
Abstract—In this paper, a novel learning algorithm termed 

Hybrid Online Sequential Extreme Learning Machine (HOS-

ELM) is proposed. The proposed HOS-ELM algorithm is a 

fusion of the Online Sequential Extreme Learning Machine 

(OS-ELM) and the Minimal Resource Allocation Network 

(MRAN). It is capable of reducing the number of hidden nodes 

in Single-hidden Layer Feed-forward Neural Networks 

(SLFNs) with Radial Basis Function (RBF) by virtue of 

adjustment in node allocation and pruning capability. 

Simulation results show that the generalization performance of 

the proposed HOS-ELM is comparable to the original OS-

ELM with significant reduction in the number of hidden nodes. 

 

Index Terms—single-hidden layer feed-forward neural 

networks (SLFN), minimal resource allocation network 

(MRAN), extreme learning machine (ELM), neural 

networks, online sequential learning 

I. INTRODUCTION 

T is well known that Artificial Neural Networks (ANN) 

can provide an input-output mapping of an unknown 

dynamic system whereby the system’s output can be written 

as a function of inputs and parameters or weights of the 

network [1]. The learning process of neural networks 

amounts to approximation of an underlying function, which 

subsequently can be translated to an estimation of the 

parameters (or weights) that are optimal in some sense. In 

this regard, the feed forward neural networks have received 

extensive attention of researchers due to their capability of 

mapping any nonlinear and non-stationary functions to an 

arbitrary degree of accuracy. One of such popular feed-

forward networks is the Radial Basis Function (RBF) 

network which offers an efficient mechanism for 

approximating complex nonlinear mappings between the 

input and output data. RBF networks have been popularly 

used in many applications in recent years due to their ability 

to approximate complex nonlinear mappings directly from 

the input-output data with a simple topological structure and 

ease of implementation of dynamic and adaptive network 

architecture [2-4]. However, as highlighted in many studies, 

conventional feed-forward neural networks are usually slow 
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in the training process and in many cases, cannot meet the 

speed requirement for online learning. As a significant 

contribution in improving the training speed of neural 

networks, Platt [5] proposed a sequential learning algorithm 

through the development of a Resource Allocation Network 

(RAN), in which hidden neurons were added sequentially 

based on the novelty of the new data. In practical on-line 

applications, sequential learning algorithms are generally 

preferred over batch learning algorithms as they do not 

require retraining whenever a new data is received. Further 

enhancements of the RAN, known as RANEKF [6] and 

MRAN [7], were also proposed to improve the parameter 

update strategy and the pruning method incorporated. More 

recently, a further modification to the RBF, known as GAP-

RBF [8], was proposed to simplify the sequential learning 

procedure by linking the required accuracy directly to the 

learning algorithm and increase the learning speed by 

adjusting the nearest neuron only. 

As a novel approach to improve the speed of neural 

network training process, Huang et al. [9] proposed a new 

learning algorithm called Extreme Learning Machine (ELM) 

for Single-hidden Layer Feed-forward Neural Networks 

(SLFNs). The ELM can randomly choose the initial hidden 

nodes and determine the output weights of SLFNs using 

matrix calculations. Since its inception, the ELM has been 

shown to be extremely fast in training with better 

generalization performance than other batch training 

algorithms. An extended application of ELM to the 

sequential learning process, which is known as Online 

Sequential Extreme Learning Machine (OS-ELM) [10], 

provides another promising solution to online learning 

problems. However, compared to other learning algorithms 

such as MRAN and GAP-RAN, the ELM and OS-ELM 

algorithms usually require much more hidden nodes for the 

network, which would increase the demand for testing time 

(the operation time) in real-world applications due to more 

complex network structure. 

With a view of simplifying the hidden node structure of 

the OS-ELM algorithm, a hybrid learning algorithm 

integrating the MRAN algorithm with the OS-ELM is 

proposed in this paper. The node generation and pruning 

strategies of the MRAN are extended to the OS-ELM so that 

the parameters of the hidden nodes could be automatically 

adjusted, and subsequently the number of nodes used in the 

neural network reduced. The rest of the paper is organized 

as follows. Section II presents a brief review of various 

learning methods including heuristic learning of SLFNs, 

MRAN and the OS-ELM algorithm. The performance of the 

OS-ELM in different function approximation problems are 

summarized in Section III. Section IV elaborates on the 

proposed hybrid OS-ELM algorithm (HOS-ELM). Section 

V discusses some issues encountered in the performance 

evaluation process of the HOS-ELM and suggestions for 

further improvement of the proposed algorithm are 
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highlighted. Major contributions of this work are 

summarized in Section VI. 

II. RELATED WORKS 

The problem of designing fast on-line learning 

algorithms for practical implementation of neural networks 

remains an active research topic due to the large 

computation cost required for the learning process. In this 

section, a brief review of related works concerning various 

learning methods for SLFNs is presented. 

A. Heuristic Learning of SLFNs 

For optimum statistical classification and generalization 

with SLFN models, two tasks must be performed, namely 

learning the best set of weights for a network of k hidden 

units and determining k, the best complexity fit [11]. In this 

regard, Indurkhya and Weiss [12] compared two approaches 

to construction of neural network classifiers, one of which is 

the standard back-propagation approach applied to a series 

of SLFNs with differing number of hidden units, and the 

other one is the heuristic cascade-correlation approach that 

can quickly and dynamically configure the hidden units in a 

network and learn the best set of weights for it. Real-world 

applications conducted in their research show that the back-

propagation approach yields somewhat better results, but 

with far greater computation times. The best complexity fit, 

k, for both approaches were quite similar. Based on their 

research, they proposed a hybrid approach to construct 

SLFN classifiers in which the number of hidden units was 

determined by cascade-correlation and the weights were 

learned by back-propagation. It should be noted that the 

selection of weights of the new hidden units for sequential 

feed-forward neural networks usually involves a non-linear 

optimization problem that cannot be solved analytically in 

the general case. In most cases, a suboptimal solution is 

searched heuristically. Most models found in the literature 

choose the weights in the first layer that correspond to each 

hidden unit so that its associated output vector matches the 

previous residue as much as possible. In this regard, Romero 

and Alquézar [13] recently conducted an experimental study 

to select the weights for sequential feed-forward neural 

networks. Their results indicated that the orthogonalization 

of the output vectors of the hidden units outperformed the 

strategy of matching the residue, both for approximation and 

generalization purposes. 

On the other hand, variational Bayesian (VB) methods 

(also known as Bayesian ensemble learning methods) 

provide another alternative approach to various learning 

problems. VB learning techniques are based on 

approximating the true posterior probability density of the 

unknown variables of the model by a function with a 

restricted form and simpler distribution. In VB methods, the 

most common technique is ensemble learning where the 

approximation is fitted to the exact posterior distribution and 

Kullback–Leibler divergence is used to measure the misfit 

(or difference) between the approximation and the true 

posterior distribution [14, 15]. In other words, the basic idea 

of VB learning methods is to simultaneously approximate 

the intractable joint distribution over both hidden states and 

parameters with a simpler distribution, usually by assuming 

the hidden states and parameters are independent. However, 

as pointed out by some researchers [16], the choice of the 

posterior approximation form for the sources and the mixing 

matrix has a significant effect on the final solution. In fact, 

probabilistic methods such as Gaussian processes and 

support vector machines usually suffer from the problem of 

model mismatch. In such a context, this paper attempts to 

explore some other alternatives to improve the online 

sequential leaning process based on established sequential 

learning algorithms such as MRAN and ELM. 

B. Minimal Resource Allocation Network (MRAN) 

Since the late eighties, there has been considerable 

interest in RBF neural networks due to their good global 

generalization ability and a simple network structure that 

avoids lengthy calculations [17]. A number of algorithms 

have been proposed for training the RBF network [18, 19]. 

The classical approach to RBF implementation is to fix the 

number of hidden neurons a priori along with its centres and 

widths based on some properties of the input data and then 

estimate the weights connecting the hidden and output 

neurons [20]. Two methods have been proposed to find the 

proper number of hidden neurons for a given problem. Lee 

and Kil [21] introduced the concept of building up the 

hidden neurons from zero to the required number with the 

update of the RBF parameters being done by a gradient 

descent algorithm. An alternative approach is to start with as 

many as hidden units as the number of inputs and then 

reduce them using a clustering algorithm which essentially 

puts patterns that are close in the input space into a cluster 

so as to remove unnecessary hidden neurons [22]. However, 

in all these studies, the main learning scheme is of batch 

type, which is not suitable for on-line learning. In 1991, 

Platt [5] proposed a sequential learning algorithm to remedy 

the above drawbacks. In Platt’s RAN algorithm, hidden 

neurons are added based on the novelty of the new data and 

the weights connecting the hidden neurons to the output 

neurons are estimated using the least mean square method. 

Platt showed that the resulting network topology is more 

parsimonious than the classical RBF networks. 

Kadirkamanathan [6] proposed modifications to improve 

RAN by using an EKF instead of the least mean squares 

method to estimate the network parameters. The resulting 

network called RANEKF is more compact and has better 

accuracy than RAN. A further improvement to RAN and 

RANEKF was proposed by [6] in which a pruning strategy 

was introduced to remove those neurons that consistently 

made little contributions to the network output. The 

resulting network, MRAN, was shown to be more compact 

than RAN and RANEKF for several applications in the 

areas of function approximation and pattern classification 

[23]. 

MRAN is a sequential learning algorithm that realises a 

minimal RBF neural network structure by combining the 

growth criteria of RAN with a pruning strategy [6, 23]. This 

algorithm is an improvement to the RAN of [7] and the 

RANEKF algorithm of [6]. Fig. 1 is a schematic illustration 

of the basic principles of the MRAN algorithm [24]. 

Briefly speaking, the learning process of MRAN 

involves the allocation of new hidden nodes as well as the 

adjustment of network parameters. In MRAN algorithms, 

Gaussian functions are usually selected in majority of cases 

as radial basis functions even though other functions like 

thin plate functions can also be used [25]. The objective of 

learning is to determine the two parameters of the Gaussian 

function used, namely the centre and width of the function. 

There are three parameters associated with each hidden node 

in the network, namely the centre (μ ), the width ( ) and 

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



the connecting weights ( ) to the output units. The centres, 

widths, and weights of the hidden neurons are adjusted 

using an extended Kalman filter (EKF). Mathematically, the 

output of an MRAN equalizer has the following form: 

 


K

k kkf
1

)()( xx     (1) 

where x  is the input vector of the network, K indicates the 

total number of hidden neurons, k  is the connection 

weight of the kth hidden neuron to the output unit and 

)(x is a Gaussian function given by 

)
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Fig. 1 Principles of MRAN  

 

Here, kμ  and k  refer to the center and width of the kth 

hidden neuron and denotes the Euclidean norm. Notice 

that in Eqn. (1), the bias value of the system is assumed to 

be zero. 

In the MRAN algorithm, the network starts with no 

hidden units. As the training process progresses, the 

algorithm adds hidden units and adjusts existing network 

parameters. More specifically, as each input-output training 

data (i.e. observation) ),( nn yx is received, the network is 

built up based on certain growth criteria. In the MRAN 

algorithm, the following three criteria must be met for an 

observation ),( nn yx  to be used to generate a new hidden 

node in the network: 

min||)(|| efye nnn  x    (3) 

 

n nr n x μ     (4) 
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where ne is the error between the network output ( )( nf x ) 

and the target output ( ny ), nr is the centre of the hidden 

node that is nearest to the current input nx , M is the total 

number of the past outputs of the network, and mine , n , 

and mine  are thresholds to be selected based on specific 

applications.  

To be more precise, the first criterion (Eqn. 3) 

guarantees that the error between the network output and the 

target output must be significant. Here, mine  is an 

instantaneous error that is used to determine if existing 

nodes are insufficient to obtain a network output. The 

second criterion (Eqn. 4) guarantees that the input must be 

far from all the centres of current nodes. The term n  here 

ensures that the new node added is sufficiently far from all 

existing nodes in the network. The third criterion (Eqn. 5) 

guarantees that the network meets the required sum squared 

error specification for the past network outputs. The term 

mine  ensures that the RMS value of the output error ( rmse ) 

over a sliding data window ( M ) is significant. When a new 

observation arrives, the data in this window are updated by 

replacing the oldest one with the latest entry. This additional 

condition is introduced here to overcome the problem of 

over-fitting due to the effect of noise and ensure that the 

growth of hidden nodes in the network remains smooth and 

reasonable. When a new hidden node is added to the 

network, the parameters associated with this new node can 

be calculated as follows: 

nK e1     (6) 

1K n μ x     (7) 

1K n nr   x μ     
(8) 

where   is an overlap factor that determines the overlap of 

hidden unit responses in the input space. 

If the observation does not meet the criteria for adding a 

new hidden node, the network parameter vector 

0 1 1 1[ , , , , , , , ]T T T

K K Kw      μ μ  is updated using the 

Extended Kalman Filter (EKF) as follows: 

nn

nn e kww   )1()(    (9) 

where nk is the Kalman gain vector given by 

  n1nn1n

T
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  (10) 

and nR is the variance of the measurement noise and na is 

the gradient vector which has the following form: 
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The error covariance matrix nP
 
is updated by 

  IQPakIP 01n

T

nnn  
   (12) 

where 0Q
 
is a scalar that determines the allowed random 

step in the direction of the gradient vector. The error 
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covariance matrix nP is a PP  positive definite symmetric 

matrix where P is the number of parameters to be adapted. 

Whenever a new hidden node is allocated, the dimension of 

nP increases and the new rows and columns must be 

initialized as follows: 













I

P
P

0

1

0

0

P

n

n
   (13) 

The new rows and columns are initialized by 0P , which is an 

estimate of uncertainties in the initial values assigned to the 

parameters. 

During the learning process, although active initially, 

some hidden nodes may subsequently end up contributing 

little to the network output. In order to determine whether a 

hidden neuron should be removed or not, the output values 

for the hidden nodes given by 

2

2

1
expk k n nr

k

o 


 
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 
x μ    (14) 

are examined continuously. If the output of a hidden node is 

less than a threshold over a number of M consecutive inputs, 

that hidden node is removed from the network. This is called 

the pruning process of the MRAN algorithm. In order to 

eliminate the problem of inconsistency, the normalized 

output values of hidden nodes are used in the pruning 

process. This pruning strategy can be illustrated as follows: 

Step 1 For every observation ),( nynx , compute the 

outputs of all hidden nodes ),,1(  Kkon

k   using Eqn. 

(14). 

Step 2 Find the largest absolute hidden node output 

value
nomax and compute the normalized output values 

n

n
kn

k
o

o
r

max

 . 

Step 3 Remove the hidden nodes for which the 

normalized output is less than a threshold   for M 

consecutive observations. 

Step 4 Adjust the dimension of the EKF with respect to 

the reduced network. 

C. Online Sequential Extreme Learning Machine (OS-ELM) 

Since its inception, Online Sequential Extreme Learning 

Machine (OS-ELM) has shown to be successful in many 

cases of online learning with varying training data sets. The 

OS-ELM is a sequential learning algorithm based on SLFN 

with RBF neurons. The output of a standard SLFN with N
~

 
hidden nodes and activation function G(x) is governed by 
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where ia  is the vector of input-to-hidden weights, i  is the 

vector of hidden-to-output weights, ib  is the bias value of 

the ith hidden node and ),,( xa ii bG  is the output of the ith 

hidden node with respect to the input x. 

Given a set of initial training data, 0
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 0  ), where xi is the input vector and ti is the 

corresponding desired output vector, the batch ELM 

algorithm is transformed into the problem of minimizing 
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The solution to minimize 
00 TβH   

is given by  

00
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0
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THKβ
T     (16) 

where 000 HHK
T  

The batch ELM algorithm described above assumes that 

all the training data are available for training. However, in 

real-world applications, the training data may arrive chunk-

by-chunk or one-by-one. Therefore, the batch ELM 

algorithm has to be modified and extended to accommodate 

online sequential learning. In online sequential learning 

process, when another block of data 10

0 11
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Niii
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is 

received, where N1 denotes the number of observations in 

this block, the problem becomes minimizing  
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Considering both blocks of training data sets 
 0

N


and 
 1N


, 

the output weight β  becomes 
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Note that in Eqn. (20), H0 and K0 are replaced by the 

function of H1 and K1 so that they will not appear in the 

expression for 
)1(

β  and could be removed from the memory 

during computation. By combining Eqn. (18) and Eqn. (20), 
)1(

β is obtained by 
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III. LIMITATIONS OF OS-ELM 

In order to evaluate the performance of the OS-ELM and 

the MRAN algorithm, some simulation studies have been 

conducted using the regression benchmark problems 

described in [10]. The results are shown in Table I. 
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Table I Evaluation of OS-ELM and MRAN 

Dataset Algorithms 
Learning 
Mode 

Number  

of nodes 

Average  

Training  

Time 

Average 
Testing 
Time 

Average 
Training 
RMSE 

Average 
Testing 
RMSE 

Auto-MPG 

OS-ELM 1 by 1 25 0.0531 0.0075 0.0659 0.0772 

OS-ELM 20 by 20 25 0.0091 0.0081 0.0657 0.0778 

MRAN 1 by 1 4.7(1.9) 1.3359 0.0484 0.1234 0.1339 

Abalone 

OS-ELM 1 by 1 25 0.6853 0.0228 0.0753 0.0776 

OS-ELM 20 by 20 25 0.0709 0.0209 0.0753 0.0775 

MRAN 1 by 1 13.6(1.9) 17.4 0.7688 0.0784 0.0805 

California  

Housing 

OSELM 1 by 1 50 6.6456 0.4766 0.1297 0.1308 

OSELM 20 by 20 50 0.6672 0.4763 0.1293 0.1311 

MRAN 1 by 1 7.7(2.2) 63.025 2.1516 0.1461 0.1452 

 

Simulation results are comparable to the results shown in 

[10]. Note that column four in Table I shows the average 

number of nodes generated by each algorithm. For MRAN, 

the standard deviation of the node number generated in 50 

times of the simulation studies is also calculated and 

indicated in the parentheses. It is clear that the performance 

of the OS-ELM is much faster than that of the MRAN 

algorithm. However, the OS-ELM requires large number of 

hidden nodes compared to the MRAN. This will result in 

excessive testing time and sometimes it will also lead to a 

complex and intricate neural network. Table I also shows 

another advantage of the OS-ELM, i.e. the OS-ELM can 

achieve a lower testing Root Mean Square Error (RMSE), 

especially for the first two problems listed in Table I. 

To further evaluate the performance of the OS-ELM, a 

simple Gaussian function approximation problem is 

introduced here to gain some insights into its mechanism of 

node generation. The simple nonlinear Gaussian function is 

governed by 

]
01.0

)2.0()3.0(
exp[)(

2
2

2
1 


xx

y x   (x1, x2  [-1, 1])

      (22) 

In order to investigate the effect of node selection on the 

performance of the OS-ELM, a series of simulation studies 

have been conducted using the OS-ELM algorithm with 4 

hidden nodes and RBF activation function. Table II presents 

two simulation results with different hidden node selections 

and their regression results for Eqn. (22) are plotted in Fig. 

2. 

As shown in Table II, although Simulations (a) and (b) 

produce similar performance in terms of training and testing 

accuracy, the resulting output weight for each node varies. 

This is because, in the OS-ELM algorithm, the initial nodes 

are randomly selected with different centres and bias values, 

and their contributions to the regression process are different, 

which is reflected by the values of their weights. For 

example, the output weight of the first node in Simulation (a) 

is very small, which means that the node contributes very 

little to the entire network output. In fact, this can be 

understood from the mathematical point of view as the 

centre selected for this node is far from the actual centre of 

the approximation function. 

Another interesting observation from Table II is that the 

last two nodes in Simulation (b) are quite close to each other, 
but their weights are very different – node 4 has a weight of 

0.1199 while the output weight of node 3 is -0.2033. This is 

because when node 4 attempts to approach the actual peak 

value at (0.3, 0.2), node 3 has to balance the error caused by 

node 4 in the local region and eventually the weight of node 

3 evolves into a negative value. 

 

Table II OS-ELM Performances for the Gaussian Function 

Approximation Problem 

S/N Parameter Node 1 Node 2 Node 3 Node 4 

(a) 

Centre (0.962, 0.352) (0.442,0.399) (0.621,0.840) (-0.389,0.480) 

Width 0.3276 0.4227 0.1531 0.1672 

Weight 0.0042 0.2536 -0.2915 0.0724 

Training Accuracy: 0.0726; Testing Accuracy: 0.0607 

(b) 

Centre (0.997, 0.340) (-0.259, -0.319) (-0.383,0.051) (-0.387,0.079) 

Width 0.1566 0.1495 0.038 0.1798 

Weight 0.0842 0.0403 -0.2033 0.1199 

Training Accuracy: 0.0614; Testing Accuracy: 0.0547 

 

Fig. 2 shows the final results (regression functions) 

obtained from the two simulation studies. Obviously, 

Simulations (a) and (b) produce two different regression 

functions although the same objective function is given by 

Eqn. (22). In fact, the OS-ELM will generate a different 

form of regression function in each round of the simulation 

studies, depending on the initial node centres and bias 

values selected. In Fig. 2, neither (a) nor (b) has the same 

form of regression function as the given formula in Eqn. (22) 

although they can achieve very high and similar accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Regression performance of OS-ELM with 4 nodes 

 

The above analysis of the simulation results reveals 

some limitations of the original OS-ELM algorithm. As the 

centres and width of the nodes cannot be adjusted in the 

(a) 

(b) 
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process, in order to get a more accurate resulting regression 

function, the OS-ELM usually needs to assign far more 

number of nodes than necessary to guarantee that at least 

one node is located near the actual peak location. This is 

also in line with the observation in Table I where the OS-

ELM always needs many more nodes compared to the 

MRAN algorithms. Recently, another sequential learning 

algorithm has been proposed in [26, 27]. Their algorithm 

incorporates the idea of on-line structural adaptation to add 

new hidden neurons and the method uses an error sensitive 

clustering algorithm to adapt the centre and width of the 

hidden neurons. The algorithm known as On-line Structural 

Adaptive Hybrid Learning (ONSAHL) is shown in [27] to 

produce compact networks for nonlinear dynamic system 

identification problems. Inspired by their work, this paper 

attempts to explore another alternative to improve the 

learning process by combining the advantages of MRAN 

and ELM, which will be elaborated in the next section. 

IV. HYBRID OS-ELM 

In order to circumvent the limitations of the 

aforementioned OS-ELM, a hybrid OS-ELM (HOS-ELM) 

algorithm is proposed by integrating the advantage of the 

OS-ELM in speed and the merit of MRAN in node selection 

strategy. In MRAN algorithm, the parameters of the network 

including the centres, widths and weights of the hidden 

neurons have to be updated in every step. This results in 

significant increase in the size of the matrices to be updated 

as the number of hidden neurons increases and the RBF 

network structure becomes more complex computationally, 

which directly results in a large computation load and limits 

the use of MRAN for real-time implementation. Here, it 

should be noted that although some research works have 

been done to enhance capabilities of MRAN in recent years 

[28], the critical characteristics of MRAN, namely less 

number of hidden neurons and lower approximation errors, 

are still retained. For example, in the work done in [28], the 

extended MRAN (EMRAN) algorithm still retains the same 

form as MRAN and all the equations are the same except the 

adoption of the ‘winner neuron’ strategy to reduce the on-

line computation load and avoid memory overflow. For 

simplicity, but without loss of generality, this research will 

use the basic form of MRAN to reduce the number of 

hidden nodes in the proposed algorithm. In the proposed 

HOS-ELM algorithm, the centres and widths of the nodes 

can be adjusted based on the EKF theory and new nodes will 

be added when the MRAN criteria are met. In the sequel, 

theoretical basis pertaining to the addition of new nodes in 

the SLFN network will be introduced before the HOS-ELM 

algorithm is described. 

A. Strategy for Adding New Nodes in SLFN 

As mentioned earlier, the ith column of H is the ith 

hidden node’s output vector with respect to 

inputs N21 ,, , xxx  . Therefore, when new hidden nodes 

are added, the number of columns in H needs to be 

expanded too. Assume that a SLFN starts with a few hidden 

nodes, which approximates an initial set of data sample 

 0
N
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Here, Z0 and Z1 are the new hidden node output matrix 

with respect to the two data sample set 
 0
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terms 
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a  and 
1
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b are the new hidden node parameters 

and T

N 1
~


β  is the output weight vector connecting the new 

hidden node to the output nodes. Similar to Eqn. (18), the 

new output weight matrix is estimated as follows: 
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In order to obtain 1
1

ˆ 
K , the block matrix inverse 

theorem in [29, 30] is used here, which is given by 
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where BCADS
1A

 is called the Schur complement of A.  

Here, Z0 is the new hidden node output matrix with 

respect to the original data sample set. By applying the RBF 

node, as long as the new node is far from other nodes, the 

value in Z0 should approach zero so that it is approximately 

a zero matrix. Based on the block inverse theorem and 
1
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Note that AS  is a scalar value.  

Combining Eqn. (26) and Eqn. (28), 
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computed as follows: 
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B. HOS-ELM Algorithm 

As foreshadowed, the proposed HOS-ELM algorithm 

leverages on the advantages of MRAN and OS-ELM. In the 

process of adding new nodes, the three criteria listed in Eqn. 

(3-5) are sequentially checked. A new node will only be 

added when all the three criteria are met. However, in the 

case when the first criterion is not met, the HOS-ELM will 

apply the OS-ELM algorithm to adjust the output weights of 

the nodes in the following manner: 
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Otherwise, the algorithm will check the second and third 

criteria. If both of them are met, a new hidden node will be 

added. The parameters associated with the new node are 

calculated based on Eqn. (6) and (7). 

The output weight vector of the hidden nodes as well as 

the P  value will then be updated using the formula 

developed in Eqn. (33) and (34). 





























 1
111

1

1
111111

1
1111

1
                          

   ˆ

AKK
T
KA

AK
T
KKkk

T
kAk

T
Kkk

k
SPHZS

SZHPPHZSZHPP
P

      (33) 

 


























)))Tβ(HHP(βH(TZS

)βHI))(THP(HZSZ(IHPβ
β

1K
(k)

1K
T

1K1k
(k)

1K1K
T

1K
1

A

(k)
1K1K

T
1K1k1k

T
1k

1
A1k

T
1K1k

(k)
1)(kˆ

      
(34) 

When the observation ),( nynx  does not meet the 

second or third criterion, the network parameters 

1 1[ , , , , ]T T T

K K w μ μ will be updated using the EKF. The 

procedure for adjusting w is as follows: 

a) Calculate the gradient vector 

21 1
1 1 1 12 3

1 1

2 3

2 2
( ) ( ) , ( ) , ,

2 2
  ( ) ( ) , ( )

T
n n n n n

T

TK K
n n n nK K K K

K K

 
 

 

 
 

 









  

 

a x x μ x x μ

x x μ x x μ

 

b) Applying Eqn. (10) to generate the Kalman gain vector;  

c) Update the parameters and the error covariance matrix 

using Eqn. (9) and (12); 

d) Adjust the output weight in the way similar to the OS-

ELM. 

In the proposed HOS-ELM, the output weight vector and 

the P matrix are generated using the ELM algorithm and the 

pruning method used in MRAN is employed as shown in 

Section 2. In the next section, the HOS-ELM will be 

evaluated by a regression example. 

V. EVALUATION AND DISCUSSIONS 

In this section, two examples are used to evaluate the 

performance of the proposed HOS-ELM algorithm, 

including a Gaussian function approximation problem and a 

regression benchmark problem. The purpose of the 

evaluation focuses on a comparison of the complexity of the 

resulting networks and accuracy of approximation. 

  In the first example, the Gaussian function is governed 

by
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where the four-dimensional input vector x is randomly 

generated by MATLAB, and the range of each dimension is 

defined between (-1, 1).  

The evaluation process is carried out in the following 

way. Firstly, the HOS-ELM was used to approximate the 

above objective function. For each simulation of the HOS-

ELM, a set of parameters including simulation accuracy and 

the number of nodes will be obtained. Secondly, the ELM is 

employed to approximate the objective function using the 

same number of nodes as that of the HOS-ELM. In the 

experiment, a total number of 5000 samples are used for 

training and another 5000 samples are used for testing. Two 

simulation results are summarised in Table III. 

 

Table III HOS-ELM Performance Evaluation using a Gaussian 

Approximation Example 

S/N 
Number of Nodes Training Accuracy Testing Accuracy 

HOS-ELM ELM HOS-ELM ELM HOS-ELM ELM 

(a) 3 3 0.0992 0.1295 0.0967 0.1269 

(b) 4 4 0.1011 0.1121 0.1026 0.1134 

 

The results in Table III show that both training and 

testing accuracy of the proposed HOS-ELM are higher than 

that of OS-ELM when the same number of nodes is used. 

Further comparison between Simulations (a) and (b) shows 

that the performance of the OS-ELM degrades when the 

number of nodes decreases (e.g. from 4 to 3 in Table III). 

This implies that the proposed HOS-ELM algorithm is able 
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to reduce the number of nodes and thus simplify the network 

of the OS-ELM. This characteristic of the HOS-ELM will 

be an advantage in some online sequential learning 

processes where the size of the network is limited. 

In order to further verify the performance of the 

proposed HOS-ELM algorithm, the regression benchmark 

problem of “Auto-MPG” is analysed as the second example. 

Table IV summarises a comparison of the performance of 

the OS-ELM, MRAN and the proposed HOS-ELM. On the 

one hand, the proposed HOS-ELM algorithm is able to 

obtain a more simplified network (i.e. reducing the number 

of hidden nodes from 25 to 16) while retaining comparable 

learning accuracy and learning speed when compared with 

the original OS-ELM algorithm. On the other hand, 

compared with the MRAN algorithm, the proposed HOS-

ELM excels significantly in both learning speed and 

learning accuracy although the number of nodes required by 

the HOS-ELM is larger than that of the MRAN. The results 

tabulated in Table IV demonstrate that the proposed HOS-

ELM algorithm has successfully leveraged on the 

advantages of the OS-ELM and the MRAN. 

 

Table IV HOS-ELM Performance Evaluation using the Benchmark 

Example of “Auto-MPG”  

Algorithms Number 
of Nodes 

Average 
Training 

Time 

Average 
Testing 

Time 

Average 
Training 
RMSE 

Average 
Testing 
RMSE 

OS-ELM 25 0.0531 0.0075 0.0659 0.0772 

MRAN 4.7 1.3359 0.0484 0.1234 0.1339 

HOS-ELM 16 0.0638 0.0081 0.0749 0.0872 

VI. CONCLUSIONS 

The OS-ELM is a powerful learning algorithm which is 

capable of generating neural networks with better 

generalisation performance. On the other hand, the MRAN 

provides a method to simulate the human being’s learning 

process through step by step tuning. Based on a thorough 

analysis of the two algorithms, this paper proposed a novel 

algorithm known as Hybrid Online Sequential Extreme 

Learning Machine (HOS-ELM), leveraging on the 

advantages of the OS-ELM in speed and accuracy and the 

merits of the MRAN in node allocation, adjustment and 

pruning process. Results of evaluation have sown that the 

proposed HOS-ELM algorithm can achieve generalization 

performance comparable to the original OS-ELM and at the 

same time, the number of hidden nodes is significantly 

reduced resulting in a compact neural network structure. 
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