
Abstract—In this paper, a novel learning algorithm termed

Hybrid Online Sequential Extreme Learning Machine (HOS-

ELM) is proposed. The proposed HOS-ELM algorithm is a

fusion of the Online Sequential Extreme Learning Machine

(OS-ELM) and the Minimal Resource Allocation Network

(MRAN). It is capable of reducing the number of hidden nodes

in Single-hidden Layer Feed-forward Neural Networks

(SLFNs) with Radial Basis Function (RBF) by virtue of

adjustment in node allocation and pruning capability.

Simulation results show that the generalization performance of

the proposed HOS-ELM is comparable to the original OS-

ELM with significant reduction in the number of hidden nodes.

Index Terms—single-hidden layer feed-forward neural

networks (SLFN), minimal resource allocation network

(MRAN), extreme learning machine (ELM), neural

networks, online sequential learning

I. INTRODUCTION

T is well known that Artificial Neural Networks (ANN)

can provide an input-output mapping of an unknown

dynamic system whereby the system’s output can be written

as a function of inputs and parameters or weights of the

network [1]. The learning process of neural networks

amounts to approximation of an underlying function, which

subsequently can be translated to an estimation of the

parameters (or weights) that are optimal in some sense. In

this regard, the feed forward neural networks have received

extensive attention of researchers due to their capability of

mapping any nonlinear and non-stationary functions to an

arbitrary degree of accuracy. One of such popular feed-

forward networks is the Radial Basis Function (RBF)

network which offers an efficient mechanism for

approximating complex nonlinear mappings between the

input and output data. RBF networks have been popularly

used in many applications in recent years due to their ability

to approximate complex nonlinear mappings directly from

the input-output data with a simple topological structure and

ease of implementation of dynamic and adaptive network

architecture [2-4]. However, as highlighted in many studies,

conventional feed-forward neural networks are usually slow

Manuscript received May 25, 2011; revised August 15, 2011. This

work was supported in part by A*STAR Science and Engineering Research

Council (SERC) – Singapore-Poland Fund under Grant No. 072 134 0057.

M. J. Er is with the School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798 (phone: 0065-

67904529; fax: 0065- 68968757; e-mail: emjer@ntu.edu.sg).

L. Y. Zhai is with the School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798. (e-mail:

lyzhai@ntu.edu.sg).

X. Li is with Singapore Institute of Manufacturing Technology, 71

Nanyang Drive, Singapore 638075 (e-mail: xli@SIMTech.a-star.edu.sg).

L. San is with the School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798 (e-mail:

sanlinn@ntu.edu.sg).

in the training process and in many cases, cannot meet the

speed requirement for online learning. As a significant

contribution in improving the training speed of neural

networks, Platt [5] proposed a sequential learning algorithm

through the development of a Resource Allocation Network

(RAN), in which hidden neurons were added sequentially

based on the novelty of the new data. In practical on-line

applications, sequential learning algorithms are generally

preferred over batch learning algorithms as they do not

require retraining whenever a new data is received. Further

enhancements of the RAN, known as RANEKF [6] and

MRAN [7], were also proposed to improve the parameter

update strategy and the pruning method incorporated. More

recently, a further modification to the RBF, known as GAP-

RBF [8], was proposed to simplify the sequential learning

procedure by linking the required accuracy directly to the

learning algorithm and increase the learning speed by

adjusting the nearest neuron only.

As a novel approach to improve the speed of neural

network training process, Huang et al. [9] proposed a new

learning algorithm called Extreme Learning Machine (ELM)

for Single-hidden Layer Feed-forward Neural Networks

(SLFNs). The ELM can randomly choose the initial hidden

nodes and determine the output weights of SLFNs using

matrix calculations. Since its inception, the ELM has been

shown to be extremely fast in training with better

generalization performance than other batch training

algorithms. An extended application of ELM to the

sequential learning process, which is known as Online

Sequential Extreme Learning Machine (OS-ELM) [10],

provides another promising solution to online learning

problems. However, compared to other learning algorithms

such as MRAN and GAP-RAN, the ELM and OS-ELM

algorithms usually require much more hidden nodes for the

network, which would increase the demand for testing time

(the operation time) in real-world applications due to more

complex network structure.

With a view of simplifying the hidden node structure of

the OS-ELM algorithm, a hybrid learning algorithm

integrating the MRAN algorithm with the OS-ELM is

proposed in this paper. The node generation and pruning

strategies of the MRAN are extended to the OS-ELM so that

the parameters of the hidden nodes could be automatically

adjusted, and subsequently the number of nodes used in the

neural network reduced. The rest of the paper is organized

as follows. Section II presents a brief review of various

learning methods including heuristic learning of SLFNs,

MRAN and the OS-ELM algorithm. The performance of the

OS-ELM in different function approximation problems are

summarized in Section III. Section IV elaborates on the

proposed hybrid OS-ELM algorithm (HOS-ELM). Section

V discusses some issues encountered in the performance

evaluation process of the HOS-ELM and suggestions for

further improvement of the proposed algorithm are

A Hybrid Online Sequential Extreme Learning

Machine with Simplified Hidden Network

M. J. Er, L. Y. Zhai, X. Li and L. San

I

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

highlighted. Major contributions of this work are

summarized in Section VI.

II. RELATED WORKS

The problem of designing fast on-line learning

algorithms for practical implementation of neural networks

remains an active research topic due to the large

computation cost required for the learning process. In this

section, a brief review of related works concerning various

learning methods for SLFNs is presented.

A. Heuristic Learning of SLFNs

For optimum statistical classification and generalization

with SLFN models, two tasks must be performed, namely

learning the best set of weights for a network of k hidden

units and determining k, the best complexity fit [11]. In this

regard, Indurkhya and Weiss [12] compared two approaches

to construction of neural network classifiers, one of which is

the standard back-propagation approach applied to a series

of SLFNs with differing number of hidden units, and the

other one is the heuristic cascade-correlation approach that

can quickly and dynamically configure the hidden units in a

network and learn the best set of weights for it. Real-world

applications conducted in their research show that the back-

propagation approach yields somewhat better results, but

with far greater computation times. The best complexity fit,

k, for both approaches were quite similar. Based on their

research, they proposed a hybrid approach to construct

SLFN classifiers in which the number of hidden units was

determined by cascade-correlation and the weights were

learned by back-propagation. It should be noted that the

selection of weights of the new hidden units for sequential

feed-forward neural networks usually involves a non-linear

optimization problem that cannot be solved analytically in

the general case. In most cases, a suboptimal solution is

searched heuristically. Most models found in the literature

choose the weights in the first layer that correspond to each

hidden unit so that its associated output vector matches the

previous residue as much as possible. In this regard, Romero

and Alquézar [13] recently conducted an experimental study

to select the weights for sequential feed-forward neural

networks. Their results indicated that the orthogonalization

of the output vectors of the hidden units outperformed the

strategy of matching the residue, both for approximation and

generalization purposes.

On the other hand, variational Bayesian (VB) methods

(also known as Bayesian ensemble learning methods)

provide another alternative approach to various learning

problems. VB learning techniques are based on

approximating the true posterior probability density of the

unknown variables of the model by a function with a

restricted form and simpler distribution. In VB methods, the

most common technique is ensemble learning where the

approximation is fitted to the exact posterior distribution and

Kullback–Leibler divergence is used to measure the misfit

(or difference) between the approximation and the true

posterior distribution [14, 15]. In other words, the basic idea

of VB learning methods is to simultaneously approximate

the intractable joint distribution over both hidden states and

parameters with a simpler distribution, usually by assuming

the hidden states and parameters are independent. However,

as pointed out by some researchers [16], the choice of the

posterior approximation form for the sources and the mixing

matrix has a significant effect on the final solution. In fact,

probabilistic methods such as Gaussian processes and

support vector machines usually suffer from the problem of

model mismatch. In such a context, this paper attempts to

explore some other alternatives to improve the online

sequential leaning process based on established sequential

learning algorithms such as MRAN and ELM.

B. Minimal Resource Allocation Network (MRAN)

Since the late eighties, there has been considerable

interest in RBF neural networks due to their good global

generalization ability and a simple network structure that

avoids lengthy calculations [17]. A number of algorithms

have been proposed for training the RBF network [18, 19].

The classical approach to RBF implementation is to fix the

number of hidden neurons a priori along with its centres and

widths based on some properties of the input data and then

estimate the weights connecting the hidden and output

neurons [20]. Two methods have been proposed to find the

proper number of hidden neurons for a given problem. Lee

and Kil [21] introduced the concept of building up the

hidden neurons from zero to the required number with the

update of the RBF parameters being done by a gradient

descent algorithm. An alternative approach is to start with as

many as hidden units as the number of inputs and then

reduce them using a clustering algorithm which essentially

puts patterns that are close in the input space into a cluster

so as to remove unnecessary hidden neurons [22]. However,

in all these studies, the main learning scheme is of batch

type, which is not suitable for on-line learning. In 1991,

Platt [5] proposed a sequential learning algorithm to remedy

the above drawbacks. In Platt’s RAN algorithm, hidden

neurons are added based on the novelty of the new data and

the weights connecting the hidden neurons to the output

neurons are estimated using the least mean square method.

Platt showed that the resulting network topology is more

parsimonious than the classical RBF networks.

Kadirkamanathan [6] proposed modifications to improve

RAN by using an EKF instead of the least mean squares

method to estimate the network parameters. The resulting

network called RANEKF is more compact and has better

accuracy than RAN. A further improvement to RAN and

RANEKF was proposed by [6] in which a pruning strategy

was introduced to remove those neurons that consistently

made little contributions to the network output. The

resulting network, MRAN, was shown to be more compact

than RAN and RANEKF for several applications in the

areas of function approximation and pattern classification

[23].

MRAN is a sequential learning algorithm that realises a

minimal RBF neural network structure by combining the

growth criteria of RAN with a pruning strategy [6, 23]. This

algorithm is an improvement to the RAN of [7] and the

RANEKF algorithm of [6]. Fig. 1 is a schematic illustration

of the basic principles of the MRAN algorithm [24].

Briefly speaking, the learning process of MRAN

involves the allocation of new hidden nodes as well as the

adjustment of network parameters. In MRAN algorithms,

Gaussian functions are usually selected in majority of cases

as radial basis functions even though other functions like

thin plate functions can also be used [25]. The objective of

learning is to determine the two parameters of the Gaussian

function used, namely the centre and width of the function.

There are three parameters associated with each hidden node

in the network, namely the centre (μ), the width () and

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

the connecting weights () to the output units. The centres,

widths, and weights of the hidden neurons are adjusted

using an extended Kalman filter (EKF). Mathematically, the

output of an MRAN equalizer has the following form:

 


K

k kkf
1

)()(xx  (1)

where x is the input vector of the network, K indicates the

total number of hidden neurons, k is the connection

weight of the kth hidden neuron to the output unit and

)(x is a Gaussian function given by

)
1

exp()(
2

2 kμxx 
k

k


 (2)

Fig. 1 Principles of MRAN

Here, kμ and k refer to the center and width of the kth

hidden neuron and denotes the Euclidean norm. Notice

that in Eqn. (1), the bias value of the system is assumed to

be zero.

In the MRAN algorithm, the network starts with no

hidden units. As the training process progresses, the

algorithm adds hidden units and adjusts existing network

parameters. More specifically, as each input-output training

data (i.e. observation)),(nn yx is received, the network is

built up based on certain growth criteria. In the MRAN

algorithm, the following three criteria must be met for an

observation),(nn yx to be used to generate a new hidden

node in the network:

min||)(|| efye nnn  x (3)

n nr n x μ (4)

'

min

)1(

2

e
M

e
e

n

Mni i

rmsn 
  (5)

where ne is the error between the network output ()(nf x)

and the target output (ny), nr is the centre of the hidden

node that is nearest to the current input nx , M is the total

number of the past outputs of the network, and mine , n ,

and mine are thresholds to be selected based on specific

applications.

To be more precise, the first criterion (Eqn. 3)

guarantees that the error between the network output and the

target output must be significant. Here, mine is an

instantaneous error that is used to determine if existing

nodes are insufficient to obtain a network output. The

second criterion (Eqn. 4) guarantees that the input must be

far from all the centres of current nodes. The term n here

ensures that the new node added is sufficiently far from all

existing nodes in the network. The third criterion (Eqn. 5)

guarantees that the network meets the required sum squared

error specification for the past network outputs. The term

mine ensures that the RMS value of the output error (rmse)

over a sliding data window (M) is significant. When a new

observation arrives, the data in this window are updated by

replacing the oldest one with the latest entry. This additional

condition is introduced here to overcome the problem of

over-fitting due to the effect of noise and ensure that the

growth of hidden nodes in the network remains smooth and

reasonable. When a new hidden node is added to the

network, the parameters associated with this new node can

be calculated as follows:

nK e1 (6)

1K n μ x (7)

1K n nr   x μ
(8)

where  is an overlap factor that determines the overlap of

hidden unit responses in the input space.

If the observation does not meet the criteria for adding a

new hidden node, the network parameter vector

0 1 1 1[, , , , , , ,]T T T

K K Kw      μ μ is updated using the

Extended Kalman Filter (EKF) as follows:

nn

nn e kww  )1()((9)

where nk is the Kalman gain vector given by

  n1nn1n

T

nnn aPaPaRk 




1

 (10)

and nR is the variance of the measurement noise and na is

the gradient vector which has the following form:

21 1

1 1 1 12 3

1 1

2 3

2 2
() () , () , ,

2 2
 () () , ()

T

n n n n n

TK K

K n n K K n n K

K K

T

 
 

 

 
 

 

  

 









a x x μ x x μ

x x μ x x μ

 (11)

The error covariance matrix nP

is updated by

  IQPakIP 01n

T

nnn  
 (12)

where 0Q

is a scalar that determines the allowed random

step in the direction of the gradient vector. The error

Start

Step1: Calculate
three error criteria

Step2: Add new
hidden neuron

Step5: Pruning

Read next
training pair

Step3: Calculate
gradient matrix B

Step4: Update
parameters using EKF

Satisfy?

Finish?

End

Y

Y

N

N

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

covariance matrix nP is a PP positive definite symmetric

matrix where P is the number of parameters to be adapted.

Whenever a new hidden node is allocated, the dimension of

nP increases and the new rows and columns must be

initialized as follows:













I

P
P

0

1

0

0

P

n

n
 (13)

The new rows and columns are initialized by 0P , which is an

estimate of uncertainties in the initial values assigned to the

parameters.

During the learning process, although active initially,

some hidden nodes may subsequently end up contributing

little to the network output. In order to determine whether a

hidden neuron should be removed or not, the output values

for the hidden nodes given by

2

2

1
expk k n nr

k

o 


 
   

 
x μ (14)

are examined continuously. If the output of a hidden node is

less than a threshold over a number of M consecutive inputs,

that hidden node is removed from the network. This is called

the pruning process of the MRAN algorithm. In order to

eliminate the problem of inconsistency, the normalized

output values of hidden nodes are used in the pruning

process. This pruning strategy can be illustrated as follows:

Step 1 For every observation),(nynx , compute the

outputs of all hidden nodes),,1(Kkon

k  using Eqn.

(14).

Step 2 Find the largest absolute hidden node output

value
nomax and compute the normalized output values

n

n
kn

k
o

o
r

max

 .

Step 3 Remove the hidden nodes for which the

normalized output is less than a threshold  for M

consecutive observations.

Step 4 Adjust the dimension of the EKF with respect to

the reduced network.

C. Online Sequential Extreme Learning Machine (OS-ELM)

Since its inception, Online Sequential Extreme Learning

Machine (OS-ELM) has shown to be successful in many

cases of online learning with varying training data sets. The

OS-ELM is a sequential learning algorithm based on SLFN

with RBF neurons. The output of a standard SLFN with N
~

hidden nodes and activation function G(x) is governed by





N
~

1 i

n

i

n
~ R ,R),,()(a xxaX iiiN

bGβf (15)

where ia is the vector of input-to-hidden weights, i is the

vector of hidden-to-output weights, ib is the bias value of

the ith hidden node and),,(xa ii bG is the output of the ith

hidden node with respect to the input x.

Given a set of initial training data, 0

10
)}{(,

N
iii  txN



(NN

~
 0 ), where xi is the input vector and ti is the

corresponding desired output vector, the batch ELM

algorithm is transformed into the problem of minimizing

00 TβH  where

NN
bGbG

bGbG

NNNN

NN

~

),,(),,(

),,(),,(

0

~~
0

11

1~~111

0 






















xaxa

xaxa

H0







The solution to minimize
00 TβH 

is given by

00
1

0
)0(

THKβ
T (16)

where 000 HHK
T

The batch ELM algorithm described above assumes that

all the training data are available for training. However, in

real-world applications, the training data may arrive chunk-

by-chunk or one-by-one. Therefore, the batch ELM

algorithm has to be modified and extended to accommodate

online sequential learning. In online sequential learning

process, when another block of data 10

0 11
)}{(,

NN

Niii



 txN



is

received, where N1 denotes the number of observations in

this block, the problem becomes minimizing






























1

0

1

0

T

T
β

H

H (17)

where

NN
bGbG

bGbG

NNNNNN

NNNN

~

),,(),,(

),,(),,(

1

~~11

1~~111

1

10
10

00





























xaxa

xaxa

H







Considering both blocks of training data sets
 0

N


and
 1N


,

the output weight β becomes




























 

1

0

1

01
1

)1(

T

T

H

H
Kβ

T

 (18)

Where

 
1

T

10

1

0T

1

T

01 HHK
H

H
HHK 










 (19)

and

1
T
1

)0(
1

T
1

)0(
1

1

0

1

0
- THβHHβK

T

T

H

H





























T

(20)

Note that in Eqn. (20), H0 and K0 are replaced by the

function of H1 and K1 so that they will not appear in the

expression for
)1(

β and could be removed from the memory

during computation. By combining Eqn. (18) and Eqn. (20),
)1(

β is obtained by

)βH(THKβ

T

T

H

H
Kβ

(0)

111

1

1

(0)

1

0

1

01

1

)1(

























T

T

 (21)

III. LIMITATIONS OF OS-ELM

In order to evaluate the performance of the OS-ELM and

the MRAN algorithm, some simulation studies have been

conducted using the regression benchmark problems

described in [10]. The results are shown in Table I.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

Table I Evaluation of OS-ELM and MRAN

Dataset Algorithms
Learning
Mode

Number

of nodes

Average

Training

Time

Average
Testing
Time

Average
Training
RMSE

Average
Testing
RMSE

Auto-MPG

OS-ELM 1 by 1 25 0.0531 0.0075 0.0659 0.0772

OS-ELM 20 by 20 25 0.0091 0.0081 0.0657 0.0778

MRAN 1 by 1 4.7(1.9) 1.3359 0.0484 0.1234 0.1339

Abalone

OS-ELM 1 by 1 25 0.6853 0.0228 0.0753 0.0776

OS-ELM 20 by 20 25 0.0709 0.0209 0.0753 0.0775

MRAN 1 by 1 13.6(1.9) 17.4 0.7688 0.0784 0.0805

California

Housing

OSELM 1 by 1 50 6.6456 0.4766 0.1297 0.1308

OSELM 20 by 20 50 0.6672 0.4763 0.1293 0.1311

MRAN 1 by 1 7.7(2.2) 63.025 2.1516 0.1461 0.1452

Simulation results are comparable to the results shown in

[10]. Note that column four in Table I shows the average

number of nodes generated by each algorithm. For MRAN,

the standard deviation of the node number generated in 50

times of the simulation studies is also calculated and

indicated in the parentheses. It is clear that the performance

of the OS-ELM is much faster than that of the MRAN

algorithm. However, the OS-ELM requires large number of

hidden nodes compared to the MRAN. This will result in

excessive testing time and sometimes it will also lead to a

complex and intricate neural network. Table I also shows

another advantage of the OS-ELM, i.e. the OS-ELM can

achieve a lower testing Root Mean Square Error (RMSE),

especially for the first two problems listed in Table I.

To further evaluate the performance of the OS-ELM, a

simple Gaussian function approximation problem is

introduced here to gain some insights into its mechanism of

node generation. The simple nonlinear Gaussian function is

governed by

]
01.0

)2.0()3.0(
exp[)(

2
2

2
1 


xx

y x (x1, x2  [-1, 1])

 (22)

In order to investigate the effect of node selection on the

performance of the OS-ELM, a series of simulation studies

have been conducted using the OS-ELM algorithm with 4

hidden nodes and RBF activation function. Table II presents

two simulation results with different hidden node selections

and their regression results for Eqn. (22) are plotted in Fig.

2.

As shown in Table II, although Simulations (a) and (b)

produce similar performance in terms of training and testing

accuracy, the resulting output weight for each node varies.

This is because, in the OS-ELM algorithm, the initial nodes

are randomly selected with different centres and bias values,

and their contributions to the regression process are different,

which is reflected by the values of their weights. For

example, the output weight of the first node in Simulation (a)

is very small, which means that the node contributes very

little to the entire network output. In fact, this can be

understood from the mathematical point of view as the

centre selected for this node is far from the actual centre of

the approximation function.

Another interesting observation from Table II is that the

last two nodes in Simulation (b) are quite close to each other,
but their weights are very different – node 4 has a weight of

0.1199 while the output weight of node 3 is -0.2033. This is

because when node 4 attempts to approach the actual peak

value at (0.3, 0.2), node 3 has to balance the error caused by

node 4 in the local region and eventually the weight of node

3 evolves into a negative value.

Table II OS-ELM Performances for the Gaussian Function

Approximation Problem

S/N Parameter Node 1 Node 2 Node 3 Node 4

(a)

Centre (0.962, 0.352) (0.442,0.399) (0.621,0.840) (-0.389,0.480)

Width 0.3276 0.4227 0.1531 0.1672

Weight 0.0042 0.2536 -0.2915 0.0724

Training Accuracy: 0.0726; Testing Accuracy: 0.0607

(b)

Centre (0.997, 0.340) (-0.259, -0.319) (-0.383,0.051) (-0.387,0.079)

Width 0.1566 0.1495 0.038 0.1798

Weight 0.0842 0.0403 -0.2033 0.1199

Training Accuracy: 0.0614; Testing Accuracy: 0.0547

Fig. 2 shows the final results (regression functions)

obtained from the two simulation studies. Obviously,

Simulations (a) and (b) produce two different regression

functions although the same objective function is given by

Eqn. (22). In fact, the OS-ELM will generate a different

form of regression function in each round of the simulation

studies, depending on the initial node centres and bias

values selected. In Fig. 2, neither (a) nor (b) has the same

form of regression function as the given formula in Eqn. (22)

although they can achieve very high and similar accuracy.

Fig.2 Regression performance of OS-ELM with 4 nodes

The above analysis of the simulation results reveals

some limitations of the original OS-ELM algorithm. As the

centres and width of the nodes cannot be adjusted in the

(a)

(b)

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

process, in order to get a more accurate resulting regression

function, the OS-ELM usually needs to assign far more

number of nodes than necessary to guarantee that at least

one node is located near the actual peak location. This is

also in line with the observation in Table I where the OS-

ELM always needs many more nodes compared to the

MRAN algorithms. Recently, another sequential learning

algorithm has been proposed in [26, 27]. Their algorithm

incorporates the idea of on-line structural adaptation to add

new hidden neurons and the method uses an error sensitive

clustering algorithm to adapt the centre and width of the

hidden neurons. The algorithm known as On-line Structural

Adaptive Hybrid Learning (ONSAHL) is shown in [27] to

produce compact networks for nonlinear dynamic system

identification problems. Inspired by their work, this paper

attempts to explore another alternative to improve the

learning process by combining the advantages of MRAN

and ELM, which will be elaborated in the next section.

IV. HYBRID OS-ELM

In order to circumvent the limitations of the

aforementioned OS-ELM, a hybrid OS-ELM (HOS-ELM)

algorithm is proposed by integrating the advantage of the

OS-ELM in speed and the merit of MRAN in node selection

strategy. In MRAN algorithm, the parameters of the network

including the centres, widths and weights of the hidden

neurons have to be updated in every step. This results in

significant increase in the size of the matrices to be updated

as the number of hidden neurons increases and the RBF

network structure becomes more complex computationally,

which directly results in a large computation load and limits

the use of MRAN for real-time implementation. Here, it

should be noted that although some research works have

been done to enhance capabilities of MRAN in recent years

[28], the critical characteristics of MRAN, namely less

number of hidden neurons and lower approximation errors,

are still retained. For example, in the work done in [28], the

extended MRAN (EMRAN) algorithm still retains the same

form as MRAN and all the equations are the same except the

adoption of the ‘winner neuron’ strategy to reduce the on-

line computation load and avoid memory overflow. For

simplicity, but without loss of generality, this research will

use the basic form of MRAN to reduce the number of

hidden nodes in the proposed algorithm. In the proposed

HOS-ELM algorithm, the centres and widths of the nodes

can be adjusted based on the EKF theory and new nodes will

be added when the MRAN criteria are met. In the sequel,

theoretical basis pertaining to the addition of new nodes in

the SLFN network will be introduced before the HOS-ELM

algorithm is described.

A. Strategy for Adding New Nodes in SLFN

As mentioned earlier, the ith column of H is the ith

hidden node’s output vector with respect to

inputs N21 ,, , xxx  . Therefore, when new hidden nodes

are added, the number of columns in H needs to be

expanded too. Assume that a SLFN starts with a few hidden

nodes, which approximates an initial set of data sample

 0
N


with small errors. After another block of data 1N


arrives,

)1(
β and P1 will be calculated respectively. However, the

error


















1

(1)

T

T
β

H

H might be larger than the desired value.

As one of the possible solutions, some new hidden nodes

need to be added to the SLFN. To simplify the above

process, it is assumed that each time there is only one node

added and the hidden node parameters are assigned through

the method of MRAN. Hence, the problem is equivalent to

minimizing

 ˆ

1

0)1(

11

00






























T

T
β

ZH

ZH (23)

where

1 1
~

1
~

11
~

1
~

0

0
0
),,(

),,(

























NNNN

NN

bG

bG

xa

xa

Z 

1 1
~

1
~

11
~

1
~

1

1
10

0

),,(

),,(

























NNNNN

NNN

bG

bG

xa

xa

Z 

m)1
~

(1
~

~

1

(1)

 ˆ



























N

T

N

T

N

T

β

β

β

β


Here, Z0 and Z1 are the new hidden node output matrix

with respect to the two data sample set
 0

N


and 1N


. The

terms
1

~
N

a and
1

~
N

b are the new hidden node parameters

and T

N 1
~


β is the output weight vector connecting the new

hidden node to the output nodes. Similar to Eqn. (18), the

new output weight matrix is estimated as follows:

 m) N (N

T

NNN 
































1010
1

0

)1
~

()(11

001
1

)1(ˆˆ

T

T

ZH

ZH
Kβ (24)

where



















11

00

11

00
1

ˆ
ZH

ZH

ZH

ZH
K

T

Applying the architecture rules for the block matrix and

using 1101 HHKK
T to substitute 0K , we have

0 0 0 0

1

1 1 1 1

1 0 0 1 1 1

0 0 1 1 1 0 0 1 1 1 1 (1) (1)

ˆ

() ()

() ()

T

T T

N N N

T T T T

N N N

 

    






 

   
   
   

 
 
 

H Z H Z
K

H Z H Z

K H Z H Z

Z H Z H Z Z Z Z
 （25）

and
















































1100

11
)0(

0

1

0

11

00

TZTZ

THβK

T

T

ZH

ZH

TT

TT

 (26)

In order to obtain 1
1

ˆ 
K , the block matrix inverse

theorem in [29, 30] is used here, which is given by

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

1 1 1 1 1 1 1

1 1 1

A A

A A

      

  

   
   

   

A B A A BS CA A BS

C D S CA S

 (27)

where BCADS
1A

 is called the Schur complement of A.

Here, Z0 is the new hidden node output matrix with

respect to the original data sample set. By applying the RBF

node, as long as the new node is far from other nodes, the

value in Z0 should approach zero so that it is approximately

a zero matrix. Based on the block inverse theorem and
1

11
 KP , 1

1
ˆ 
K

becomes




































































1
111

1

1
111111

1
1111

11
111

1

1
11

1
1

1
111

1
11

1
1

1
1

1

1111~
111

1
~11~~11

1

)()(

)()(
ˆ

A
T

A

A
TT

A
T

A
T

A

A
TT

A
T

T

N

T

N

T

NN

SPHZS

SZHPPHZSZHPP

SKHZS

SZHKKHZSZHKK

TZHZ

ZHK
K

 (28)

where

1
~11~~1~

1111111)()()()(
 

N

T

NNN

TT

A ZHPHZZZS (29)

Note that AS is a scalar value.

Combining Eqn. (26) and Eqn. (28),
)1(

β̂

can be

computed as follows:

mNN

T

NNN 





















)(()1
~

()(010

ˆˆ

1

0

11

001

1

(1)

T

T

ZH

ZH
Kβ

=
















)TZS)THP(βHHP(βHZS

)βHI))(THP(HZSZ(IHPβ

1

T

1

1

A1

T

11

(0)

1

T

11

(0)

1

T

1

1

A

(0)

11

T

111

T

1

1

A1

T

11

(0)

(30)

B. HOS-ELM Algorithm

As foreshadowed, the proposed HOS-ELM algorithm

leverages on the advantages of MRAN and OS-ELM. In the

process of adding new nodes, the three criteria listed in Eqn.

(3-5) are sequentially checked. A new node will only be

added when all the three criteria are met. However, in the

case when the first criterion is not met, the HOS-ELM will

apply the OS-ELM algorithm to adjust the output weights of

the nodes in the following manner:

)()(
1111

)()1(k
kk

T
kk

kk
βHTHPββ 

 

 (31)

kk
T
kkk

T
kkkk PHHPHIHPPP 1

1
1111)(


 

 (32)

Otherwise, the algorithm will check the second and third

criteria. If both of them are met, a new hidden node will be

added. The parameters associated with the new node are

calculated based on Eqn. (6) and (7).

The output weight vector of the hidden nodes as well as

the P value will then be updated using the formula

developed in Eqn. (33) and (34).





























 1
111

1

1
111111

1
1111

1

 ˆ

AKK
T
KA

AK
T
KKkk

T
kAk

T
Kkk

k
SPHZS

SZHPPHZSZHPP
P

 (33)


























)))Tβ(HHP(βH(TZS

)βHI))(THP(HZSZ(IHPβ
β

1K
(k)

1K
T

1K1k
(k)

1K1K
T

1K
1

A

(k)
1K1K

T
1K1k1k

T
1k

1
A1k

T
1K1k

(k)
1)(kˆ

(34)

When the observation),(nynx does not meet the

second or third criterion, the network parameters

1 1[, , , ,]T T T

K K w μ μ will be updated using the EKF. The

procedure for adjusting w is as follows:

a) Calculate the gradient vector

21 1
1 1 1 12 3

1 1

2 3

2 2
() () , () , ,

2 2
 () () , ()

T
n n n n n

T

TK K
n n n nK K K K

K K

 
 

 

 
 

 









  

 

a x x μ x x μ

x x μ x x μ

b) Applying Eqn. (10) to generate the Kalman gain vector;

c) Update the parameters and the error covariance matrix

using Eqn. (9) and (12);

d) Adjust the output weight in the way similar to the OS-

ELM.

In the proposed HOS-ELM, the output weight vector and

the P matrix are generated using the ELM algorithm and the

pruning method used in MRAN is employed as shown in

Section 2. In the next section, the HOS-ELM will be

evaluated by a regression example.

V. EVALUATION AND DISCUSSIONS

In this section, two examples are used to evaluate the

performance of the proposed HOS-ELM algorithm,

including a Gaussian function approximation problem and a

regression benchmark problem. The purpose of the

evaluation focuses on a comparison of the complexity of the

resulting networks and accuracy of approximation.

 In the first example, the Gaussian function is governed

by

]
5.0

)5.0()6.0()2.0()3.0(
exp[)(

2
4

2
3

2
2

2
1 


xxxx

y x

 (35)

where the four-dimensional input vector x is randomly

generated by MATLAB, and the range of each dimension is

defined between (-1, 1).

The evaluation process is carried out in the following

way. Firstly, the HOS-ELM was used to approximate the

above objective function. For each simulation of the HOS-

ELM, a set of parameters including simulation accuracy and

the number of nodes will be obtained. Secondly, the ELM is

employed to approximate the objective function using the

same number of nodes as that of the HOS-ELM. In the

experiment, a total number of 5000 samples are used for

training and another 5000 samples are used for testing. Two

simulation results are summarised in Table III.

Table III HOS-ELM Performance Evaluation using a Gaussian

Approximation Example

S/N
Number of Nodes Training Accuracy Testing Accuracy

HOS-ELM ELM HOS-ELM ELM HOS-ELM ELM

(a) 3 3 0.0992 0.1295 0.0967 0.1269

(b) 4 4 0.1011 0.1121 0.1026 0.1134

The results in Table III show that both training and

testing accuracy of the proposed HOS-ELM are higher than

that of OS-ELM when the same number of nodes is used.

Further comparison between Simulations (a) and (b) shows

that the performance of the OS-ELM degrades when the

number of nodes decreases (e.g. from 4 to 3 in Table III).

This implies that the proposed HOS-ELM algorithm is able

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

to reduce the number of nodes and thus simplify the network

of the OS-ELM. This characteristic of the HOS-ELM will

be an advantage in some online sequential learning

processes where the size of the network is limited.

In order to further verify the performance of the

proposed HOS-ELM algorithm, the regression benchmark

problem of “Auto-MPG” is analysed as the second example.

Table IV summarises a comparison of the performance of

the OS-ELM, MRAN and the proposed HOS-ELM. On the

one hand, the proposed HOS-ELM algorithm is able to

obtain a more simplified network (i.e. reducing the number

of hidden nodes from 25 to 16) while retaining comparable

learning accuracy and learning speed when compared with

the original OS-ELM algorithm. On the other hand,

compared with the MRAN algorithm, the proposed HOS-

ELM excels significantly in both learning speed and

learning accuracy although the number of nodes required by

the HOS-ELM is larger than that of the MRAN. The results

tabulated in Table IV demonstrate that the proposed HOS-

ELM algorithm has successfully leveraged on the

advantages of the OS-ELM and the MRAN.

Table IV HOS-ELM Performance Evaluation using the Benchmark

Example of “Auto-MPG”

Algorithms Number
of Nodes

Average
Training

Time

Average
Testing

Time

Average
Training
RMSE

Average
Testing
RMSE

OS-ELM 25 0.0531 0.0075 0.0659 0.0772

MRAN 4.7 1.3359 0.0484 0.1234 0.1339

HOS-ELM 16 0.0638 0.0081 0.0749 0.0872

VI. CONCLUSIONS

The OS-ELM is a powerful learning algorithm which is

capable of generating neural networks with better

generalisation performance. On the other hand, the MRAN

provides a method to simulate the human being’s learning

process through step by step tuning. Based on a thorough

analysis of the two algorithms, this paper proposed a novel

algorithm known as Hybrid Online Sequential Extreme

Learning Machine (HOS-ELM), leveraging on the

advantages of the OS-ELM in speed and accuracy and the

merits of the MRAN in node allocation, adjustment and

pruning process. Results of evaluation have sown that the

proposed HOS-ELM algorithm can achieve generalization

performance comparable to the original OS-ELM and at the

same time, the number of hidden nodes is significantly

reduced resulting in a compact neural network structure.

REFERENCES

[1] R. Bustami, N. Bessaih, C. Bong, S. Suhaili, "Artificial Neural

Network for Precipitation and Water Level Predictions of Bedup

River", IAENG International Journal of Computer Science, vol.32,

no.2, IJCS_34_2_10, 2010.

[2] T. Hacib, M.R. Mekideche, N. Ferkha, “Computational investigation

on the use of FEM and RBF neural network in the inverse

electromagnetic problem of parameter identification”, IAENG

International Journal of Computer Science, vol. 33, no. 2, 18-24,

2007.

[3] M.R. Jafari, T. Alizadeh, M. Gholami, A. Alizadeh, K. Salahshoor,

“On-line Identification of Non-Linear Systems Using an Adaptive

RBF-Based Neural Network”, World Congress on Engineering and

Computer Science 2007 (WCECS 2007), San Francisco, USA, 2007.

[4] S. Nematipour, J. Shanbehzadeh, R.A. Moghadam, “Relevance

Feedback Optimization in Content Based Image Retrieval Via

Enhanced Radial Basis Function Network”, International

MultiConference of Engineers and Computer Scientists 2011 (IMECS

2011), Hong Kong, pp. 539-542, 2011.

[5] J. Platt, “A resource-allocating network for function interpolation”,

Neural Computation, vol. 3, pp. 213-225, 1991.

[6] V. Kadirkamanathan, M. Niranjan, “A function estimation approach

to sequential learning with neural networks”, Neural Computation,

vol. 5, pp. 954-975, 1993.

[7] Y. Lu, N. Sundararajan, P. Saratchandran, “A sequential learning

scheme for function approximation using minimal radial basis

function (RBF) neural networks”, Neural Computation, vol. 9, pp.

461-478, 1997.

[6] G.B. Huang, P. Saratchandran, N. Sundararajan, “An efficient

sequential learning algorithm for growing and pruning RBF (GAP-

RBF) networks”, IEEE Transactions on Systems, Man and

Cybernetics, vol. 34, no. 6, pp. 2284-2292, 2004.

[9] G.B. Huang, Q.Y. Zhu, C.K. Siew, “Extreme learning machine:

theory and applications”, Neurocomputing, vol. 70, pp. 489-501,

2006.

[10] N.Y. Liang, G.B. Huang, P. Saratchandran, “A fast and accurate

online sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Netwoeks, vol. 17, no. 6, pp. 1411–1423,

2006.

[11] D. Patra, M.K. Das, S. Pradhan, “Integration of FCM, PCA and

Neural Networks for Classification of ECG Arrhythmias”, IAENG

International Journal of Computer Science, vol. 36, no. 3, 36_3_05,

2010.

[12] N. Indurkhya, S.M. Weiss, “Heuristic configuration of single hidden-

layer feed-forward neural networks”, Applied Intelligence, vol. 2, no.

4, pp. 325-331, 1992.

[13] E.Romero, R. Alquézar, “Heuristics for the selection of weights in

sequential feed-forward neural networks: An experimental study”,

Neurocomputing, vol. 70, no. 16-18, pp. 2735-2743, 2007.

[14] H. Lappalainen, J. Miskin, “Ensemble learning”, Advances in

Independent Component Analysis, Springer-Verlag, pp.75-92, 2000.

[15] D.J.C. MacKay, Information Theory, Inference, and Learning

Algorithms, Cambridge University Press, 2003.

[16] A.Ilin, H.Valpola, “On the Effect of the form of the posterior

approximation in variational learning of ICA models”, Neural

Processing Letters, vol. 22, pp.183–204, 2005.

[17] S. Chen, S.A. Billings, C. Couan, P.M. Grant, “Practical Identification

of NARMAX Models Using Radial Basis Function”, International

Journal of Control, vol. 52, pp. 1327-1350, 1990.

[18] C.L. Chen, W.C. Chen, F.Y. Chang, “Hybrid learning algorithm for

Gaussian potential function networks”, Control Theory and

Applications, vol. 140, no. 6, pp. 442-448, 1993.

[19] J.Moody, C.J. Darken, “Fast learning in network of locally tuned

processing units”, Neural Computation, vol. 1, pp. 281-294, 1989

[20] D.N. Rao, Dr. M.R.K. Murthy, D.N. Harshal, S.R.M. Rao,

“Computational Comparisons of GPC and NGPC Schemes”,

Engineering Letters, vol. 14, no. 1, EL_14_1_19, 2007.

[21] S. Lee, R.M.A. Kil, “Gaussian potential function network with

hierarchically selforganizing learning”, Neural Networks, vol. 4, pp.

207-224, 2001.

[22] M.T. Musavi, W. Ahmed, K.H. Chan, K.B. Faris, D.M. Hummels,

“On training of Radial Basis Function classifiers”, Neural Networks,

vol. 5,pp. 595-603, 1992

[23] Y.W. Lu, N. Sundararajan, P.Saratchandran, “A sequential Minimal

Radial Basis Function(RBF) neural network learning algorithm”,

IEEE Transactions on Neural Networks, vol.9, no.2, pp. 308-318,

1998

[21] S.C. Rogers, Use of MRAN adaptive neural network for control of a

flexible system”, The International Society for Optical Engineering,

vol. 5102, pp. 84-9, 2003.

[25] S. Chen, S.A. Billings, P.M. Grant, “Nonlinear system identification

using neural networks”, International Journal Control, vol. 51, pp.

1191–1214, 1990

[26] T.F. Junge, H.Unbehauen, “Off-Line Identification of Nonlinear

Systems Using Structurally Adaptive Radial Basis Function

Networks”, The 35th Conference on Decision and Control, pp. 943-

948, Kobe, Japan, 1996

[27] T.F. Junge, H.Unbehauen, “On-Line Identification of Nonlinear

Time-Variant Systems Using Structurally Adaptive Radial Basis

Function Networks”, American Control Conference, pp. 1037-1041,

Albuquerque, New Mexico, 1997

[25] Y. Lu, N. Sundararajan, P. Saratchandran, “Analysis of minimal

radial basis function network algorithm for real-time identification of

nonlinear dynamic systems”, Control Theory Application, vol. 147,

no. 4, pp. 476-484, 2000

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

[29] C.R. Rao, S.K. Mitra, Generalized inverse of matrices and its

applications. Wiley, New York, 1971

[30] G.H. Golub, C.F.V. Loan, Matrix computations. The Johns Hopkins

Univ. Press, Baltimore, 1996.

M. J. Er (S’82-M’87-SM’07) received the B. Eng. and M. Eng. degrees in

electrical engineering from the National University of Singapore, in 1985

and 1988, respectively, and the Ph.D. degree in systems engineering from

the Australian National University, Canberra, Australia, in 1992. From

1987 to 1989, he was a R&D Engineer with Chartered Electronics

Industries Pte Ltd and a Software Engineer in Telerate R&D Pte Ltd,

respectively. He served as the Director of the Intelligent Systems Centre —

a University Research Centre co-funded by Nanyang Technological

University and Singapore Engineering Technologies from 2003 to 2006. He

is currently a Full Professor in the School of Electrical and Electronic

Engineering (EEE) and Director of Renaissance Engineering Programme,

College of Engineering. He has authored 5 books, 16 book chapters, and

more than 400 journal and conference papers. His research interests include

fuzzy logic and neural networks, computational intelligence, robotics and

automation, sensor networks, and biomedical engineering. Currently, Prof.

Er is the Vice-Chairman of IEEE Computational Intelligence Society

Standards Committee, Chairman of IEEE Computational Intelligence

Society Singapore Chapter, and Chairman of Electrical and Electronic

Engineering Technical Committee, Institution of Engineers, Singapore

(IES). He serves as the Editor-in-Chief for the IES Journal B on Intelligent

Devices and Systems, an Area Editor of the International Journal of

Intelligent Systems Science, and an Associate Editor of twelve refereed

international journals. Prof. Er was the winner of the IES Prestigious

Publication (Application) Award in 1996 and IES Prestigious Publication

(Theory) Award in 2001. He was awarded a Commonwealth Fellowship

tenable at University of Strathclyde in 2000. He received the Teacher of the

Year Award for the School of EEE in 1999, School of EEE Year 2

Teaching Excellence Award in 2008, and the Most Zealous Professor of the

Year Award 2009. He also received the Best Session Presentation Award at

the World Congress on Computational Intelligence in 2006. Furthermore,

together with his students, he has won more than 30 awards at international

and local competitions.

L. Y. Zhai received his PhD and M.Eng (both in Mechanical Engineering)

from Nanyang Technological University of Singapore in 2010 and 2000,

respectively. His B.Eng degree in Mechanical Engineering was awarded by

Xi’an Jiaotong University (China) in 1994. He has been actively engaged in

several funded research projects in manufacturing system modeling and

optimisation in the past ten years. His publication includes more than 20

refereed international journal papers, book chapters and international

conference papers. His main research interests include prognostic and

health management, fuzzy logic and rough sets, knowledge discovery and

intelligent systems.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_01

(Advance online publication: 27 February 2012)

__

