
2
i,j + (F ∗ G2)

2
i,j

)

> Θ,

where the Gaussian derivative kernelsG1,G2 could be for
instance defined as

G1 =





−1 0 1
−2 0 2
−1 0 1



 , G2 =





1 2 1
0 0 0
−1 −2 −1



 .

(17)
The form of Gaussian kernels (17) is known in application
literature asSobel operators [25]. For the model explained
in the previous section as shown in (7) such an approach
could already include the value of the blur parameterα.

IV. VARIANCE-BASED SHARPNESS FUNCTION

For an imagef with compact supportX, its mean value
E[f ] is defined as

E[f ] := f̄ :=
(

∫∫

X

fdx
)/(

∫∫

X

dx
)

(18)

The variance-based sharpness function is defined as (cf. [26],
[27])

Svar[f ] := ‖f − f̄‖2
L2
. (19)

Consider the amplitude image function

f (A) := f − f̄ .

(a) In-focus

(b) Out-of-focus

Fig. 4. Histograms computed for in-focus and out-of-focus experimental
images of the same object.

It follows from the definition that the mean value of the
image amplitude function is equal to zero

E[f (A)] =
(

∫∫

X

fdx − f̄

∫∫

X

dx
)/(

∫∫

X

dx
)

= 0.

In some applications the amplitude image functionf (A) is
used instead off for the sharpness analysis (cf. [26]). In this
case we obtainSvar[f (A)] = Svar[f − f̄ ] = ‖f‖2

L2
, which is

known as the intensity-based sharpness function (8).
For the discrete image the mean value is approximated by

f̄
.
= F̄ :=

∑

i,j ∆x2fi,j
∑

i,j ∆x2
=

1

N2

∑

i,j

fi,j (20)

and the discrete variance-based sharpness function is

Svar .= svar :=
1

N2

∑

i,j

(fi,j − F̄ )2. (21)

V. H ISTOGRAM-BASED SHARPNESS FUNCTION

Histograms are often used as a basis for the image quality
measurement in computational aesthetics [28], as well as
in image enhancement [29]. The histogram-based sharpness
function is defined in the discrete space only, because it deals
directly with the image pixel values. In most applications the
unscaled imageF is a matrix of natural intensity values. Let

f̃ = (f̃k)L
k=1, f̃k−1 < f̃k,

be a set of all pixel values in the imageF, i.e.fi,j ∈ F ⇔ ∃k
such thatfi,j = f̃k ∈ f̃ . The vectorh = (hk)L

k=1, wherehk

is the number of pixels with the valuẽfk in the imageF,
is called thehistogramof the imageF. Then the probability
of a pixel value equal tõfk is hk

N2 .
Figure 4 shows the histograms of in-focus and out-of-focus

experimental images. The horizontal axis on each diagram
represents the pixel gray values, and the vertical axis the
number of countsh. The in-focus image has the whole range
of the pixel values, including pixels equal to 0 and to 255.
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Fig. 5. A typical landscape colored photo with the straight horizon line.

The out-of-focus image has less contrast, and its values in
this case are spread between 12 and 130. These observations
lead to the histogram-based sharpness function, known as
histogram range [25]

Shisr := max
k,hk 6=0

hk − min
k,hk 6=0

hk. (22)

It is clear from the above example that the larger the range
the more contrast the image has, and the more information it
contains. Other histogram-based sharpness functions are the
entropy(cf. [30])

Shise := −
∑

k,hk 6=0

hk

N2
log2

hk

N2
. (23)

and the threshold image count (cf. [25])

Shist :=
n

∑

k=1

hk, f̃n ≤ Θ f̃n+1 > Θ. (24)

VI. SHARPNESS FUNCTIONS FOR COMPUTATIONAL

AESTHETICS

In this section two experiments with the real-world data
are described. In Subsection VI-A sharpness functions are ap-
plied to a number of photographs that have been downloaded
from a photography website. The results are compared with
the scores given to the same photographs by the users of the
website. In Subsection VI-B various sharpness functions are
applied to the photographs taken within the same setting. The
results provide the possible indication and assistance for a
human user in the choice of a better quality picture recorded
within one session.

A. Various settings

The photography websites, such as flickr.com, photo.net,
photosight.ru usually have an assessment system for the
quality evaluation of the manual photographs. The total
score that can be obtained by one photo within such a
system consist of a few factors. First of all the users can
indicate if they like the photo and add it to the list of their
favorites. Usually the most interesting images receive the
highest amount of views. Also, the most interesting photos
often receive a large amount of comments. Thus, the total
score which is suggested to compute for one photo is

ztot = zview + 10 ∗ zlike + 20 ∗ zfav + 5 ∗ zcomm, (25)
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Fig. 6. Experiments with derivative-based sharpness function and experi-
mental data from a photography website.
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Fig. 9. Derivative-based sharpness function computed for experimental
data for different values ofα.

wherezview is the amount of views the photo received,zlike

is the amount of people that indicated they like the photo,
zfav is the amount of people that have added the photo to
their favorite list, andzcomm is the amount of comments that
the photo received.

A number of colorful photographs of the landscapes have
been downloaded from a photography website. An example
of a typical landscape is shown in Figure 6. Each of the
landscape has the straight horizont line. The photographs
did not have any object created by human on them. Each of
the photographs have been uploaded to the website within
two days more than one month before our experiment took
place. All collected photos are made by photographers of
approximately the same level (they are registered on the
website as amateurs, not as professionals).

In our practical experiment we deal with colorful pho-
tographs. It implies that each photograph consists of three
images (three two-dimensional matrixes) which are presented
as one picture via so-called RGB space [31]. In photography
and color psychology color tones and saturation play im-
portant role, and hence working in HSV color space makes
computations more convenient. As well as in [3] we convert
the photographs from RGB to HSV color space, which results
in three discrete imagesFH ,FS ,FV . For every photograph
the discrete derivative-based sharpness functionsder[FS ] is
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(a) N=63,α=0 (b) N=64,α=0 (c) N=65,α=0 (d) N=66,α=0 (e) N=67,α=0 (f) N=68, α=0

(g) N=63,α=3 (h) N=64,α=3 (i) N=65, α=3 (j) N=66, α=3 (k) N=67, α=3 (l) N=68, α=3

Fig. 7. Experimental photography data: upper row,α = 0, lower row,α = 3.
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Fig. 8. Sharpness functions computed for experimental data.

computed. Next to it for every photograph the total quality
score is computed with (25) based on the statistical data
collected from the website.

Figure 6 shows the normalized scores and the values of
derivative-based sharpness function computed for 51 experi-
mental photographs. Lets be the vector of sharpness function
values andz be the vector of the computed scores for the
given set of images. The computedleast square difference
between the data sets is 23 %, i.e‖s− z‖l2 = 0.23. Similar
results are obtained for the sharpness functionsder[FV ].
Though, the results are diverse, there is definitely a visible
common trend in the behavior of the two data sets. The di-
versity is not surprising taking into account the fact that only
one function has been applied to the images. The derivative-
based as well as any other sharpness function is not meant
as a stand alone measurement of the image aesthetics. Such
a function could be used within an aesthetics measurement
system, which consists of a number of components, including
pattern recognition techniques [3], [28]. In our experiment for
the photos with the highest scores, the values of the gradient-
based sharpness function do not go that high. This can be
explained by the fact that the photos have gained the high
scores not because of their general properties, but because
of compositional details attractive for a human.

B. A common setting

Usually after a photoshoot photographers and picture
editors must review a large collection of images to select the
strongest ones. This is a difficult and time consuming task.
By means of computational aesthetics this manual operation
could become semi-automated. In this section we describe a
numerical experiment with the photographs recorded within
one photoshoot.

In total 138 photos are taken with the digital photocamera
Hasselblad. In order to perform the experiments the orig-
inal high resolution photos are changed to grayscale and
decreased to the size400×300 pixels. The samples of some
of the images from the series are shown in the upper row of
Figure 7. For each of the photos, derivative-based sharpness
function (15), variance-based sharpness function (21) and
histogram-based sharpness function (22) are computed. Fig-
ures 8(a)-8(c) show the results of these computations. Each
of the computed functions has a pick in the middle, around
the image with the number 64. The peaks indicate the image
that could be desirable as the experimental output.

For the derivative-based sharpness functions the experi-
ments have been also performed for different values of the
blur parameterα. Figure 9 shows results of these computa-
tions. For the larger values ofα the function is less noisy,
but the peak is less established. However, the position of the
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(a) Landscape photograph. (b) The Sobel operator, used as energy map.

(c) S = 0.5 (d) S = 0.7 (e) S = 0.9

Fig. 10. Landscape image sublimated based on use of Sobel operator as energy function.

peak does not change.

VII. I MAGE SUBLIMATION

In the previous section we demonstrate the application of
sharpness functions for computational aesthetics. This might
be useful for a number of visualization applications, for
example generating scatterplots of images [32]. In [32], not
only are numerical attributes of images plotted, but so too are
the images themselves: “Typical information visualization
involves first translating the world into numbers and then
visualizing relations between these numbers. In contrast,
media visualization involves translating a set of images into
a new image which can reveal patterns in the set.” [32]

This technique has proven useful for visualizing diverse
sets of images, the sort discussed earlier in section VI-A. At
the same time, for sets of similar images, for example those
discussed in section VI-B, it fails to show subtle differences.
Instead, we note that sharpness functions provide a measure
of importance not just of images, but alsowithin images, and
propose to exploit the spatial nature of sharpness analysis to
visualize the most important regions in an image.

In [33], spatial analysis of an image is combined with
seam-removal for automaticImage Retargeting, or changing
the aspect ratio of an image. Different spatial analysis
tequniques are used asenergy mapsto select seams (con-
tiguous paths through an image) of minimal energy that may
be removed. If the image is first upsampled and then returned
to its original size with seam removal, important regions of
the image are enlarged to comparatively greater size (see
Figure 10). This method is suggested in [33] as “content
amplification.” In the context of computational aesthetics,
we call this methodsublimationand trivially formalize it by
parameterizing the transformation with asublimation factor
S, such that a percentage of relatively-uninteresting pixels
equal toS are removed from the image.

Experimental results are shown in Figure 11, where a
series of sharpness-function-guided sublimations of related
photographs are presented in comparison to traditionally
downsampled images. The caricatures are generated using
sublimation of the most aesthetically pleasing regions of
images, which are determined with the help of our sharpness
function (Equation 17). The sharpness function is used
directly as an energy function in the open source Liquid
Rescale Library [34].

The sublimation transformation itself exhibits strong aes-
thetic qualities, an attribute noted but not explored here.

VIII. D ISCUSSION AND FUTURE RECOMMENDATIONS

In this paper we have suggested a number of sharpness
functions that could be used for the purpose of computational
aesthetics and image sublimation. The extensive study of the
sharpness functions could provide improvement in the variety
of fields, such as for instance image enhancement [29] and
image retrieval [35], [36].

The sharpness functions are not meant as a stand-alone
instrument for computational aesthetics. However, they could
be a useful extension for the aesthetics measurement systems,
such as [3], [28]. In future a wider range of sharpness
functions could be applied for the same purpose, for instance,
autocorrelation-based sharpness functions [17], [24], [37] or
Fourier-transform based sharpness functions [38]. The later is
often replaced nowadays with the wavelet-based approaches
[29], [39].

Only image derivatives of the first order [4], [21] or the
second order [9], [8] have been applied so far as a sharpness
function. The application of the derivatives of the higher
order (n > 2 in (9)) could be a topic of the future research
and might lead to the improvements.

For the derivative-based sharpness function we have cho-
sen theL2-norm, because it is the most practically used
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(a) Traditional thumbnails from a photoshoot.

(b) The Sobel operator, used as energy map.

(c) Photos, sublimated toS = 0.5

(d) Photos, sublimated toS = 0.9

Fig. 11. Set of experimental images sublimated based on use of Sobel operator as energy function.

norm with a lot of proven mathematical properties. This
simplifies the analysis [5]. For instance a relatively trivial
proof of the fact that derivative-based sharpness function
reaches its maximum atσ = 0 for theL2-norm case could be
complicated in the case ofL1-norm or the generalLp-norm.
In practice theL1-norm derivative-based sharpness function
is used as well [25], [19]. Our observations could be probably
generalized for theLp-norm case.

We have also shown the use of sharpness functions to
sublimateimages. If computational aesthetics can determine
“how soothing a picture is to the eyes” [3], its analysis
may also help us condense images to their most sublime. In
fact, the sublimation technique is applicable to any feature
extraction that is spatial, and future work could explore
combinations of different features into energy maps. One
fault is that the current usage of the sharpness function
makes sublimation sensitive to high-detail areas that may
be common to many images; techniques from automatic
caricature generation like “Exaggerating the Difference from
the Mean” [40] may allow for more robust condensations.
Finally, user-controlled sublimation may be a useful addition
to photo navigation and selection interfaces.
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