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Sharpness Functions for Computational Aesthetics
and Image Sublimation

Maria Rudnaya, and Robert Ochshorn

Abstract—The goal of this paper is to establish a link between Linear filters
existing autofocus methodology and computational aesthetics.
Many existing autofocus methods are based on a sharpness
function, a real-valued estimate of the image’s sharpness. The w —) O — fO —> ga —> f
intensity-based sharpness function has already been applied Objeck image
in computational aesthetics before. In this paper we apply a H H
wider range of sharpness functions for aesthetics measurement ?
in photographic images. Additionally, we use the full two- d Controls o
dimensional result of the sharpness function in a visualization
technique we term “sublimation.”

Index Terms—image quality, image manipulation, sharpness
function, photography, computational aesthetics, image subli-
mation

|. INTRODUCTION Fig. 1. The image formation model.

A N image obtained with an optical device, such as a

5 photoc_am,era, a telescope or a mlcros_cope, dep_endsﬂ%\ sharpness function definition and analysis of their basic
a given ObJ.eCtS gepmetry, knqwn as ”‘"‘?’JeCt function properties. Sections Ill, 1V, V introduce derivative-based,
and the optical deviceontrol yarlables(for mstaryce,t_defo- variance-based and histogram-based sharpness functions cor-
cuy. The method Qf automatic def_ocus determination, Su‘I:Qspondingly. Section VI presents the results of numerical
that the recorded_lmage I8-focus is known asautofocus o, nariments: in Subsection VI-A we use as experimental data
method. Many e_X|st|ng autofocus m?thOdS are ba_sed O, he photographs collected from open websites with statistical
sharpness functigna real-valued estimate of the image ystem of quality evaluation; in Subsection VI-B photographs

sharpness. e
o . , taken by one photographer within one photoshoot are used.
Aestheticss the branch of philosophy that deals with th%ection VIl defines thesublimationtransformation, which

nature and expression of beauty [1]. Certain visual properties - nces those sections of an image determined by the

such as sharpness, contrast, light and colorfulness makga nness function to be important. Section VIII provides
photograph more beautiful [2], [3]. A number of issues malﬁscussions and future recommendations.
the measurement of aesthetics in pictures or photographs

extremely subjective. In [3] an example of an automated
aesthetics measurement has been demonstrated for a large Il. MODELLING

set of photographic images. In particular the aesthetics hagn this section we provide a brief explanation of the model
been measured by pixel intensity average, which is knownghat has been used in the previous research on the autofocus

autofocus applications astensity-based sharpness functionmethods [4], [5]. The Fourier transforifiof a functionf €
The goal of this paper is to establish a link betweep?(R) is defined as follows

existing autofocus methodology and computational aesthet- -
ics. The sharpness functions we are applying for the aes- F(w) :/ F@)e o de
thetics measurement are the generalized versions of the —0 '

intensity-based sharpness function. In addition to gradieWhere:c is aspatial coordinateandw is afrequency coordi-

based sharpness function investigated earlier in [4], we intrl‘?éte The vector of spatial coordinates in two-dimensions is

duce the variance-based and the histogram-based sharpass; byx := (x,)” € R2. For a vectorw :— (w;)~
functions. These functions are experimentally applied f%e definel|w| := (’Z_ lwi|2)1/2. The L-norm ofafur;étTc;n
the computations of aesthetics in photographic images. T Ogefined as e P

various applications within the field are considered, and a -
sublimation operation is defined and tested. fllo, = (// |f|pdx)1/p b 123
The paper is set up as follows: Section Il describes the : —0 7 T

eneral image formation model. This model is used for . . e
d g andL,(R?) is the space of functions with finit&,-norm.
Manuscript received October 14, 2011; revised , 2011.
M. Rudnaya is with the Department of Mathematics and Computer . . .
Science, Eindhoven University of Technology, The Netherlands, e-maft. Linear image formation model

maria.rudnaya@gmail.com. | f hich h f . inb d
R. Ochshorn is with the Department of Design, Jan van Eyck Academy, IMages for which our sharpness function will be compute

Maastricht, The Netherlands, e-mail: mail@rmozone.com. are the output imageg € LLy(R?) of the so-calledmage

(Advance online publication: 12 November 2011)



TAENG International Journal of Computer Science, 38:4, IJCS 38 4 05

formation modelrepresented by Figure 1. The object’'s ge
ometry (or theobject functiol is denoted byy. The filter
0o describes thgoint spread functiorof an optical device.
The output of thep, filter is denoted byf, and is
often post-processed by a PC. We assume that in such p

%2

processing a Gaussian filtgg (x) := sze*% is applied - % s
to the imagef,. Filtering with a Gaussian kernel is often

used for denoising purposes, which is an easy alternativer@ 2. Sharpness function reaches its optimum at the in-focus image. The
more advanced techniques [6], [7], [8]. It has been shovgpa! of the autofocus procedure is to find the value of the defocus.

that the control variable is useful not only for denoising

e
@

e 9o
S

Sharpness function

e
M

-

the imagefy; it also influences the approximation error when N.M
the sharpness function is replaced by a quadratic polynomial - 1 Z fids (5)
in an autofocus application [5]. Ae=1/N.Ay=1/M NM o= "7

We apply thdinear image formation modgWhich is often . itarl
used for different optical devices [9]. This implies that thgmiarty N
occurring filters are linear and space invariant which can £l = ( 1 Z £ )1/"
easily be described by means afnvolutionproducts L= \NM = b))
for=v*0s f:=fo*ga (1) For the given discrete image the sampling peridds Ay

If no post-processing is applied,= 0, and f = f. are fixed. Thus considering higher order integration will not

The point spread function can accurately be approximatgﬁér?ase the (ljr?tegratloE error. | diff o f th
by aLévi stable densityunction for a wide class of optical . elow we diScuss the numerical dif erent|at|o.n__o the
devices [10], [11]. The Lévi stable density function is im_dlscrgte Images. By dropping the limit in the definition of
plicitly defined via its Fourier transform in one-dimension alhe differential operator
follows 2 g gf A im f(x+€7y>7f(xay)

bo(w)i=e 7“2 0<p<, 2 oz T ;

The parametep? in (2) depends on the optical device. Iffnd keeping fixed at a distance of € N pixels, we obtain
3 = 1in (2), the point spread function is a Gaussian functiod finite differenceapproximation at;, y;)

The parametes in (2) is known as thewidth of the point o . 1

spread function and has a linear relation with the optical %f(ﬂfivyj) = m(fmc,j = [ij)- (6)
device defocus.

We refer tok as thepixel differencgparameter for the discrete
image derivatives.
Two alternative derivative interpolation solutions appear
In real-world applications the imagg is always camera- commonly in the literature: fitting polynomial approxima-
recorded, and therefore discrete and bounded. Assume tions [12] and smoothing with a filter, for instance a Gaussian

B. Discrete images

X,Y € R the support off is function [13]
X:= [OvX]X[()vY]v g =D .:ﬂ — ﬂ 7
| | | | 5./ =Dri= o (fxg)=frog ()
i.e., f(x) = 0 for x outside ofX. Fori = 1,...,N, j =
_ X _ X : P ;
L,...,MandAx := %, Ay := 5;, we define the grid points C. Sharpness functions
T = ﬁ T (i — 1Az, y; = % +(j — 1)Ay. Ma_ny existingautofocusnethods are based qm;harpness
2 2 function S : Ly(R?) — R, a real-valued estimate of the

Thus for the defaultX =Y =1, Az = L Ay = L. In image’s sharpness. In the literature a number of sharpness
practice Az is often equal taAy. The discrete images canfunctions have been considered and discussed for different

be represented by a matrix optical devices, such as photographic and video cameras [14],
N [15], telescopes [16] and microscopes [17], [18], [19]. In
F = (fij)ij=1- (3) autofocus application for #hrough-focus seriesf images

the sharpness function is computed for different values of
d given a fixed value ofa. A typical sharpness function
fig = [(zi,y;). (4) shape application is shown in Figure 2. The image at the
ideal defocus values is sharp iorfocuswhen the sharpness
We use themid-point rule for approximation of image fynction reaches its optimum. An image away from the
integration. Hence the integration of the image with compagfea| defocus value is calledut-of-focus An ideal sharp-
support over the image domain in two-dimension is approxess functionshould have a single optimum (maximum or

of the image pixel values

imated by minimum) at the in-focus image. The sharpness functions
N,M are also used for other studies, for instance hiysteresis
/ f(x)dx = AzrAy Z fzi,y5) in electromagnetic lenses [20] and reconstructions of three-
X i 7 dimensional microscopic objects [8], [9].
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model (1), we have therefore
877,

S=llgmWxes* 9a)ll,- (10)
Property 1. The sharpness function (10) can be expressed
as follows
1 o ~ 2 2 2 2
S(o) = 2_/ W (w)2e 7 e . (11)
™ —00

Proof: For z/?,f;,f', the Fourier transforms of), g, f
(a) In-focus image. (b) Out-of-focus image. respectively, it holds thaf = z/?@agu. Then fromParseval’s
identity we find

8”
ox™

. 1 s
S(0) = 5= fllz= = 7l flize =

1 [ -
3 [P )Pl )

[ |
Property 1 is a generalized version of the property that has
been demonstrated before in [5]. The following corollaries
follow directly from Property 1.

_ — _ _ Corollary 1. The sharpness function (10) is smooth, and
(¢) In-focus image derivative. (d) Out-of-focus image deriva- g strictly increasing fore < 0 and strictly decreasing for

tive.
o> 0.

Fig. 3. In-focus and out-of-focus images, and their derivatives. .
Corollary 2. For a > 0 the sharpness function (10) has a

finite maximum at = 0
For the aesthetics study in photographic images in [3] max S(o) = S(0).
within a set of methods the intensity-based sharpness func- o
tion is applied

S™f] = IIFIIZ,. (8) The property and corollaries described above are very

In this paper we consider an extended family of sharpnégéportam for autofo.cus p“’b'?m- They show that fpr the
functions for the computational aesthetics study. suggested model with the noise-free image formation the
function (9) satisfies the properties of tiseal sharpness

function It is important to note that in computational aesthet-
[Il. D ERIVATIVE-BASED SHARPNESS FUNCTION ics the situation is more difficult because we would mostly

The advantage of using derivative-based sharpness fuflg@! with the images recorded from recorded using different
tions has been shown experimentally for various opticPi€Ct functions). Moreover, even the amount of pixels in
devices [9], [18], [19], [21]. The use of these functions useij€ discrete images we are going to compare can appear to

to be heuristic. Usually they are based on the assumptigf different. To deal with such situations in a proper way a
that the in-focus image has a larger difference betweefareful discretization of the sharpness functions is required.

neighbouringpixels than theout-of-focusimage. Figure 3
shows in-focus and out-of-focus images and their numep. Sharpness function discretization

cally computed derivatives, which are images as well. We In this paper we pay a special attention to the proper dis-

can observe that th? deri\{ative .Of the if"f"cus image (Figué?etization of the sharpness functions (especially derivative-

3(C» h_as stronger intensity (h|gher p!xel values) than tnfased sharpness function), which has not been done in the

derivative .Of t_he out-of-focus image (Flgurg S(d)_)' evious work [4], [5]. The proper normalization coefficient
The derivative-based sharpness function is defined (cf.[1; 'front of the discrete sharpness function is important if

[21]) we compare the sharpness function values of images with

- different geometries.

Slifl=1 It trivially follows from (6) that for the defaul\z = 1/N

Forn = 0 in (9) we obtain the intensity-based sharpness 0 P, 1 )
function (8). In different literature sources different norms (%f(m"’yj)) B kPN*P(fi’Lk?j — fud)" (12)

are applied to the image derivatives for autofocus purposefsing discrete integration (5), we obtain a discrete version
i.e.p = 1in [22], [23] or p = 2 in [14], [16]. We mostly ¢ the sharpness function (9) far= 1

focus onp = 2 in (9). It will be explained below thaf .-

norm derivative-based sharpness functions are less sensitive g = sder.— _ Z \fii — fiinl? (13)

to noisethan L;-norm based. For the linear image formation kPNI=PM . ’

8”

(’)x”

fIE . nezt, p=12 (9
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where k (the pixel differenc adjusts the sensitivity of the Hiistogram
sharpness function to the noisy images. It is clear that 5000
for n = 2 in (13) larger differences between pixels are 4000
weighted more strongly than smaller ones. This leads to 3000

the suppression of the contribution made by noise [24]. To
improve the robustness to noise a thresttdld often applied
to the difference between pixels, which is taken into account

2000
1000

[23] 1 00 100 200 300
sg?(ra = T ifhe Z Ifij— fijerl" (14) (@) In-focus
1] Histogram
\fij — fij+rl” >©, ©>0. e

4000
The threshold® is determined experimentally [24]. In

. . . 3000
scanning electron microscopes often the difference between

only the pixels in horizonal direction is taken into account, 2y
because the scanning is performed in horizontal direction and 1000
therefore noise is correlated there. This sharpness function 0
can fail for certain image geometries (for example, a number g L o =

or uniform horizontal stripes). Let®, be the function (b) Out-of-focus

that computes the norm of the pixel (_jlfferencg n verticdg. 4. Histograms computed for in-focus and out-of-focus experimental
direction. Then the form that generalizes derivative-bas@&athges of the same object.

sharpness function is

sg"i= s +vsi%, v =1{0,1}. (15) 1t follows from the definition that the mean value of the

. L . . "mage amplitude function is equal to zero
Usually in applications only pixel difference parameter val-

uesk = 1,2 are used [21], [25]. However, it has been E[f(A)] = (// fdx—f// dx)/(// dX) =0
experimentally shown that in some applications the larger X X X
values ofk often provllde.bett_er results_ [19]. _In some applications the amplitude image functig!) is

|t we consider derivative interpolation by a convolution,qeq jnstead of for the sharpness analysis (cf. [26]). In this
with a Gaussian derivative kernel (7), we obtain case we obtais"@[f(4)] = SY[f — f] = | f||., which is

der,c 2 2 known as the intensity-based sharpness function (8).

= F i, (F » 1 : . : .

%o Z (( # Ga)iy o+ (F GQ)”)’ (16) For the discrete image the mean value is approximated by

.3

P Ziy'AfoiJ 1
((FrG2 + (FxG2)2)) >0, J2F="2—F5r =m0
i i

where the Gaussian derivative kemnéls, G could be for 5 the discrete variance-based sharpness function is
instance defined as

. 1 ;
10 1 12 1 S == 5 D (i — F) (21)
Gi=[-202], G=|0 0 o0 i
10 1 -1 -2 -1

a7) V. HISTOGRAM-BASED SHARPNESS FUNCTION

The form of Gaussian kernels (17) is known in application Histograms are often used as a basis for the image quality
literature asSobel operatas [25]. For the model explained measurement in computational aesthetics [28], as well as
in the previous section as shown in (7) such an approaghimage enhancement [29]. The histogram-based sharpness
could already include the value of the blur parameter  function is defined in the discrete space only, because it deals
directly with the image pixel values. In most applications the
IV. VARIANCE-BASED SHARPNESS FUNCTION unscaled imag®' is a matrix of natural intensity values. Let

For an imagef with compact suppork, its mean value f=(fie foo1 < fr,

E[f] s defined as be a set of all pixel values in the ima@gi.e. f; ; € F & Jk

. such thatf; ; = fi, € f. The vectorh = (hy,)E_,, wherehy,
Elfl= 1= (//X fdx)/(//x dx) (18) is the number of pixels with the valug, in the imageF,
called thehistogramof the imageF. Then the probability

The variance-based sharpness function is defined as (cf. [é(%]a pixel value equal tgiy is %

[27) var -~ Figure 4 shows the histograms of in-focus and out-of-focus
ST =1 = FllL.: (19) experimental images. The horizontal axis on each diagram
Consider the amplitude image function represents the pixel gray value_s, and the vertical axis the
B number of counth. The in-focus image has the whole range
fA = F—f of the pixel values, including pixels equal to 0 and to 255.
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Fig. 5. A typical landscape colored photo with the straight horizon linefig. 6. Experiments with derivative-based sharpness function and experi-
mental data from a photography website.

The out-of-focus image has less contrast, and its values %10
this case are spread between 12 and 130. These observal
lead to the histogram-based sharpness function, known
histogram range [25]

s = hx — min hy. 22
S e @

It is clear from the above example that the larger the ran
the more contrast the image has, and the more informatiot
contains. Other histogram-based sharpness functions are
entropy (cf. [30])

. h h

s =~ Y Llog, = 23

S 2 5 logy —5 - (23)
sk

Der.—based sharpness function

and the threshold image count (cf. [25])

20 40 éO 80 100 120
Image number

n
Shise .= thv In<O fop1>0. (24)
=1 Fig. 9. Derivative-based sharpness function computed for experimental
data for different values ofv.
VI. SHARPNESS FUNCTIONS FOR COMPUTATIONAL

AESTHETICS . . .
wherez,;.., IS the amount of views the photo receivegdy,

In this section two experiments with the real-world datg the amount of people that indicated they like the photo,
are described. In Subsection VI-A sharpness functions are ap;, is the amount of people that have added the photo to
plied to a number of photographs that have been downloadgdir favorite list, antt.omm is the amount of comments that
from a photography website. The results are compared wilfe photo received.
the scores given to the same photographs by the users of thg number of colorful photographs of the landscapes have
website. In Subsection VI-B various sharpness functions a§gen downloaded from a photography website. An example
applied to the photographs taken within the same setting. Thea typical landscape is shown in Figure 6. Each of the
results provide the possible indication and assistance fofgddscape has the straight horizont line. The photographs
human user in the choice of a better quality picture recordgg not have any object created by human on them. Each of

within one session. the photographs have been uploaded to the website within
two days more than one month before our experiment took
A. Various settings place. All collected photos are made by photographers of

gpproximately the same level (they are registered on the

The ph raphy websi h flickr.com, photo.n . .
e photography websites, such as flickr.com, photo bsite as amateurs, not as professionals).

photosight.ru usually have an assessment system for th tical : ) deal with colorful bh
quality evaluation of the manual photographs. The total N our practical experiment we deal with coloriut pho-

score that can be obtained by one photo within Such_t%graphst.hlt m;pllez_that ‘?aChI ph(:tpgraphhg:ohnssts of thrte((aj
system consist of a few factors. First of all the users cAfiages (three two-dimensional matrixes) which are presente

indicate if they like the photo and add it to the list of theif®S ON€ Picture via so-called RGB space [31]. In photography

favorites. Usually the most interesting images receive tﬁ@d color psychology color tones and saturation play im-

highest amount of views. Also, the most interesting phot@é)rtam rqle, and hence wo.rkmg in HSV cqlor space makes
often receive a large amount of comments. Thus, the to mputations more convenient. As well as in [3] we convert

score which is suggested to compute for one photo is t e photographsf_rom RGB to HSV color space, which results
in three discrete imagesy, Fs, Fy . For every photograph

Ztot = Zview + 10 % Zjike + 20 % Zfq0 + 5 * Zeomm, (25) the discrete derivative-based sharpness functiSiF 5] is

(Advance online publication: 12 November 2011)
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() N=63,a=0 (b) N=64, a=0 (c) N=65,a=0 (d) N=66, a=0 (e) N=67,a=0 (f) N=68, a=0

)

A

(9) N=63, =3 (h) N=64, a=3 (i) N=65, a=3 (i) N=66, a=3 (K) N=67, a=3 () N=68, a=3

Fig. 7. Experimental photography data: upper rows= 0, lower row, o = 3.
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Fig. 8. Sharpness functions computed for experimental data.

computed. Next to it for every photograph the total qualit. A common setting

score is computed with (25) based on the statistical dataUsuaIIy after a photoshoot photographers and picture

collected from the website. editors must review a large collection of images to select the
strongest ones. This is a difficult and time consuming task.
Figure 6 shows the normalized scores and the valuesBy means of computational aesthetics this manual operation
derivative-based sharpness function computed for 51 expaduld become semi-automated. In this section we describe a
mental photographs. Letbe the vector of sharpness functiornumerical experiment with the photographs recorded within
values andz be the vector of the computed scores for thene photoshoot.
given set of images. The computézhst square difference In total 138 photos are taken with the digital photocamera
between the data sets is 23 %, [ie— z||; = 0.23. Similar Hasselblad. In order to perform the experiments the orig-
results are obtained for the sharpness functidfi[Fy]. inal high resolution photos are changed to grayscale and
Though, the results are diverse, there is definitely a visibdiecreased to the siz#®0 x 300 pixels. The samples of some
common trend in the behavior of the two data sets. The dif the images from the series are shown in the upper row of
versity is not surprising taking into account the fact that onllyigure 7. For each of the photos, derivative-based sharpness
one function has been applied to the images. The derivatifenction (15), variance-based sharpness function (21) and
based as well as any other sharpness function is not mehistogram-based sharpness function (22) are computed. Fig-
as a stand alone measurement of the image aesthetics. Suels 8(a)-8(c) show the results of these computations. Each
a function could be used within an aesthetics measuremehthe computed functions has a pick in the middle, around
system, which consists of a number of components, includitite image with the number 64. The peaks indicate the image
pattern recognition techniques [3], [28]. In our experiment fdhat could be desirable as the experimental output.
the photos with the highest scores, the values of the gradientFor the derivative-based sharpness functions the experi-
based sharpness function do not go that high. This can inents have been also performed for different values of the
explained by the fact that the photos have gained the higlur parameter. Figure 9 shows results of these computa-
scores not because of their general properties, but becatises. For the larger values i the function is less noisy,
of compositional details attractive for a human. but the peak is less established. However, the position of the

(Advance online publication: 12 November 2011)
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(b) The Sobel operator, used as energy map.

© S =05 @) S=07 € S=09

Fig. 10. Landscape image sublimated based on use of Sobel operator as energy function.

peak does not change. Experimental results are shown in Figure 11, where a
series of sharpness-function-guided sublimations of related
VIl. | MAGE SUBLIMATION photographs are presented in comparison to traditionally

downsampled images. The caricatures are generated using

In the previous section we demonstrate the application gipjimation of the most aesthetically pleasing regions of
sharpness functions for computational aesthetics. This mighfages, which are determined with the help of our sharpness
be useful for a number of visualization applications, fofction (Equation 17). The sharpness function is used
example generating scatterplots of images [32]. In [32], ngfrectly as an energy function in the open source Liquid
only are numerical attributes of images plotted, but so t00 &tgscale Library [34].
the images themselves: “Typical information visualization The syplimation transformation itself exhibits strong aes-

involves first translating the world into numbers and thefhetic qualities, an attribute noted but not explored here.
visualizing relations between these numbers. In contrast,

media visualization involves translating a set of images into
a new image which can reveal patterns in the set.” [32]
This technigque has proven useful for visualizing diverse In this paper we have suggested a number of sharpness
sets of images, the sort discussed earlier in section VI-A. Atnctions that could be used for the purpose of computational
the same time, for sets of similar images, for example thogesthetics and image sublimation. The extensive study of the
discussed in section VI-B, it fails to show subtle differencesharpness functions could provide improvementin the variety
Instead, we note that sharpness functions provide a measpfréields, such as for instance image enhancement [29] and
of importance not just of images, but alaithin images, and image retrieval [35], [36].
propose to exploit the spatial nature of sharpness analysis td’he sharpness functions are not meant as a stand-alone
visualize the most important regions in an image. instrument for computational aesthetics. However, they could
In [33], spatial analysis of an image is combined witfbe a useful extension for the aesthetics measurement systems,
seam-removal for automatlmage Retargetingor changing such as [3], [28]. In future a wider range of sharpness
the aspect ratio of an image. Different spatial analysfenctions could be applied for the same purpose, for instance,
tequniques are used &mergy mapgo select seams (con-autocorrelation-based sharpness functions [17], [24], [37] or
tiguous paths through an image) of minimal energy that m&purier-transform based sharpness functions [38]. The later is
be removed. If the image is first upsampled and then returneften replaced nowadays with the wavelet-based approaches
to its original size with seam removal, important regions d29], [39].
the image are enlarged to comparatively greater size (se®©nly image derivatives of the first order [4], [21] or the
Figure 10). This method is suggested in [33] as “contemecond order [9], [8] have been applied so far as a sharpness
amplification.” In the context of computational aesthetic§unction. The application of the derivatives of the higher
we call this methodsublimationand trivially formalize it by order ¢ > 2 in (9)) could be a topic of the future research
parameterizing the transformation withsablimation factor and might lead to the improvements.
S, such that a percentage of relatively-uninteresting pixelsFor the derivative-based sharpness function we have cho-
equal toS are removed from the image. sen theL?-norm, because it is the most practically used

VIIl. DISCUSSION AND FUTURE RECOMMENDATIONS

(Advance online publication: 12 November 2011)
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(a) Traditional thumbnails from a photoshoot.

(b) The Sobel operator, used as energy map.

(d) Photos, sublimated t§ = 0.9

Fig. 11. Set of experimental images sublimated based on use of Sobel operator as energy function.

norm with a lot of proven mathematical properties. Thigww.psdgraphics.com. The photo shown in Figure 5 is taken
simplifies the analysis [5]. For instance a relatively triviaby Olga Ganzha.

proof of the fact that derivative-based sharpness functionwe would like to acknowledge Lynsey Sims (model),
reaches its maximum at= 0 for the L?-norm case could be Soraya Hoetmer, Kinmei Wong, Lourdes Ortiz Pereira for
complicated in the case df'-norm or the general?-norm. assistance with gathering the experimental data, described in
In practice theL'-norm derivative-based sharpness functioBubsection VI-B.
is used as well [25], [19]. Our observations could be probably

generalized for thd.P-norm case.

We have also shown the use of sharpness functions to
sublimateim_ages. If_compl_JtationaI aesthetics can determi_nﬁ] D. Joshi, R. Datta, Q. Luong, E. Fedorovskaya, J. Wang, J. Li,
“how soothing a picture is to the eyes” [3], its analysis and J. Luo, “Aesthetics and emotions in images: A computational
may also help us condense images to their most sublime. In gzislplzc“‘z’g'l'lEEE Signal ProcessingMagazine, vol. 28, no. 5, pp.
fact, th.e subllmr_zltlon te_chnlque is applicable to any featurgy p Tinio, H. Leder, and M. Strasser, “image quality and aesthetic
extraction that is spatial, and future work could explore judgment of photographs: Contrast, sharpness and grain teased apart
combinations of different features into energy maps. One and put together,Psychologyof Aesthetics,Creativity, andthe Arts,
fault is that th t f th h f i vol. 5, no. 2, pp. 165-176, 2010.
ault 1s a_ e curren ) _usage 0 e s_arpness unc |0[@] R. Datta, D. Joshi, J. Li, and W. J.Z., “Studying aesthetics in pho-
makes sublimation sensitive to high-detail areas that may tographic images using a computational approach/[.dsture Notes
be common to many images; techniques from automatic in_Computer Science, Proceedingsof the EuropeanConferenceon

. . I ' . . ComputerVision, Partlll, vol. 3953, Graz, Austria, 2006, pp. 288—
caricature generation like “Exaggerating the Difference from z57-
the Mean” [40] may allow for more robust condensationsj4] M. Rudnaya, R. Mattheij, J. Maubach, and H. ter Morsche,

Finally, user-controlled sublimation may be a useful addition “Gradient-based sharpness function,"LiactureNotesin Engineering
and Computer Science: Proceedingsof The World Congresson

to photo navigation and selection interfaces. Engineering2011, WCE, London, UK, 6-8 July 2011, pp. 301-306.
[5] M. Rudnaya, H. ter Morsche, J. Maubach, and R. Mattheij, “A
derivative-based fast autofocus method in electron microscopy,”
ACKNOWLEDGMENT Journalof Mathematicallmaging and Vision, vol. accepted, 2011.
. . . 6] V. Vijaykumar, P. Vanathi, and P. Kanagasabapathy, “Fast and effi-
The image of the photocamera used in Figure 1 has beér] cient algorithm to remove gaussian noise in digital imagesENG

downloaded from the Free Photoshop PSD file download InternationalJournalof ComputerScience, vol. 37, no. 1, 2010.
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