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Abstract—Bringing a high confidence to the validity of
business processes is one of the prevailing themes in business
process management. Regardless of the introduction of BPMN
1.2, there is no discernible improvement in the preciseness
of the BPMN semantics. Motivated by the need to ensure
the trustworthiness of BPMN models and the absence of an
accurate behavioural semantics, a rigorous semantic definition
of BPMN is advocated. The symbolic encodings of the execution
semantics are expressed concisely using linear temporal logic
(LTL). The LTL-based representations serve as a basis for the
formal analysis of BPMN diagrams as well as the prototypical
implementation of software tools.

Index Terms—BPMN, execution semantics, behavioural se-
mantics, linear temporal logic.

I. Introduction

The business process modelling notation (BPMN) [1],
[2], [3] is emerging as a widely accepted approach in
the domain of business process management. The BPMN,
which embodies a collection of notational elements, is a
visual modelling language for the construction of business
process diagrams. In the BPMN specifications [1], [3], the
behavioural semantics is elucidated using the notion of token
flow. The Petri-like semantics of BPMN is along the same
vein as the one in UML activity diagrams [4].

While the syntax of BPMN is specified by the official
specifications in a precise manner, the execution semantics
of BPMN is solely described in narrative form using plain
text. Since a rigorous semantics is a prerequisite for the
verification of a BPMN model, we take on the challenge
of defining the behaviour of BPMN elements in the form
of linear temporal logic [5], [6]. The rationale behind the
adoption of linear temporal logic in lieu of computation tree
logic is due to the fact that the BPMN semantics matches
closely with a linear time model.

The rest of the paper proceeds as follows. Section 2
reviews prior work in the area. Section 3 is dedicated to an
overview of BPMN. The syntax of linear temporal logic is
presented in Section 4. Section 5 seeks to provide a semantic
foundation for BPMN on the basis of linear temporal logic.
The application of the formalized execution semantics is
exemplified in Section 6. Section 7 offers brief concluding
comments as well as points to ideas for future research.

II. RelatedWork

In the business process management community, there is
a growing body of literature regarding BPMN. Most of these
contributions emphasize the static analysis of BPMN models
and can be classified as four main approaches. The first
approach exploits Petri nets as the underlying framework
for assessing the behavioural correctness of BPMN models.
Raedts et al. [7] adopt Petri nets as an intermediate repre-
sentation when transforming BPMN models into mCRL2 for

V. Lam is with the Computer Centre, The University of Hong Kong,
Pokfulam Road, Hong Kong (e-mail: vitus.lam@ieee.org).

performing formal analysis. Dijkman et al. [8] propose the
utilization of ProM framework for studying the behaviour
of BPMN models by defining a semantic mapping between
BPMN and Petri nets. To verify BPMN models against
different properties by means of CPN Tools [9], Ou-Yang
and Lin [10] propound an approach that BPMN models are
first translated into BPEL4WS and then encoded as Colored
Petri-net XML (CPNXML).

Both the second and third approaches that are discussed
in the following, unlike the first approach, harness the power
of process calculi. They utilize theπ-calculus [11], [12]
and Communicating Sequential Processes (CSP) [13] as the
semantic formalisms, respectively. Bog et al. [14], [15], [16],
[17] put forward the simulation and analysis of BPMN
models using PiVizTool by translating BPMN into theπ-
calculus. The work of Puhlmann [18] formalizes BPMN
in the form of theπ-calculus and verifies the respective
π-calculus representations through the use of Advanced
Bisimulation Checker (ABC) [19]. Wong and Gibbons [20],
[21] convert BPMN into CSP in order to determine the
compatibility between BPMN processes with the Failures-
divergence Refinement (FDR) model checker [22]. In [23],
[24], Wong and Gibbons develop their idea a little further
by establishing a relative-time semantic model built upon
CSP. The application of symbolic model checking on the
verification of BPMN models constitutes the fourth approach.
A semantic model for BPMN 1.0 is defined using New
Symbolic Model Verifier (NuSMV) language [25] in [26].

Though substantial studies have been performed on
BPMN, our effort is distinguished from them in several
respects:

(i) The main purpose of our work is to develop a solid
foundation for the Petri-like semantics of BPMN rather
than on the formal analysis of BPMN models.

(ii) The theoretical basis concentrates on BPMN 1.2 instead
of BPMN 1.0. In contrast to BPMN 1.0, BPMN 1.2
supports the concepts of catching events, throwing
events and signal events.

(iii) The underlying framework is built on linear temporal
logic in lieu of Petri-nets,π-calculus, CSP and NuSMV
language.

(iv) The temporal analyses of BPMN process models are
a class of problems that are not fully addressed
in [7], [8], [10], [14], [15], [16], [17], [18], [20]
and [21]. A prime motivation for using linear temporal
logic is to complement these studies by providing a
methodical approach for reasoning about the temporal
aspects of BPMN.

(v) Our semantic analysis examines more advanced graph-
ical elements encompassing subprocess, exception and
transaction.

There is relatively little research conducted directly on the
execution semantics of BPMN. Dumas et al. [27] introduce
a behavioural semantics pertaining to the inclusive merge
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gateway of BPMN. Börger and Thalheim [28] develop a
semantic model for BPMN 1.0 by the abstract state machines
method. In [29], Grosskopf presents an executable business
process specification language in which the semantics is built
on the semantics of BPMN 1.0. Unlike these earlier studies
that are based on BPMN 1.0, a full explanation for the
behaviour of all the notational elements of BPMN 1.2 is
given in Section V. When compared with the work of Dumas
et al. that is limited to a single notational element, our work
covers a larger set of graphical constructs.

A related strain of research in the context of BPMN deals
with the equivalence checking of BPMN processes. In [30],
a structured framework for classifying different sorts of
equivalences for BPMN processes is presented. As opposed
to our previous attempt, the goal of our current work is
to construct a mathematical-based semantics that lays the
groundwork for analyzing business processes expressed as
BPMN.

Besides, there is a great variety of research topics related
to BPMN. Auer et al. [31] enhance the BPMN by augmenting
it with submit/response-style user interaction. Mazanek and
Hanus [32] develop a software tool using the functional logic
programming language Curry that automates the transforma-
tions between BPMN and BPEL. In [33], Sánchez-González
et al. utilize the Bender method to find out the thresholds
of the control-flow complexity measures for BPMN process
models. Kopp et al. [34] present a systematic way for
obtaining a complete BPMN process from a BPMN process
fragment. An application of BPMN in the healthcare domain
is examined in [35]. Additionally, emerging research on busi-
ness process management encompasses a broad range of ar-
eas such as compliance checking of business constraints [36],
automated rectification of behavioural anomalies in business
process models [37], process mining [38], [39], [40], [41],
declarative workflows [42], [43] and distributed business
processes [44].

III. Business Process Modelling Notation

This section is devoted to a discussion of the main features
of BPMN 1.2. Most of the material in this section is derived
from our earlier studies [30], [45]. For a more thorough
description of BPMN, the reader is referred to [1], [2], [3].

The BPMN is a well-known diagrammatic notation for
supporting the specification of business processes. The no-
tational elements of BPMN are classified into four types:
flow objects, connecting objects, artifacts and swimlanes.
The flow objects and connecting objects, which are the basic
elements for constructing business processes, are delineated
in Figures 1, 2, 3 and 4. The extra information of a business
process and the organizational perspective of a business pro-
cess diagram are expressed in BPMN by means of artifacts
(Figure 5) and swimlanes (Figure 6), respectively. Unlike
flow objects as well as connecting objects, artifacts and
swimlanes are not related to process flows and do not have
token-based semantics.

In BPMN, flow objects fall into three categories: events,
activities and gateways. The occurrence of a start event (Fig-
ure 1) initiates a process and causes the creation of a token
that moves down the outgoing sequence flow. Depending on
how a none start event is utilized, it represents either (i) the
event trigger type is not indicated or (ii) the beginning of a

subprocess upon receiving a token from its respective parent
process. Contrary to none start events, all other types of
start events including message start events, timer start events,
conditional start events, signal start events and multiple start
events are regarded as trigger-based start events in which the
use of them in subprocesses is not permitted.

A message start event, a timer start event, a conditional
start event, a signal start event and a multiple start event
symbolize the activation of a process on receipt of a message,
whenever a particular time-date condition holds, when a
condition is fulfilled, upon arrival of a signal and if any one
of the two or more defined start events occurs, respectively.

The happening of an end event terminates a process and
results in the consumption of a token. A none end event is
similar in concept to a none start event. It denotes either
(i) the event trigger type is not indicated or (ii) the cessation
of a subprocess on receipt of a token along the incoming
sequence flow. A message end event, an error end event,
a cancel end event, a compensation end event, a signal end
event, a terminate end event and a multiple end event signify
the completion of a process that leads to the sending of
a message to other process, the throwing of an error, the
abortion of a transaction, the execution of a compensation,
the broadcasting of a signal, the immediate cessation of all
process flows and the triggering of all defined end events,
respectively.

Catch intermediate events and throw intermediate events
are events that occur during the course of a process. With
the exception that a catch intermediate event does not initiate
a process, the behaviours of a catching none intermediate
event, a catching message intermediate event, a catching
timer intermediate event, a catching conditional intermediate
event, a catching signal intermediate event and a catching
multiple intermediate event are analogous to the behaviours
of a none start event, a message start event, a timer start
event, a conditional start event, a signal start event and a
multiple start event. Likewise, the execution semantics of a
throw intermediate event is similar to the one of an end event
except that a throw intermediate event does not terminate a
process. The behavioural semantics of a throwing message
intermediate event, a throwing compensation intermediate
event, a throwing signal intermediate event and a throwing
multiple intermediate event correspond to the behavioural
semantics of a message end event, a compensation end event,
a signal end event and a multiple end event. The occurrence
of an error, the abortion of a transaction, the receipt of a
compensation event, the catching of a link event and the
throwing of a link event are rendered by a catching error
intermediate event, a catching cancel intermediate error, a
catching compensation intermediate event, a catching link
intermediate event and a throwing link intermediate event.

An activity is regarded as an unit of work that is either a
task or a subprocess (Figure 2). A task is atomic and does not
support a hierarchical structure. On the contrary, a subprocess
is decomposable. The three types of markers in a task are
loop, multiple instance and compensation. Likewise, there are
five sorts of subprocess markers: collapsed subprocess, loop,
multiple instance, ad hoc and compensation. A collapsed
subprocess hides all the details of its internal structure,
whereas an expanded subprocess shows all the fine details. A
transaction is a subprocess in which all the enclosed activities
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are either complete or cancel.
Each outgoing sequence flow of a data-based exclusive

decision gateway (Figure 3) is associated with a conditional
expression. A token is placed on one of the outgoing se-
quence flows in which the respective condition is met. On
receiving a token from one of the incoming sequence flows,
a data-based exclusive merge gateway sends a token down
the outgoing sequence flow. When a token reaches an event-
based exclusive decision gateway, a token is emitted on each
of the outgoing sequence flows. A token leaves an event-
based exclusive merge gateway upon receipt of a token along
one of the incoming sequence flows.

On receipt of a token, an inclusive decision gateway offers
a token to each of the outgoing sequence flows in which the
corresponding condition expression returns true. After the ar-
rival of all the tokens generated by an upstream, an inclusive
merge gateway sends a token on the outgoing sequence flow.
The set of outgoing sequence flows of a complex decision
gateway on which tokens are sent as well as the collection of
incoming sequence flows of a complex merge gateway from
which tokens are received are determined by an expression.
The sending of tokens along all outgoing sequence flows by
a parallel fork gateway creates parallel flows. The receipt
of tokens on all incoming sequence flows by a parallel join
gateway synchronizes parallel flows.

Connnecting objects are classified into three categories:
sequence flows, message flows and assocations (Figure 4).
A sequence flow is a connection between two flow objects
in which a token moves from the source flow object to the
target flow object. Gateways are passed over in a normal flow.
In contrast, an uncontrolled flow does not pass through any
gateways. A conditional flow determines whether a token
is sent along the outgoing sequence flow by evaluating its
associated conditional expression. A default flow is chosen
when the conditional expressions of all other outgoing se-
quence flows become false. A message flow expresses the
interaction between two business processes. An association
establishes a linkage between a flow object and an artifact.
A directed association either (i) specifies data objects that
are the inputs and outputs of an activity or (ii) connects a

compensation intermediate event attached to the boundary of
an activity with a compensation activity. A (non-directional)
assocation links up a text annotation and a flow object.

As shown in Figure 5, the three pre-defined artifacts
in BPMN are data objects, groups and text annotations.
A data object models both electronic and tangible items
such as data or document. A group highlights a collection
of notational elements for satisfying a variety of purposes
encompassing documentation, reporting, analysis, etc. A text
annotation offers additional information regarding a process
or notational element.

In BPMN, a pool (Figure 6) is considered as a participant.
Each pool contains a process and embodies at least one lane.
A lane is a means for grouping the different portions of a
business process.

IV. L inear Temporal Logic

Temporal logic, which is a category of logic, delineates
how the truth value of a formula evolves over time. In the
context of computer science, the application of temporal
logic is mainly utilized for specifying the desired properties
of a system. One of the most commonly accepted ways for
classifying temporal logics is by means of time models. In
the linear time model there is a single future time at any
given point of time, whereas in the branching time model
there are multiple future times at any given point of time. The
linear temporal logic (LTL) and computation tree logic (CTL)
adopt, respectively, the linear time model and branching time
model as the underlying structure of time.

By ΣAP we denote the set of atomic propositions overp,
q and r. The syntax of LTL is inductively defined as:

φF p | ¬φ | (φ) | φ ∧ φ | φ ∨ φ | φ→ φ | Xφ | Fφ | Gφ | φUφ.

X, F, G and U are linear temporal operators. The temporal
operators X, F, G and U stand for next state, some future
state, all future states and all future states until a condition
holds, respectively. The intuitive meanings of the associated
LTL formulas are given below:

Xφ: meansφ is true in next state.
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Fφ: meansφ is true in some future state.
Gφ: meansφ is true in all future states.
φ1Uφ2: φ1 is true in all future states untilφ2 holds.

The unary operators X, F and G have a higher precedence
than the binary operator U.

V. Formal Semantics of BPMN

To facilitate the adoption of LTL as the mathematically
founded framework for representing the execution semantics
of BPMN, some atomic propositions coupled with their
meanings are defined as follows:

tokenAtx: A token is resided onx.
tokenAtx1,x2: A token is located at the sequence

flow or directed association con-
nectingx1 and x2.

tokenConsumedByTE: A token is consumed by the termi-
nate end eventTE.

catchEventE: The eventE is triggered.
throwEventE: The eventE throws a trigger.
c: The conditionc holds.
Our formalized semantics follows the token-based seman-

tics of BPMN given in [2], [3]. Each atomic proposition
is utilized to keep track of the status of a token, event or
condition.

In BPMN, a gateway is allowed to have multiple incoming
and multiple outgoing sequence flows. Since the gateway is
regarded as an alternative representation of a merge gateway
and a decision gateway in which the outgoing sequence flow
of the merge gateway connects to the incoming sequence flow
of the decision gateway, we omit it in the semantic mapping.

Figure 7 depicts the graphical representation of a parallel
fork gatewayG1. We let FPFG be a set of parallel fork
gateways,SF be a set of flow objects,CSF be a set of
sequence flows andFTerm

EE be a set of terminate end events.
The execution semantics of the parallel fork gatewayG1

connecting to flow objectsFO1, . . ., FOn is formally captured
in the following definition in terms of an LTL formula on the
assumption that there are zero or more terminate end events
in the corresponding BPMN processes.

Definition 1 (Parallel Fork Gateway):Suppose G1 ∈

FPFG, FOi ∈ SF, (FO1,G1), (G1,FOj) ∈ CSF and TEk ∈

FTerm
EE for i = 1, . . . , n, j = 2, . . . , n and k = 1, . . . ,m. The

execution semantics of the parallel fork gatewayG1 with
n− 1 outgoing sequence flows is denoted in LTL as:

G

(

(tokenAtFO1,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(
n

∧

j=2

tokenAtG1,FOj ∧ ¬tokenAtFO1,G1)

)

.

The atomic propositiontokenAtFO1,G1 represents the re-
ceipt of a token along the incoming sequence flow (FO1,

G1). The propositional formula
∧m

k=1¬tokenConsumedByTEk

states that none of the terminate end eventsTE1, . . ., TEm

consumes a token which results in the immediate cessation
of all flows. The sending of tokens on all outgoing sequence
flows is specified by

∧n
j=2 tokenAtG1,FOj . The negation of the

atomic propositiontokenAtFO1,G1 stipulates that the received
token is no longer on the incoming sequence flow whenever
there are tokens on all the outgoing sequence flows. The
property that the emission of tokens must take place after
receiving a token from the incoming sequence flow is ensured
by means of the temporal operator X.

The official semantics of BPMN does not specify whether
a maximal set of flow objects is fired in each state of a BPMN
diagram. We extend the official semantics by adopting the
maximal property as a central principle in our formalization.
For instance, if there are tokens on the incoming sequence
flows of two parallel fork gateways simultaneously, both
gateways are fired in the next state in lieu of either one
of them is fired. The temporal operator X in Definition 1
guarantees that the maximal property is preserved.

We denote byFPJG a set of parallel join gateways. The
precise semantics of a parallel join gateway is defined below.

Definition 2 (Parallel Join Gateway):Suppose G1 ∈

FPJG, FOi ∈ SF, (FOj ,G1), (G1,FOn) ∈ CSF and TEk ∈

FTerm
EE for i = 1, . . ., n, j = 1, . . ., n − 1 andk = 1, . . ., m.

The behavioural semantics of the parallel join gatewayG1

with n− 1 incoming sequence flows is expressed as:

G

(

(
n−1
∧

j=1

tokenAtFOj ,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtG1,FOn ∧

n−1
∧

j=1

¬tokenAtFOj ,G1)

)

.

The formula
∧n−1

j=1 tokenAtFOj ,G1 specifies that tokens are
received along all incoming sequence flows (FOj ,G1).
The traverse of a token along the outgoing sequence
flow (G1,FOn) is modelled as the atomic proposition
tokenAtG1,FOn.

Let FD
XDG be a set of data-based exclusive decision gate-

ways,SCond be a set of conditions,ΦCond : CSF→ SCond be a
function returning the condition of a sequence flow,SIdx

Cond=

{1, . . . , n − 1} and ΦEval : {SIdx
Cond} → SIdx

Cond be a function
returning the index of the condition that first evaluates to
true.

Definition 3 (Data-based Exclusive Decision Gateway):
SupposeG1 ∈ FD

XDG, FOi ∈ SF, (FO1, G1), (G1, FO j) ∈ CSF,
c j−1 ∈ SCond, ΦCond((G1,FOj)) = c j−1, t = ΦEval({1, . . . , n−1})
and TEk ∈ FTerm

EE for i = 1, . . ., n, j = 2, . . ., n and k = 1,
. . ., m. The behaviour of the data-based exclusive decision
gatewayG1 with n− 1 outgoing sequence flows is specified
below:

G

(

(tokenAtFO1,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk ∧ ct)→

X(tokenAtG1,FOt+1 ∧ ¬tokenAtFO1,G1)

)

.

The conditional expression of an outgoing sequence flow
that is the first to become true is denoted by the atomic
propositionct. Whenever a token is offered to the incoming
sequence flow (FO1,G1) and ct evaluates to true, the data-
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based exclusive decision gatewayG1 emits a token along
the outgoing sequence flow (G1,FOt+1) represented as the
atomic propositiontokenAtG1,FOt+1.

In the following, we present the formal semantics of a
data-based exclusive merge gateway. A set of data-based
exclusive merge gateways is denoted byFD

XMG .

Definition 4 (Data-based Exclusive Merge Gateway):
SupposeG1 ∈ FD

XMG, FOi ∈ SF, (FOj ,G1), (G1,FOn) ∈
CSF and TEk ∈ FTerm

EE for i = 1, . . . , n, j = 1, . . . , n− 1 and
k = 1, . . . ,m. The execution semantics of the data-based
exclusive merge gatewayG1 is defined by:

G

( n−1
∧

j=1

(

(tokenAtFOj ,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtG1,FOn ∧ ¬tokenAtFO j ,G1)
)

)

.

The behaviour of the data-based exclusive merge gateway
G1 is exclusive in the sense that a token is sent along
the outgoing sequence flow as soon as a token is received
from one of the incoming sequence flows. The formula
tokenAtFOj ,G1∧

∧m
k=1¬tokenConsumedByTEk formalizes the

exclusive behaviour of the gateway since it is based on one
incoming sequence flow rather than all incoming sequence
flows.

Next, the mathematical definitions of event-based ex-
clusive decision gateway and event-based exclusive merge
gateway are given. The sets of event-based exclusive decision
gateways and event-based exclusive merge gateways are
denoted, respectively, byFE

XDG and FE
XMG . We defineΓIE

= {None, Msg, Timer, Err, Cncl, Cmpen, Cond, Link, Sign,
Multi }, FNone

IE as a set of none intermediate events for catching
the event triggers,FMsg

IE as a set of message intermediate
events for catching the event triggers,FTimer

IE as a set of
timer intermediate events for catching the event triggers,
FErr

IE as a set of error intermediate events for catching the
event triggers,FCncl

IE as a set of cancel intermediate events for
catching the event triggers,FCmpen

IE as a set of compensation
intermediate events for catching the event triggers,FCond

IE as a
set of conditional intermediate events for catching the event
triggers,FLink

IE as a set of link intermediate events for catching
the event triggers,FSign

IE as a set of signal intermediate events
for catching the event triggers andFMulti

IE as a set of multiple
intermediate events for catching the event triggers.

Definition 5 (Event-based Exclusive Decision Gateway):
SupposeG1 ∈ FE

XDG, FOi ∈ SF, E j ∈
⋃

σ∈ΓIE
FσIE, (FO1,G1),

(G1,E j), (E j,FOj+1) ∈ CSF andTEk ∈ FTerm
EE for i = 1, . . . , n,

j = 1, . . . , n− 1 andk = 1, . . . ,m. The LTL representation of
the event-based exclusive decision gatewayG1 with n − 1
outgoing sequence flows is given below:

G

(

(

(tokenAtFO1,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(
n−1
∧

j=1

tokenAtG1,E j ∧ ¬tokenAtFO1,G1)
)

∧

( n−1
∧

j=1

(

(tokenAtG1,E j ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE j ∧ ¬tokenAtG1,E j )
)

)

∧

( n−1
∧

j=1

(

(tokenAtE j ∧ catchEventE j∧

∧

i∈{1,...,n−1}\{ j}

¬catchEventEi∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE j ,FOj+1 ∧

n−1
∧

j=1

¬tokenAtE j )
)

)

)

.

On receiving a token along the incoming sequence flow,
a token traverses each of the outgoing sequence flows of
the event-based exclusive decision gatewayG1 expressed
as

∧n−1
j=1 tokenAtG1,E j . The atomic propositiontokenAtE j sig-

nifies the arrival of the token at the catch intermediate
eventE j . When one of the catch intermediate eventsE j is
triggered as defined in LTL bytokenAtE j ∧ catchEventE j

∧
∧

i∈{1,...,n−1}\{ j} ¬catchEventEi , the token on E j moves
down the outgoing sequence flow (E j,FOj+1) denoted as
tokenAtE j ,FOj+1. The formula

∧n−1
j=1 ¬tokenAtE j symbolizes the

token exits the catch intermediate eventE j and the consump-
tion of all tokens on the other catch intermediate events.

Definition 6 (Event-based Exclusive Merge Gateway):
SupposeG1 ∈ FE

XMG, FOi ∈ SF, (FOj ,G1), (G1,FOn) ∈
CSF and TEk ∈ FTerm

EE for i = 1, . . . , n, j = 1, . . . , n− 1 and
k = 1, . . . ,m. The event-based exclusive merge gatewayG1

with n− 1 incoming sequence flows is encoded in the same
way as a data-based exclusive merge gateway.

An event-based exclusive merge gateway and a data-
based exclusive merge gateway are equivalent in terms of
behavioural semantics. As a result of this, the encodings of
these two gateways are the same as stipulated by Defini-
tions 6 and 4.

The definition that follows comprises two parts. The first
part concentrates on an inclusive decision gateway without a
default flow. The second part is concerned with an inclusive
decision gateway that a default sequence flow is specified.
We let FIDG be a set of inclusive decision gateways and
ΦIsDf : CSF → B be a function that returns whether a
sequence flow is a default flow.

Definition 7 (Inclusive Decision Gateway):Suppose G1

∈ FIDG, FOi ∈ SF, (FO1, G1), (G1,FO j) ∈ CSF, SDf (G1) =

{x|x ∈
⋃

i∈{2,...,n}{(G1,FOi)} ∧ ΦIsDf(x) = true} and TEk ∈

FTerm
EE for i = 1, . . ., n, j = 2, . . . , n andk = 1, . . ., m. If c j−1

∈ SCond, CAll
T = 2{1,...,n−1} \ {∅}, CT ∈ CAll

T , ΦCond((G1,FOj))
= c j−1 and SDf (G1) = ∅ for j = 2, . . ., n, then the inclusive
decision gatewayG1 with no default flow andn−1 outgoing
sequence flows associated with conditionsc j−1 is modelled
in LTL as:

G

(

(tokenAtFO1,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk∧

∧

i∈CT

ci ∧
∧

i∈{1,...,n−1}\CT

¬ci)→

X(
∧

i∈CT

tokenAtG1,FOi+1 ∧ ¬tokenAtFO1,G1)

)

.

If c j−1 = SCond, CAll
T = 2{1,...,n−2}, CT ∈ CAll

T , ΦCond((G1,FOj))
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= c j−1 and SDf (G1) = {(G1,FOn)} for j = 2, . . . , n − 1, then
the inclusive decision gatewayG1 associated with conditions
c j−1 and a default flow (G1,FOn) is defined in LTL by:

G

(

(

(tokenAtFO1,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk∧

∧

i∈CT

ci ∧
∧

i∈{1,...,n−2}\CT

¬ci ∧ ¬(CT = ∅))→

X(
∧

i∈CT

tokenAtG1,FOi+1 ∧ ¬tokenAtFO1,G1)
)

∧

(

(tokenAtFO1,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk∧

∧

i∈CT

ci ∧
∧

i∈{1,...,n−2}\CT

¬ci ∧ (CT = ∅))→

X(tokenAtG1,FOn ∧ ¬tokenAtFO1,G1)
)

)

.

The default sequence flow of the gatewayG1 is denoted by
SDf (G1) . In the first portion of the definition,SDf (G1) is an empty
set as there is no default flow. In contrast, the setSDf (G1) in
the second portion of the definition contains (G1,FOn) in
order to indicate that it is a default flow.

The setCAll
T in the above represents all possible combina-

tions of conditions that hold. To conform with the semantics
that at least one of the conditions must hold, the empty set
is excluded from the setCAll

T when there is no default flow.
The setCT, which is an element ofCAll

T , is the collection of
conditions that are evaluated to true.

The use of the setCT in both formulas
∧

i∈CT
ci and

∧

i∈CT
tokenAtG1,FOi+1 guarantees that every activation of an

outgoing sequence flow is due to the condition associated
with the outgoing sequence flow is evaluated to true. A
token moves down the default sequence flow represented as
tokenAtG1,FOn in the second temporal formula ifCT = ∅ is
true.

The BPMN specification does not stipulate how the acti-
vation of an inclusive merge gateway is decided. Dumas et
al. [27] close the gap by proposing a method that finds out
whether an inclusive merge gateway is enabled in linear time.
In what follows, we build upon their work and abstract away
the detailed implementation of the propounded algorithm.
We defineFIMG as a set of inclusive merge gateways and
ITKN ∈ 2{1,...,n−1} \ {∅} as the set of incoming sequence flows
that tokens are expected to be received from an upstream
whenever an inclusive merge gateway is activated. The set
ITKN is obtained by checking which incoming sequence flows
have one or more tokens.

Definition 8 (Inclusive Merge Gateway):SupposeG1 ∈

FIMG , FOi ∈ SF, (FOj ,G1), (G1,FOn) ∈ CSF andTEk ∈ FTerm
EE

for i = 1, . . ., n, j = 1, . . ., n − 1 andk = 1, . . ., m. The
encoding of the behaviour of the inclusive merge gateway
G1 is given by:

G

(

(
∧

j∈ITKN

tokenAtFOj ,G1 ∧
∧

i∈{1,...,n−1}\ITKN

¬tokenAtFOi ,G1∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtG1,FOn ∧
∧

j∈ITKN

¬tokenAtFO j ,G1)

)

.

The receipt of one token on each incoming sequence
flow that a token is expected to arrive is detected by
∧

j∈ITKN
tokenAtFOj ,G1. The emission of a token along the out-

going flow (G1,FOn) after synchronizing the set of incoming
sequence flowsITKN is represented astokenAtG1,FOn.

In [46], Völzer puts forwards a brand-new algorithm with
a linear-time complexity for determining if an inclusive
merge gateway is activated. The use of this new algorithm in
substitution for the one advocated by Dumas et al. is valid
as concrete implementation is not specified in Definition 8.

Let FCDG be a set of complex decision gateways andOActd

∈ 2{2,...,n} \ {∅} be the set of outgoing sequence flows that are
selected by evaluating the expression of a complex decision
gateway.

Definition 9 (Complex Decision Gateway):SupposeG1 ∈

FCDG, FOi ∈ SF, (FO1, G1), (G1,FO j) ∈ CSF and TEk ∈

FTerm
EE for i = 1, . . . , n, j = 2, . . ., n and k = 1, . . ., m. The

behaviour of the complex decision gatewayG1 with n − 1
outgoing sequence flows is represented as:

G

(

(tokenAtFO1,G1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(
∧

j∈OActd

tokenAtG1,FOj ∧ ¬tokenAtFO1,G1)

)

.

An inclusive decision gateway and a complex decision
gateway both activate one of the combinations of the out-
going sequence flows. Unlike an inclusive decision gateway,
a complex decision gateway determines the collection of
outgoing sequence flows to be selected by evaluating an
expression. The result values of the evaluation are contained
in the setOActd. As OActd is a non-empty set, the behavioural
semantics that one or more outgoing sequence flows are
activated by a complex decision gateway is preserved. The
activation of the outgoing sequence flows is modelled as
∧

j∈OActd
tokenG1,FOj in Definition 9.

Compared to a data-based exclusive merge gateway, an
event-based exclusive merge gateway and an inclusive merge
gateway, the exact behavioural semantics of a complex merge
gateway depends on an expression in lieu of a predefined
merging behaviour. In the following definition, an upstream
parallel fork gateway is utilized to illustrate the use of a
complex merge gateway for implementing a discriminator
pattern. Our attention is confined to this case as other
merging patterns of a complex merge gateway are merely
variants of the formalized execution semantics. ByFCMG we
denote a set of complex merge gateways.

Definition 10 (Complex Merge Gateway):SupposeG1 ∈

FCMG, FOi ∈ SF, (FOj , G1), (G1,FOn) ∈ CSF and TEk ∈

FTerm
EE for i = 1, . . . , n, j = 1, . . ., n − 1 andk = 1, . . ., m.

If an upstream parallel fork gateway is placed prior to the
complex merge gatewayG1 for modelling a discriminator
pattern, then the execution semantics of the complex merge
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gatewayG1 is specified as:

G

( n−1
∧

j1=1

(

(tokenAtFOj1 ,G1 ∧
∧

i1∈{1,...,n−1}\{ j1}

¬tokenAtFOi ,G1∧

m
∧

k=1

¬tokenConsumedByTEk)→

X
(

tokenAtG1,FOn ∧ ¬tokenAtFO j1 ,G1∧
∧

j2∈{1,...,n−1}\{ j1}

(

(tokenAtFOj2 ,G1∧

∧

i2∈{1,...,n−1}\{ j2}

¬tokenAtFOi2 ,G1∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(¬tokenAtFOj2 ,G1)
)

)

)

)

.

The most important feature of a discriminator pattern is to
traverse the first received token along the outgoing sequence
flow and discard all other received tokens. The former is
expressed astokenAtG1,FOn and the latter is formalized by:

∧

j2∈{1,...,n−1}\{ j1}

(

(tokenAtFOj2 ,G1∧

∧

i2∈{1,...,n−1}\{ j2}

¬tokenAtFOi2 ,G1∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(¬tokenAtFOj2 ,G1)

)

.

In the same spirit, the execution semantics of start event,
catch intermediate event, throw intermediate event and end
event is further specified in the form of LTL formulas. We
defineΓSE = {None, Msg, Timer, Cond, Sign, Multi}. Let
FNone

SE be a set of none start events,FMsg
SE be a set of message

start events,FTimer
SE be a set of timer start events,FCond

SE be a
set of conditional start events,FSign

SE be a set of signal start
events andFMulti

SE be a set of multiple start events.

Definition 11 (Start Event):Suppose E1 ∈
⋃

σ∈ΓSE
FσSE,

FO1 ∈ SF and (E1,FO1) ∈ CSF. The behavioural semantics
of the start eventE1 is encoded as:

G

(

(catchEventE1 → XtokenAtE1)∧

(

tokenAtE1 → X(tokenAtE1,FO1 ∧ ¬tokenAtE1)
)

)

.

A token is created whenever a start event trigger occurs.
The LTL formula catchEventE1 → XtokenAtE1 captures
the relationship between the occurrence of a start event
trigger and the generation of a token. The generated token
then leaves the start event and traverses the outgoing se-
quence flow. These correspond to the formulatokenAtE1 →

X(tokenAtE1,FO1 ∧ ¬tokenAtE1).

Definition 12 (Catch Intermediate Event):SupposeE1 ∈
⋃

σ∈ΓIE\{Cmpen}F
σ
IE, FO1, FO2 ∈ SF, (FO1,E1), (E1,FO2) ∈

CSF andTEk ∈ FTerm
EE for k = 1, . . ., m. The behaviour of the

catch intermediate eventE1 is modelled by:

G

(

(

(tokenAtFO1,E1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE1 ∧ ¬tokenAtFO1,E1)
)

∧

(

(tokenAtE1 ∧ catchEventE1∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE1,FO2 ∧ ¬tokenAtE1)
)

)

.

A catch compensation intermediate event is not allowed
to utilize in a normal flow. This is expressed asσ ∈
ΓSE \ {Cmpen}. The arrival of a token atE1, the placement
of the token onE1 and the occurrence of the intermediate
event trigger are denoted bytokenAtFO1,E1, tokenAtE1 and
catchEventE1, respectively.

We defineΓIE = {Msg, Cmpen,Link, Sign, Multi }, FMsg
IE

to be a set of message intermediate events for throwing
the event triggers,FCmpen

IE to be a set of compensation
intermediate events for throwing the event triggers,FLink

IE to
be a set of link intermediate events for throwing the event

triggers,FSign
IE to be a set of signal intermediate events for

throwing the event triggers,FMulti
IE to be a set of multiple

intermediate events for throwing the event triggers.

Definition 13 (Throw Intermediate Event):SupposeE1 ∈
⋃

σ∈ΓIE
FσIE, FO1, FO2 ∈ SF, (FO1,E1), (E1,FO2) ∈ CSF and

TEk ∈ FTerm
EE for k = 1, . . ., m. The throw intermediate event

E1 is specified in LTL as:

G

(

(

(tokenAtFO1,E1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE1 ∧ ¬tokenAtFO1,E1)
)

∧

(

(tokenAtE1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(throwEventE1 ∧ tokenAtE1,FO2 ∧ ¬tokenAtE1)
)

)

.

In contrast to a catch intermediate event, a throw interme-
diate event is triggered immediately on receipt of a token.
The firing of the intermediate eventE1 is encoded in LTL
as throwEventE1.

Let ΓEE = {None, Msg, Err, Cncl, Cmpen, Sign, Term,
Multi }. Assume a set of none end eventsFNone

EE , a set of

message end eventsFMsg
EE , a set of error end eventsFErr

EE, a set
of cancel end eventsFCncl

EE , a set of compensation end events

FCmpen
EE , a set of signal end eventsFSign

EE , a set of terminate
end eventsFTerm

EE and a set of multiple end eventsFMulti
EE .

Definition 14 (End Event):Suppose E1 ∈
⋃

σ∈ΓEE
FσEE,

FO1 ∈ SF, (FO1,E1) ∈ CSF and TEk ∈ FTerm
EE for k = 1,

. . ., m. If E1 ∈ FNone
EE , then the execution semantics of the
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end eventE1 is represented in LTL as:

G

(

(

(tokenAtFO1,E1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE1 ∧ ¬tokenAtFO1,E1)
)

∧

(

tokenAtE1 → X(tokenConsumedByE1 ∧ ¬tokenAtE1)
)

)

.

If E1 ∈
⋃

σ∈ΓEE\{None} F
σ
EE, then the end eventE1 is expressed

as:

G

(

(

(tokenAtFO1,E1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE1 ∧ ¬tokenAtFO1,E1)
)

∧

(

tokenAtE1 → X(throwEventE1 ∧ tokenConsumedByE1∧

¬tokenAtE1)
)

)

.

Upon receipt of a token from the incoming sequence flow
(FO1,E1), the end eventE1 consumes the token as stated
in both the first and second LTL formulas. As opposed to
a none end event that does not result in the throwing of an
event trigger, end event results which occur in other types of
end events are modelled asthrowEventE1 in the second LTL
formula.

We leave the topic of the formal definitions of events for
now and move on to tasks and subprocesses. Assume a set
of tasks is denoted byFT.

Definition 15 (Task):SupposeA1 ∈ FT, FOi ∈ SF andTEk

∈ FTerm
EE for i = 1, . . ., n and k = 1, . . ., m. If (FOj ,A1),

(A1,FOn) ∈ CSF for j = 1, . . ., n− 1, then the LTL encoding
of the taskA1 with n− 1 incoming sequence flows is shown
below:

G

(

(

(tokenAtFO1,A1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtA1 ∧ ¬tokenAtFO1,A1)
)

∧

...

(

(tokenAtFOn−1,A1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtA1 ∧ ¬tokenAtFOn−1,A1)
)

∧

(

(tokenAtA1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

F(tokenAtA1,FOn)
)

)

.

If (FO1,A1), (A1,FOj) ∈ CSF for j = 2, . . ., n, then the
behaviour of the taskA1 with n−1 outgoing sequence flows
is expressed in LTL as:

G

(

(

(tokenAtFO1,A1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtA1 ∧ ¬tokenAtFO1,A1)
)

∧

SP1

FO1 FO2

E1

Fig. 8. The initiation of a subprocessSP1

(

(tokenAtA1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

F(
n

∧

i=2

tokenAtA1,FOi ∧ ¬tokenAtA1)
)

)

.

Consider the taskA1 with multiple incoming sequence
flows and one outgoing sequence flow. The formal be-
havioural semantics is encoded as the first formula. The
execution of the taskA1 commences whenever a token is
received from one of the incoming sequence flows (FOj ,A1).
The associated LTL representation is defined by the follow-
ing formulas:

(tokenAtFO1,A1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtA1 ∧ ¬tokenAtFO1,A1)
...

(tokenAtFOn−1,A1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtA1 ∧ ¬tokenAtFOn−1,A1).

A token is emitted on the outgoing sequence flow after the
termination of the taskA1. Since the duration for performing
a task varies, a temporal operator F is utilized to indicate that
the atomic propositiontokenAtA1,FOn holds solely at some
point in the future.

The LTL formula of the taskA1 with one incoming
sequence flow and multiple outgoing sequence flows can be
obtained by combining the preceding formula:

(tokenAtFO1,A1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtA1 ∧ ¬tokenAtFO1,A1)

with the definition of a parallel fork gateway as well as
substituting the temporal operator F for X in the formula
of Definition 1. This is due to the facts that (i) a task with
one incoming sequence flow is just a special case of a task
with multiple incoming sequence flows; and (ii) the traverse
of a token along each outgoing sequence flow of a task is
similar to the behaviour of a parallel fork gateway.

In BPMN, the notion of hierarchical structures is under-
pinned by subprocesses. Figures 8 and 9 delineate, respec-
tively, the initiation and termination of a subprocess.

When a token arrives from the flow objectFO1 (Figure 8),
the parent-level token is placed inside the subprocessSP1 and
the none start eventE1 is triggered. A child-level token is
then generated and offered to the outgoing sequence flow
that connectE1 and the flow objectFO2.
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SP1

FO2FO1

E1

Fig. 9. The termination of a subprocessSP1

In Figure 9, the receipt of the child-level token along
the incoming sequence flow emanating from the flow object
FO1 triggers the none end eventsE1. The none end event
E1 consumes the child-level token. The subprocessSP1

terminates when all other child-level tokens are consumed
and the parent-level token is then sent down the outgoing
sequence flow connectingSP1 and the flow objectFO2.

Let FEmbed
SP be a set of embedded subprocesses,FReuse

SP be
a set of reusable subprocesses,FRef

SP be a set of reference
subprocesses andΦIsTX: FEmbed

SP ∪ FReuse
SP ∪ FRef

SP → B be a
function that returns whether a subprocess is a transaction or
not. We denote bySF(SP1) , FNone

SE(SP1) , FNone
EE(SP1) , FTerm

EE(SP1) andCSF(SP1)

the sets of flow objects, none start events, none end events,
terminate end events and sequence flows ofSP1.

Definition 16 (Subprocess):Suppose SP1 ∈ FEmbed
SP ∪

FReuse
SP ∪ FRef

SP , ΦIsTX(SP1) = false,FO1 ∈ SF, FO2 ∈ SF(SP1) ,
TEk ∈ FTerm

EE for k = 1, . . ., m. If E1 ∈ FNone
SE(SP1) , (FO1,SP1)

∈ CSF and (E1,FO2) ∈ CSF(SP1) , then the initiation of the
subprocessSP1 is formally defined as follows:

G

(

(

(tokenAtFO1,SP1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtSP1 ∧ throwEventE1 ∧ ¬tokenAtFO1,SP1)
)

∧

(

catchEventE1 → X(tokenAtE1)
)

∧

(

tokenAtE1 → X(tokenAtE1,FO2 ∧ ¬tokenAtE1)
)

)

.

If Ei ∈ FNone
EE(SP1) , (FO1,E1) ∈ CSF(SP1) , (SP1,FO2) ∈ CSF and

TESP1
j ∈ FTerm

EE(SP1) for i = 1, . . ., n1 and j = 1, . . ., n2, then
the behaviour of the termination of the subprocessSP1 is
denoted as:

G

(

(

(tokenAtFO1,E1 ∧

n2
∧

j=1

¬tokenConsumedBy
TE

SP1
j
∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE1 ∧ ¬tokenAtFO1,E1)
)

∧

(

tokenAtE1 → X(tokenConsumedByTE1 ∧ ¬tokenAtE1)
)

∧

(

(
n1
∧

i=1

tokenConsumedByEi ∧ tokenAtSP1)→

X(¬tokenAtSP1 ∧ tokenAtSP1,FO2)
)

)

.

The placement of the parent-level token withinSP1

is represented by tokenAtSP1. Determining whether
all child-level tokens are consumed is formulated as

∧n1

i=1 tokenConsumedByEi .
Although there are ten sorts of catch intermediate events,

merely seven of them are capable of interrupting an activity.
These encompass message, timer, error, conditional, signal,
multiple and cancel. We now consider the first six kinds
of catch intermediate events as depicted in Figure 10. The
cancel intermediate event is discussed later in a definition
pertaining to the behavioural semantics of a transaction.

Attaching a catch intermediate eventE1 to the boundary
of an activityA1 signifies that the activityA1 is interruptible
(Figure 10). Whenever a token reaches the interruptible
activity A1, an additional token is produced and placed
on the catch intermediate eventE1. The tokens, which are
located at the activityA1 and the catch intermediate event
E1, are sent along the outgoing sequence flow and consumed
respectively when the execution of the activityA1 completes
prior to the occurrence of the catch intermediate eventE1.
If the happening of the catch intermediate eventE1 is
earlier than the termination of the activityA1, the activity
A1 ceases immediately. The additional token exits the catch
intermediate eventE1 and traverses the outgoing sequence
flow. Simultaneously, the token resided in the activityA1 is
consumed.

We defineΓX = {Msg, Timer, Err, Cond, Sign, Multi}
andΓSP = {Embed, Reuse, Ref}. The sets of activities and
transactions are given byFA = FT ∪

⋃

σ∈ΓSP
FσSP andSTX =

{x|x ∈
⋃

σ∈ΓSP
FσSP ∧ ΦIsTX(x) = true}. We letΦBdy[−TX]

IE : FA

\ STX → 2
⋃

σ∈ΓX∪{Cmpen} F
σ
IE be a function returning the set of

intermediate events attached to the boundary of an activity
that is not a transaction.

Definition 17 (Exception):Suppose A1 ∈ FT, E1 ∈
⋃

σ∈ΓX
FσIE, ΦBdy[−TX]

IE (A1) = {E1}, FO1, FO2, FO3 ∈ SF,
(FO1, A1), (A1, FO2), (E1, FO3) ∈ CSF and TEk ∈ FTerm

EE
for k = 1, . . . ,m. The interruption of a taskA1 caused by an
intermediate eventE1 is represented as:

G

(

(

(tokenAtFO1,A1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtA1 ∧ tokenAtE1 ∧ ¬tokenAtFO1,A1)
)

∧

(

(tokenAtA1 ∧ ¬catchEventE1∧

m
∧

k=1

¬tokenConsumedByTEk)→

F(tokenAtA1,FO2 ∧ ¬tokenAtA1 ∧ ¬tokenAtE1)
)

∧

(

(tokenAtE1 ∧ catchEventE1∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE1,FO3 ∧ ¬tokenAtE1 ∧ ¬tokenAtA1)
)

)

.

The normal flow and exception flow are specified, respec-
tively, in LTL by:

(

(tokenAtA1 ∧ ¬catchEventE1∧

m
∧

k=1

¬tokenConsumedByTEk)→
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Fig. 10. A taskA1 interrupted by an intermediate eventE1

A1

A2

E3 E4 FO4

FO3

FO2FO1

E1 E5

T1

E2

Fig. 11. Error and cancellation in a transactionT1

F(tokenAtA1,FO2 ∧ ¬tokenAtA1 ∧ ¬tokenAtE1)
)

and
(

(tokenAtE1 ∧ catchEventE1 ∧

m
∧

k=1

¬tokenConsumedByTEk)→

X(tokenAtE1,FO3 ∧ ¬tokenAtE1 ∧ ¬tokenAtA1)
)

as stated in Definition 17.
The receipt of an error intermediate eventE3 leads to

the immediate termination of the transactionT1 as shown
in Figure 11. The token that is placed onE3 moves down
the outgoing sequence flow and no compensation activity is
invoked.

The triggering of the cancel intermediate eventE4 results
in the token resided in the none end eventE5 to move
in reverse direction. When the token arrives at the activity
A1, another token is generated and put on the compensation
intermediate eventE2. The newly created token traverses the
outgoing directed association. Upon receipt of the token, the
compensation activityA2 is executed. On completion of the
compensation activityA2, the token situated atA1 keeps on
moving backward until it reaches the none start eventE1.
The arrival of the token atE1 symbolizes the transactionT1

is cancelled and causes the token located atE4 to move down
the outgoing sequence flow.

Let ΓNL = {None, Link}, SM
T = {{ML}, {MMI }, {MC},

{ML ,MC}, {MMI ,MC}}, CDA be a set of directed associations,
Φ

Bdy[TX]
IE : STX → 2

⋃

σ∈ΓIE\ΓNL
FσIE be a function that returns

the set of intermediate events attached to the boundary of a
transaction andΦTM : FT → SM

T be a function that returns

the set of markers for a task.

Definition 18 (Transaction):SupposeT1 ∈
⋃

σ∈ΓSP
FσSP,

ΦIsTX(T1) = true, E1 ∈ FNone
SE , E2 ∈ FCmpen

IE , E3 ∈ FErr
IE , E4

∈ FCncl
IE , E5 ∈ FNone

EE , A1, A2 ∈ FT, FO1, FO2, FO3, FO4 ∈

SF, ΦBdy[TX]
IE (T1) = {E3, E4}, Φ

Bdy[−TX]
IE (A1) = {E2}, ΦTM(A2)

= {MC}, (FO1,T1), (E1,A1), (A1,E5), (T1,FO2), (E3,FO3),
(E4,FO4) ∈ CSF and (E2,A2) ∈ CDA . The interruption of
the transactionT1 by the error intermediate eventE3 is
formalized by:

G

(

(tokenAtE3 ∧ catchEventE3)→

X(tokenAtE3,FO3 ∧ ¬tokenAtT1 ∧ ¬tokenAtE1∧

¬tokenAtE1,A1 ∧ ¬tokenAtA1∧

¬tokenAtA1,E5 ∧ ¬tokenAtE5 ∧ ¬tokenAtE3∧

¬tokenAtE4)

)

.

The cancellation of the transactionT1 is modelled as:

G

(

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtE5)→

X(tokenAtA1,E5 ∧ ¬tokenAtE5)
)

∧

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtA1,E5)→

X(tokenAtA1 ∧ tokenAtE2 ∧ ¬tokenAtA1,E5)
)

∧

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtE2∧

catchEventE2)→

X(tokenAtE2,A2 ∧ ¬tokenAtE2)
)

∧

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtE2,A2)→

X(tokenAtA2 ∧ ¬tokenAtE2,A2)
)

∧

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtA2)→

F(tokenAtE1,A1 ∧ ¬tokenAtA1 ∧ ¬tokenAtA2)
)

∧

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtE1,A1)→
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Fig. 12. BPMN process

X(tokenAtE1 ∧ ¬tokenAtE1,A1)
)

∧

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtE1)→

X(tokenAtE4,FO4 ∧ ¬tokenAtE1 ∧ ¬tokenAtE4)
)

)

.

In Definition 18, the backward movement of the token
from E5 to the sequence flow connectingA1 and E5 is
expressed as:

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtE5)→

X(tokenAtA1,E5 ∧ ¬tokenAtE5)
)

.

The token on E4 ultimately travels down the outgoing
sequence flow is denoted in LTL by:

(

(tokenAtE4 ∧ catchEventE4 ∧ tokenAtE1)→

X(tokenAtE4,FO4 ∧ ¬tokenAtE1 ∧ ¬tokenAtE4)
)

.

VI. Analysis of BPMN Workflows

To illustrate the utilization of the defined semantics for a
rigorous analysis of BPMN models, we consider the BPMN
process in Figure 12. The none start event, data-based exclu-
sive decision gateway, data-based exclusive merge gateway
and none end event are labelled withE1, G1, G2 and E2,
respectively. Applying Definition 11, the execution semantics
of the none start eventE1 is represented as:

G

(

(catchEventE1 → XtokenAtE1)∧

(

tokenAtE1 → X(tokenAtE1,G1 ∧ ¬tokenAtE1)
)

)

.

The temporal formula infers the following reachability
property:

G(catchEventE1 → FtokenAtE1,G1).

We assume thatc1 evaluates to true. The behaviour of the
data-based exclusive decision gatewayG1 and the taskA1 is
modelled in LTL according to Definitions 3 and 15 by:

G

(

(tokenAtE1,G1 ∧ c1)→

X(tokenAtG1,A1 ∧ ¬tokenAtE1,G1)

)

and

G

(

(

tokenAtG1,A1 → X(tokenAtA1 ∧ ¬tokenAtG1,A1)
)

∧

(

tokenAtA1 → F(tokenAtA1,G2)
)

)

.

The LTL specifications logically imply the following condi-
tional reachability property:

G

(

(tokenAtE1,G1 ∧ c1)→ FtokenAtA1

)

.

Literally, the two derived formulas mean that (i) a token
will eventually arrive at the sequence flow betweenE1 and
G1 if a start event trigger occurs; and (ii) the taskA1 will
eventually reach an execution state if a token is received and
the conditionc1 is met. Likewise, the behavioural semantics
of the data-based exclusive merge gatewayG2 and the none
end eventE2 is encoded through the use of Definitions 4
and 14 as:

G

(

(

tokenAtA1,G2 → X(tokenAtG2,E2 ∧ ¬tokenAtA1,G2)
)

∧

(

tokenAtA3,G2 → X(tokenAtG2,E2 ∧ ¬tokenAtA3,G2)
)

)

and

G

(

(

tokenAtG2,E2 → X(tokenAtE2 ∧ ¬tokenAtG2,E2)
)

∧

(

tokenAtE2 → X(tokenConsumedByE2 ∧ ¬tokenAtE2)
)

)

.

Combining the LTL formulas based on Definitions 15, 4
and 14, we obtain another reachability property:

G(tokenAtA1 → FtokenAtE2).

The formula is interpreted as a token placed on the taskA1

will eventually arrive at the none end eventE2.
In a similar way, we assume thatc2 is true. The encoding

of G1 (Definition 3) is given by:

G

(

(tokenAtE1,G1 ∧ c2)→ X(tokenAtG1,A2 ∧ ¬tokenAtE1,G1)

)

.

The behaviour of tasksA2 and A3 is expressed in LTL
(Definition 15) as shown below:

G

(

(

tokenAtG1,A2 → X(tokenAtA2 ∧ ¬tokenAtG1,A2)
)

∧

(

tokenAtA2 → F(tokenAtA2,A3)
)

)

G

(

(

tokenAtA2,A3 → X(tokenAtA3 ∧ ¬tokenAtA2,A3)
)

∧

(

tokenAtA3 → F(tokenAtA3,G2)
)

)

.

Consider these three formulas and the LTL expressions of
G2 andE2, the following conditional reachability property is
obtained:

G

(

(tokenAtE1,G1 ∧ c2)→ FtokenAtE2

)

.

In addition to the reachability properties, the other soundness
criterion for the BPMN process in Figure 12 is the fulfillment
of liveness properties. Based on the LTL specifications of the
BPMN process, the following liveness formula is yielded:

G

(

catchEventE1 → FtokenAtE2

)

.
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Fig. 13. BPMN process with a deadlock

Stated in words, any occurrence of a start event trigger will
eventually lead to the happening of the none end event.

The satisfaction of the liveness property ascertains that
every process instance of Figure 12 will finally terminate.
The execution semantics ofE2 guarantees the consumption of
the token whenever the process instance ends. Additionally,
every graphical construct in the BPMN process has the
possibility of being executed in accordance to the reachability
properties. Hence, we can conclude that the BPMN model
in Figure 12 is sound.

Through the substitution of the data-based exclusive merge
gateway in Figure 12 by a parallel join gateway, we get
another BPMN process as depicted in Figure 13. To check
the validity of the BPMN process, the parallel join gateway
is labelled withG3. According to Definition 2, the behaviour
semantics ofG3 is specified in LTL as:

G

(

(tokenAtA1,G3 ∧ tokenAtA3,G3)→

X(tokenAtG3,E2∧

¬tokenAtA1,G3 ∧ ¬tokenAtA3,G3)

)

.

Since eitherc1 or c2 holds, the parallel join gatewayG3

is never executed. The BPMN process in Figure 13 does
not satisfy the liveness property defined earlier owing to
the presence of deadlock. Consequently, it is regarded as an
unsound BPMN model.

VII. Conclusions

An unambiguous definition of the execution semantics of
BPMN is of paramount importance. The absence of a precise
semantics hampers (i) the semantic analysis of BPMN;
(ii) the verification and reasoning on BPMN models; and
(iii) the equivalence checking of BPMN diagrams. This paper
has bridged the gap by formalizing the token-based semantics
of BPMN in terms of LTL. The behavioural mechanism of
each graphical construct has been codified using one or more
LTL formulas. Our work is regarded as a supplement to
the official BPMN documentation. It contributes to both the
theoretical and practical facets of BPMN.

A promising line of inquiry is to further explore the
applicability of the formal semantics. Specifically, we plan
to construct a workflow engine that is based on the proposed
semantic foundation. Another possible direction is to adapt
our LTL-based semantics to BPMN 2.0 [47]. The BPMN
2.0, like BPMN 1.2, does not offer a well-founded execution
semantics using mathematical techniques. Extending our
work to BPMN 2.0 is relatively easy since the operational
semantics of BPMN 2.0 is considered as a variant of the one
given in BPMN 1.2.
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