

Abstract—To more fully utilize the potential offered by

multi-core processors, programming languages must have

features for expressing parallelism. One promising approach is

collection-oriented operations, which are easily expressed by

the programmer and can be implemented by the runtime

system in a parallel fashion for improved performance.

However, the ordinary implementation requires a barrier

synchronization among all the processors after each parallel

operation, thereby creating a performance penalty that grows

with the number of processors. For large numbers of

processors, this inhibits scalability and reduces performance

especially for smaller size data sets. This paper explores a

optimization technique called operator fusion, which removes

the necessity for barrier synchronization. The general

principles and rules governing the use of operator fusion are

described and then illustrated with a specific collection-

oriented parallel library that we have developed for the object-

oriented programming language Scala, which is an extension of

the language Java. Performance improvement resulting from

operator fusion is analyzed for several benchmark programs

on a computer with a multi-core processor.

Index Terms— data parallel, multi-core processor, parallel

programming, Scala

I. INTRODUCTION

O help the programmer specify parallelism in a program,

the programming language must have some special

parallel programming features. The predominant approach

used so far is multi-threading, in which the programmer

explicitly assigns computing tasks to individual parallel

threads. If the parallel threads modify shared data, then

locking is used to provide atomic access. This approach has

several drawbacks. The programmer is involved in many of

the low-level details of management and synchronization of

parallel tasks. Also, multi-threaded programs have potential

data races that essentially create a nondeterministic program:

a program that may produce different outputs for the same

input data during different executions. Program deadlocks

may also occur in a nondeterministic fashion. This

nondeterminism complicates the software development

process, and makes it more difficult to develop reliable

software.

One promising approach to solve many of these problems

is high-level collection-oriented operations, in which every

element of the collection is operated upon in parallel by the

same operation. This is often called data parallel

programming. One example is the array operations of the

language Fortran 90 [1], which may have a sequential or

Manuscript received August 15, 2011; revised November 14, 2011.

Bruce P. Lester is Professor, Computer Science Department, Maharishi

University of Management, Fairfield, Iowa 52556 USA (e-mail:

blester@mum.edu).

parallel implementation. A more sophisticated set of

operations is found in High-Performance Fortran [2, 3],

including data distribution directives and user-defined data

parallel functions. The widely publicized MapReduce [4]

operation used by Google is another example of a collection-

oriented parallel operation.

One of the earliest commercial applications of data

parallel programming during the late 1980s was in the

Connection Machine [5] of Thinking Machines Corporation.

The programming languages available for the Connection

Machine included data parallel versions of both Lisp and C.

Much of what was known at that time about data parallel

programming is summarized in the book by Guy Blelloch,

Vector Models for Data-Parallel Computing [6]. Looking

back even earlier, the array operations of the language APL

[7] can be considered as primitive examples of collection-

oriented operations that can have a data parallel

implementation. In the case of APL, the array operations

were not introduced for the purpose of parallel execution,

but simply to make the programming process easier by

providing higher level programming abstractions.

More recent examples of data parallel languages include

Ct [8], a language under development by Intel for their

experimental terascale processor architectures. The company

RapidMind has successfully marketed a data parallel

extension of the C++ language with collective operations on

arrays [9]. Intel has just released a software package called

Array Building Blocks [10] that combines and extends many

of the features of Ct and the RapidMind extensions.

Researchers at Stanford University have developed a data

parallel extension of the C language called Brook [11],

intended for efficient execution on computers with GPU

coprocessors. Brook allows user-defined data-parallel

functions on streams, which are essentially large data arrays.

The language X10 under development by IBM [12] and

HPJava [13] are both data parallel versions of Java, intended

for scientific and engineering applications on high-

performance computer clusters.

II. OPERATOR FUSION

One of the main performance issues in data parallel

programming is the need for synchronizing the processors

after each data parallel operation. Data parallel operations

are more widely applicable for general purpose

programming if they are fairly primitive in nature. Then the

programmer can construct a parallel program by combining

large numbers of these primitive operations. However, the

barrier synchronization required after each data parallel

operation creates a performance penalty, which grows with

the number of processors. For large numbers of processors,

this inhibits scalability and reduces performance especially

Operator Fusion in a Data Parallel Library

Bruce P. Lester

T

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

for smaller size data sets.

In this paper, we explore a technique called operator

fusion, which removes the necessity for barrier

synchronization after each data parallel operation. Data

parallel operations are implemented by dividing the work

among the available processors. To be sure that the

operation is complete, all of the processors execute a barrier

before moving on to the next operation. However, under

certain circumstances, it is possible for a processor to move

immediately to the next data parallel operation without

waiting for the other processors. For example, consider a

sequence of four data parallel operations: P, Q, R, S. In an

ordinary parallel implementation, all processors are required

to finish their assigned portion of the computing for

operation P, and then execute a barrier before any can begin

on operation Q. Similarly, all processors must finish their

work on operation Q before beginning R. With an

implementation based on operator fusion, a processor

completes its work on data parallel operation P and then

moves on to operation Q immediately; similarly for

operations R and S. Thus, the sequence of four data parallel

operations can be executed with only one barrier operation

after S, instead of four barriers in the implementation

without operator fusion.

In this paper, we explore the use of operator fusion in a

collection-oriented parallel library. The library is an add-on

to an ordinary object-oriented programming language. The

library implementation is done completely at runtime. In

section III we present the general principles underlying the

operator fusion optimization, including a general algorithm

for determining when it can be used. In subsequent sections,

we describe our collection-oriented library and analyze the

performance improvement resulting from operator fusion for

several benchmark programs.

Removing processor synchronization barriers to improve

performance of parallel programs is not a new idea. Some

parallel programming languages have explicit instructions

that the programmer can use to indicate a barrier is not

necessary in certain circumstances. For example, the

language OpenMP allows a NO WAIT directive to prevent a

barrier synchronization among the threads executing a

parallel loop. In contrast to this, we are concerned with

automatic operator fusion, done completely at runtime by

the collection-oriented library without any knowledge or

intervention by the programmer.

The Intel Array Building Blocks (ArBB) library for C++

does include some automatic operator fusion. However, this

optimization is applied only in the limited context of

function bodies that are invoked with a special ArBB call

operation. Furthermore, all of the ordinary C++ flow of

control instructions (for, while, if) in the function body must

be replaced by special ArBB flow of control operations. In

contrast to this, our implementation of operator fusion is

automatically applied to every individual collection-oriented

operation in the library at runtime.

This paper is a revised and extended version of an earlier

paper by Lester [14], and includes significantly more details

about the sample data parallel library (section IV) and its

implementation (section VI). These additional details greatly

enrich the general discussion and analysis of operator fusion.

III. GENERAL PRINCIPLES

The first step is to explore the general principles of

operator fusion and develop a simple algorithm for

determining when operator fusion is possible. For this

purpose, consider a very general framework with a User

Program written in any high-level language. Embedded at

various points in this User Program are calls to data parallel

operations. These calls may be features of the programming

language, or simply calls to library functions (methods). To

allow the possibility of operator fusion of the data parallel

operations, two simple assumptions are needed: isolation

and partitioning. These will be explored in the next two

subsections.

A. Isolation of Data Parallel Operations

The first assumption is the existence of a clean interface

between the User Program and the data parallel operations.

The data parallel operations perform transformations on a

special group of collections (data structures), which we call

Data Parallel Collections (abbreviated: DP-Collections).

The User Program interacts with the DP-Collections through

a fixed set of Data Parallel Operations (abbreviated: DP-

Operations). The User Program passes parameters to these

DP-Operations, which are used to carry data into the

operations and return data back to the User Program.

However, the User Program has no direct access to the DP-

Collections, except via one of these special DP-Operations.

Furthermore, the DP-Operations have no side-effects: they

can only read/write the DP-Collections and the data passed

as parameters from the User Program. In other words, the

DP-Operations are isolated from the User Program data, and

similarly the User Program is isolated from the DP-

Collections.

This isolation assumption is very reasonable and will

probably be valid for a wide range of data parallel libraries,

beyond the specific data parallel library described in

subsequent sections of this paper. For example, the Intel Ct

library [8] and Array Building Blocks library [10] both

satisfy the isolation property. For now, let us determine to

what extent operator fusion of data parallel operations is

possible based only on this simple isolation assumption. For

this purpose, a useful analytical tool is a History Graph of

the DP-Operations. During each specific execution of the

User Program, a series of DP-Operations (d1, d2, …, dn) will

be generated. Each DP-Operation di will have parameters,

some of which may be a reference to a specific DP-

Collection, and some of which may be a reference to a User

Program data value (object). The execution history of the

DP-Operations defines a directed, acyclic graph as follows:

 Each executed DP-Operation di is a node in the

graph. The index i is called the sequence number or

timestamp of the operation.

 Each DP-Collection referenced by a parameter of

any DP-Operation is a node in the graph.

 Each User Program data value (object) referenced

by a parameter of the DP-Operation is a node in the

graph.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

 If DP-Collection c is read by DP-Operation di , there

is an edge from c to di. If c is modified by di , there

is an edge from di to c.

 If User Program data value u is read by DP-

Operation di , there is an edge from u to di. If u is

modified by di , there is an edge from di to u.

An example of a History Graph is shown in Fig. 1. The

particular sequence of DP-Operations (d1, d2, d3, d4) in the

history is generated by the User Program, depending on the

input data. We are not suggesting that such a History Graph

actually be constructed during the execution of a real

program. We are just using the graph as a conceptual tool to

help analyze and understand the principles of operator

fusion. Each DP-Operation in the graph is executed by a

team of Worker Threads running in parallel. Now consider

the following question: under what conditions can the

barrier synchronization after each DP-Operation be safely

removed?

For any given DP-Operation operation di in the graph with

an input DP-Collection v, let I(di, v, m) denote the set of data

elements in DP-Collection v that are directly read by Worker

Thread m during DP-Operation di. For DP-Operation dj with

an output DP-Collection v, let O(dj, v, k) denote the set of

data elements in DP-Collection v that are directly written by

Worker Thread k during DP-Operation dj.

A data element e of a DP-Collection v is said to be a

cross-thread data element if there exist DP-Operations di

and dj, such that e ϵ O(dj, v, k) and e ϵ I(di, v, m) and k m.

In simple words, a cross-thread data element is one that is

created (written) by one Worker Thread and then consumed

(read) by a different Worker Thread. Cross-thread data items

restrict the possibilities for operator fusion of the DP-

Operations. If Worker Thread k writes a cross-thread data

item e during DP-Operation operation dj, and e is read by a

different Worker Thread m during a subsequent DP-

Operation operation di, then some kind of barrier

synchronization among the Worker Threads is required after

operation dj. Otherwise, Worker m might attempt to read

data item e before it is created by Worker k.

If the output DP-Collection v of any DP-Operation

operation di in the history graph has no cross-thread data

items, then no barrier synchronization is required after

operation di. Thus, all the Worker Threads involved in the

execution of operation di can immediately move on to the

next DP-Operation operation dj as soon as they complete

their share of operation di. Thus, each Worker Thread

experiences a fusion of its computing on operations di and dj.

The general discussion of the last few paragraphs has

assumed that the output of the DP-Operation is a DP-

Collection. However, some DP-Operations may produce an

output data value (object) that is not a DP-Collection. As an

example, consider operation d4 and its output x in Fig. 1. A

reference to this object x is returned to the User Program by

operation d4. Since x is not a DP-Collection, the User

Program may directly access the data of x. Thus, it is

necessary to make sure the Worker Threads have completed

their computation of x before returning to the User Program

after the call to operation d4. Thus, barrier synchronization is

required after operation d4 that includes all the Worker

Threads and also the Master Thread executing the User

Program. When the Master Thread is included, we call it a

Strong Barrier. However, as long as the output of any DP-

Operation is a DP-Collection, then a strong barrier is not

necessary.

The situation is similar for an input parameter to a DP-

Operation that is not a DP-Collection, for example input u to

DP-Operation d1 in Fig. 1. The User Program may have

another reference to data value (object) u and attempt to

modify it. Therefore, d1 must complete its work before the

User Program is allowed to continue. Thus, a strong barrier

is needed after d1, unless u is an immutable object, which

cannot be modified.

B. Partitioning of Data Parallel Collections

The above general discussion of operator fusion is based

completely on the assumption of isolation between the User

Program and DP-Collections. Now one additional

assumption will allow the development of a simple and

practical operator fusion algorithm: each DP-Collection has

a standard (default) partitioning. The partitions are disjoint

and cover the whole DP-Collection. The overall purpose of

the partitioning is to facilitate data parallelism. Each Worker

Thread can be assigned to work on a different partition in

parallel with no interference.

Partitioning facilitates operator fusion if the same

partitioning is used by many different DP-Operations. For

example, consider a DP-Collection v with partitions p1, p2,

…, pm. Now assume that Worker Threads W1, W2, …, Wm

are assigned to work on these partitions independently in

parallel during a particular DP-Operation di. If the same

group of m Worker Threads is assigned to the partitions in

the same way during the subsequent DP-Operations di+1,

p r

s

v

t

v
x

d1

d2

d3 d4

Figure 1. History Graph of PVector Operations.

u

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

then there is no need for a barrier after di — fusion of

operations di and di+1 is possible without introducing any

data races or timing-dependent errors. After completing its

share of the computing in operation di, Worker k can move

on immediately to operation di+1 without waiting for the

other Workers — there is no need for a barrier after

operation di. Using the terminology of the previous section,

the standard partitioning prevents the possibility of any

cross-thread data elements in this particular DP-Collection

v.

At this stage of analysis, we are not specifying any details

about the nature of the data structures allowed in the DP-

Collections or the particular partitioning method. We only

assume there is some standard partitioning method for each

DP-Collection. If this standard partitioning is used by many

of the DP-Operations for allocating Worker Threads, then

there will be a lot of opportunity for fusion of the DP-

Operations. However, all DP-Operations are not required to

adhere to the standard partitioning. Some DP-Operation may

use a different partitioning or may not have any distinct

partitioning at all, in which case these DP-Operations will

not be candidates for operator fusion.

This assumption of a standard (default) partitioning for

each DP-Collection, along with the isolation assumption

from Section IIIA, will allow us to develop a simple

operator fusion algorithm to determine whether specific DP-

Operations require a barrier synchronization or not. The

input to this algorithm will be a descriptor for each DP-

Operation that specifies certain important properties of that

operation.

Each DP-Operation d has one or more input parameters,

some of which may be DP-Collections, and an output

parameter which may be a DP-Collection (see the History

Graph of Fig. 1 for examples). For each of these DP-

Collection parameters, the operator fusion algorithm needs

to know whether or not DP-Operation d adheres to the

standard partitioning of that DP-Collection. If the standard

partitioning of any input parameter is violated, this is called

an input crossing; similarly, violation for an output

parameter is called an output crossing.

C. The Operator Fusion Algorithm

Following is summary of the seven properties of each DP-

Operation that will serve as input to the operator fusion

algorithm:

 InputCross: true if this operation has an input

crossing

 OutputCross: true if this operation has an output

crossing

 OutDP: true if the output of this operation is a DP-

Collection

 InUserData: true if any of the inputs to this

operation is not a DP-Collection

 OutputNew: true is the output of this operation is a

newly created DP-Collection

 HasBarrier: true if this operation has an internal

barrier synchronization of the Worker Threads

 HasStrongBarrier: true if this operation has an

internal strong barrier synchronization

These seven properties are static – they only need to be

determined once for each DP-Operation in the library. The

properties do not depend on the particular User Program, but

only on the definition of the DP-Operations and the

particular implementation of the operations.

In addition to the above static information, the operator

fusion algorithm also needs some dynamic information that

must be gathered during the execution of the User Program.

Each call to any DP-Operation by the User Program is

assigned a unique sequence number, which serves as a kind

of time stamp. Each DP-Collection also has a unique time

stamp: the sequence number of the DP-Operation that

created it. This is assigned dynamically when the DP-

Collection is created. Also, each specific DP-Collection has

a time stamp (sequence number) of the most recent DP-

Operation to perform an input crossing on it (InCrossTime).

One additional piece of dynamic information required is the

time stamp of the most recent barrier operation.

The operator fusion algorithm is shown in Fig. 2 and has

there separate procedures. enterOp is called by each Worker

Thread before beginning each DP-Operation to determine

whether a barrier is needed before execution of the DP-

Operation. exitOp is called by each Worker Thread after

each DP-Operation is complete to determine whether a

barrier is needed before moving on to the next DP-

Operation. userProg is called by the User Program after

each DP-Operation call to determine whether the User

Program must participate in a strong barrier with the Worker

Threads before continuing.

All three procedures in this operator fusion algorithm

depend heavily on the properties of the DP-Operations,

which is contained in the array OpInfoTab. For example,

OpInfoTab[opcode].InputCross is true if the DP-

Operation identified by opcode has an input crossing on one

of its DP-Collection input parameters. The algorithm also

uses the time stamps of the DP-Operations and the DP-

Collections. The variable barrierTime, which is the time

stamp of the most recent barrier, is used and modified during

the algorithm. The procedures of this algorithm have no

loops and can therefore be executed in constant time.

The focus of this operator fusion algorithm is to detect

those specific conditions that require a barrier operation, and

avoid a barrier whenever possible. The algorithm is quite

general and is based only the two assumptions described

earlier: isolation and partitioning. The implementation

dependent aspects of the algorithm are captured by the seven

properties of the DP-Operations as found in the array

OpInfoTab.

Now we will apply this operator fusion algorithm to a

specific collection-oriented parallel library for the language

Scala. The subsequent sections of this paper describe the

library in detail and give an example program that uses the

library to solve a partial differential equation. We also

summarize the results of performance studies on several

benchmark programs showing that operator fusion

significantly improves the performance of the library.

IV. DATA PARALLEL LIBRARY

We wish to be as general as possible in describing the

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

principles and practice of operator fusion. However, to

illustrate the principles and show that the technique is

practical, it is necessary to focus on a specific

implementation. For this purpose, we use a collection-

oriented parallel library for the object-oriented language

Scala, which extends the language Java by adding functional

programming features. Scala is compiled into Java byte-code

and is executed by the Java Virtual Machine. Any of the

Java library functions may be called from within a Scala

program. We chose Scala [15] as our implementation

language because it is particularly well suited for creating

runtime libraries. However, the collection-oriented parallel

library presented in this paper could also be implemented

with operator fusion in Java, C#, or any object-oriented

language. Runtime operator fusion in data parallel libraries

is in no way limited to the language Scala.

The basic parallel collection object we use in our library

is called a Parallel Vector (abbreviated PVector). A Parallel

Vector is an indexed sequence of data items, which bears

some resemblance to a one-dimensional array. However, the

range of operations available for Parallel Vectors is really

quite different from a simple array, as described in the

subsequent sections of this paper. Parallel Vectors are

implemented in Scala with a generic library class

PVector[T]. To create an instance of PVector in a Scala

program, one must supply a specific type (or arbitrary class

name) for the generic type [T].

The PVector class in our data parallel Scala library

provides several constructors for creating and populating

new PVector objects. The PVector class also has a variety of

methods that can be invoked by the user program to

transform and/or combine PVector objects. The calls to the

PVector constructors and methods are imbedded in the user

program. The implementation of the constructors and

methods is done completely within the library using

parallelism. Thus, the parallelism is essentially hidden from

the user program. The user does not have to deal with the

complexities and problems associated with parallel program-

ming, as briefly described in the Introductory section of this

paper.

The fusion of the PVector operations is also contained

within the library implementation, and is therefore hidden

from the user program. Thus, the user may view the PVector

as just another type of collection with a set of available

operations implemented in the library. Using the

terminology of section III, the PVectors are the DP-

Collections, and PVector methods are the DP-Operations.

Our data parallel Scala library currently implements a

total of fifteen primitive operations on PVectors. For

purposes of understanding, these can be divided into five

major categories: Map, Reduce, Permute, Initialize,

Input/Output. Following is a brief description of the

operations contained in each of these categories. This

discussion uses some Scala code segments. Readers

unfamiliar with Scala may refer to [15] or any of the online

Scala tutorials that are easily found on the internet.

However, the Scala syntax is so similar to Java that it should

be understandable by any reader who has some familiarity

with Java or C#.

A. Map Operations

The map operation is a very powerful data parallel

operation that applies a user-defined function to each

element of a PVector. The abstract execution model for this

application is a virtual processor operating in parallel at each

element of the PVector. In practice, this may be

implemented in the library using a combination of parallel

and sequential execution. The signature of the map method

is as follows:

// OpInfoTab: properties of DP-Operations

// barrierTime: time of most recent barrier

enterOp(opCode, opTimeStamp, inData) {

 /* opCode: identifies the DP-Operation

 opTimeStamp: sequence no. of DP-

Operation

 inData: reference to the input

 DP-Collection with an input crossing

 (if any, for this DP-Operation)

 */

 if ((OpInfoTab[opCode].InputCross

 && inData.timeStamp > barrierTime)

 ||

 (!OpInfoTab[opCode].OutputNew

 && opTimeStamp > barrierTime+1

 && inData.InCrossTime > barrierTime)) {

 Execute a barrier

 barrierTime = opTimeStamp - 1

 }

 if (OpInfoTab[opCode].InputCross)

 inData.InCrossTime = opTimeStamp

}

exitOp(opCode, opTimeStamp, outData) {

/* opCode: identifies the DP-Operation

 opTimeStamp: sequence no. of DP-Operation

 outData: reference to output DP-

Collection

*/

 if (OpInfoTab[opCode].OutDP){

 if (OpInfoTab[opCode].OutputCross

 && !OpInfoTab[opCode].HasBarrier) {

 Execute a barrier

 barrierTime = opTimeStamp

 }

 }

 else // output is not a DP-Collection

 if(!OpInfoTab[opCode].HasStrongBarrier) {

 Execute a strong barrier

 barrierTime = opTimeStamp

 }

 if (OpInfoTab[opCode].InUserData) {

 Execute a strong barrier

 barrierTime = opTimeStamp

 }

 else if (OpInfoTab[opCode].HasBarrier)

 barrierTime = opTimeStamp

 if (OutData != null)

 OutData.timeStamp = opTimeStamp

}

userProg(opCode){

// opCode: identifies the DP-Operation

 if ((OpInfoTab[opCode].InUserData

 || !OpInfoTab[opCode].OutDP)

 && !OpInfoTab[opCode].HasStrongBarrier)

 Execute a strong barrier

}

Figure 2. Operator Fusion Algorithm.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

map[U](unaryop: (T) => U): PVector[U]

The PVector that invokes the map method becomes the

input for the operation and has generic element type T. The

resultant output PVector after applying the user-defined

function unaryop has generic element type U. Consider a

PVector[Boolean] called Mask. The map method can be

invoked as follows to create a new PVector whose elements

are the logical negation of Mask:

B = Mask.map(!_)

The notation ―!_‖ represents an anonymous function with

one parameter whose output is the logical negation of the

input. One of the reasons we have chosen Scala as the

language for implementing our data parallel library is the

ease of dealing with user-defined functions, which play an

important role in data parallel programming.

As a complement to the map operation, our data parallel

library also contains an operation called combine that has

two input PVectors of the same generic type T and creates

a single output PVector of generic type U. The two input

PVectors must have the same length.

combine[U](op: (T,T) => U,

 bVec: PVector[T]): PVector[U]

Assume PVectors A and B both have the same length and

component type Int. The combine method can be invoked

to create a new PVector from the sum of the corresponding

elements of A and B:

C = A.combine[Int](_+_ , B)

The notation ―_+_‖ represents an anonymous function

with two parameters, whose output is the sum of the inputs.

As with the map operation, the abstract execution model for

this application is a virtual processor operating in parallel at

each element of the PVector.

Since PVectors may have an arbitrary element type, the

map and combine operations may be used to apply very

powerful high-level user-defined operations to PVectors.

For example, the Jacobi Relaxation algorithm described in a

subsequent section of this paper uses PVectors with

element type Array[Double], i.e. each element of the

PVector is itself an array of Double. One operation needed

in this algorithm is to replace each element in each Double

array by the sum of its left and right neighboring values,

except for the end points of the array, which remain

unchanged. This is accomplished with the combine operation

and the following user-defined function:

def leftAndRight(a: Array[Double]) = {

 var m = a.length

 var b = new Array[Double](m)

 for {i <- 1 to m-2}{

 b(i) = a(i-1) + a(i+1)

 }

 b(0) = a(0); b(m-1) = a(m-1)

 b

}

In the Scala language, functions are objects and are

therefore easily passed as parameters to the map and

combine operations.

B. Reduce Operations

The Map operations work element-by-element on the

inputs, and produce an output PVector with the same

dimension. Whereas, the Reduce operations combine the

elements of the input PVector. To allow the Reduce

operations to be as general as possible, they also allow a

user-defined function. Three basic operations are reduce,

scan, and keyed-reduce. The operation called reduce has the

following signature:

reduce(binop: (T,T) => T): T

The reduce method is contained in the PVector class. The

specific PVector object that invokes the reduce method is

the input vector for the reduction operation. The notation

(T,T) => T is a type definition of a function with two

input parameters of generic type T and one output of generic

type T. The following reduce operation sums the elements of

the PVector A:

A = new PVector[Int](aListofIntegers)

result = A.reduce(_+_)

The scan operation is similar to reduce, except the

reduction is performed on each prefix of the PVector. This is

sometimes called a parallel prefix operation. The result of a

scan is a PVector with the same base type and number of

elements as the original. Element i of the output of the scan

is defined as the reduction of the elements 0 to i of the input

PVector.

A more general type of Reduce operation is the keyed-

reduce, which in addition to the input data PVector also has

two additional PVector parameters: the Index and the

Target. The Target vector is the starting point for the output

of the keyed-reduce, and must have the same element type as

the Data vector, but possibly a different number of elements.

The Index vector is a PVector[Int] with the same length

as the Data vector. The Index vector specifies the

destination location in the Target vector for each element of

the Data vector. If the Index maps several data values to the

same location in the Target, they are combined using the

user-defined reduction operation.

As with the reduce and scan operation, keyedReduce is

a method in the PVector class, and the input Data vector is

the one that invokes the keyedReduce method:

keyedReduce(Index: PVector[Int],

 Target: PVector[T],

 binop: (T,T) => T): PVector[T]

C. Permute Operations

The Permute operations allow the elements of a PVector

to be selected and/or reordered. They are all methods of the

PVector class. Using the conceptual execution model with a

virtual processor for each element of the PVector, we may

intuitively think of the Permute operations as collective

communication operations among the virtual processors. The

simplest of these operations is called permute, and simply

reorders the elements of an input PVector[T], as illustrated

in the following simple example:

Data Input: [30 5 -2 10]

Index: [3 0 1 2] (index in Data vector)

Output: [10 30 5 -2]

The select operation creates an output PVector by

selecting a subset of the elements of the input Data PVector.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

The selection process is done using a boolean Mask with the

same number of elements as the Data PVector. Elements in

the Data PVector with a true value in Mask are copied to the

output. Thus, the number of elements in the output will be

less than or equal to the number in the original. The select

operation simply creates a subset of the elements from the

original Data vector in the same order as they appear in the

Data vector.

D. Initialize Operations

The Initialize operations allow new PVectors to be

created with initial data. One of the PVector constructors

called a Broadcast operation can be considered as a member

of this class of operations:

PVector(n: Int, value: T)

The other Initialize operations are methods in the PVector

class. The Index operation creates a PVector of length n with

element values 0, 1, 2, …, n-1:

Index(n: Int): PVector[Int]

The append operation creates a new PVector from the

concatenation of two existing PVectors – the PVector that

calls the append method and the PVector specified by the

parameter aVec:

append(aVec: PVector[T]): PVector[T]

The assign operation copies a source PVector into the

destination PVector, which is the one that calls the assign

method:

assign(source: PVector[T]): PVector[T]

The assign operation is quite different from the ordinary

assignment denoted by ‗=‘. Consider the following two

instructions using PVectors A and B, which both have the

same base type:

B = A

B.assign(A)

In Scala, as in Java, a variable like A or B contains a

reference to an object – in this case a reference to a PVector

object. The first instruction (ordinary assignment) makes a

copy of the object reference in variable A and writes it into

variable B, so that A and B then refer to the same PVector

object. Whereas, the second instruction (assign) copies the

individual elements from the PVector A into the

corresponding elements of PVector B. For the assign

operation to succeed, PVectors A and B must conform: the

same number of elements and the same base type.

The assign operation is unusual among the data parallel

operations in our library, in that it modifies an existing

PVector object. The only other operation that modifies an

existing PVector object is keyed-reduce, which modifies the

individual elements of the Target PVector. The other data

parallel operation do not modify any already existing

PVector object. For example, the map and combine

operations create a new PVector object, as illustrated in the

following example instruction:

C = A.combine[Int](_+_ , B)

This instruction creates a new PVector object by adding

the corresponding elements of PVectors A and B. A

reference to this new PVector object is then written into

variable C.

E. Input/Output Operations

The Input/Output operations allow external data values to

be pushed into a PVector or extracted from a PVector. One

such operation is the PVector constructor that creates a new

PVector from the elements of the specified List parameter:

PVector(aList: List[T])

The read operation works in the opposite direction by

copying data from the PVector into a specified List:

read(): List[T]

The get and set operations allow individual data values to

be extracted from a specific position of the PVector, or

inserted into the PVector, respectively.

Following is a summary of the fifteen primitive
operations on PVectors implemented in our data parallel
Scala Library:

Category Operations

Map Map, Combine

Reduce Reduce, Scan, Keyed-Reduce

Permute Permute, Select

Initialize Broadcast, Index, Append, Assign

Input/Output List-Input, Read, Get, Set

F. Conditional Execution Using Masks

In many parallel algorithms, it is sufficient to have every

virtual processor apply the same computation in parallel to

its assigned element of the PVector. However, in more

complex algorithms it is sometimes desirable to have the

virtual processors apply different operations. This can be

implemented by using a boolean PVector called a Mask. A

true value in the Mask selects one operation, and a false

value selects a different operation. This is analogous to an if

statement in an ordinary program. This feature is

implemented in our data parallel Scala library using an

object called Where, as illustrated in the following example

which sets each bi to 1/ai:

A = new PVector[Int](aList)

Zero = new PVector[Int](n,0)

Where.begin(A != 0) // where A != 0

 B = A.map(1/_) // B = 1/A

Where.elsewhere // elsewhere

 B.assign(Zero) // B = 0

Where.end()

In the above, a boolean mask is created by comparing

each element of a PVector A to zero (A!=0). A true value in

the mask indicates the corresponding element of A is not

zero. The mask is used to specify two different PVector

operations to set the elements of PVector B. For those

positions ai of PVector A that are not equal to zero, the value

of the corresponding element bi of B is set to 1/ai. For the

positions where ai equals zero, bi is set to zero. The

A.map(1/_) operation is executed in the normal way, but

only by those virtual processors where the mask has true

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

value. Virtual processors where the mask has a false value

will execute the B.assign(Zero) statement.

The individual statements executed for true and false in

the above example may be replaced by a whole group of

statements. Thus, this Where Mask feature creates a data

parallel version of a general purpose if statement in ordinary

code. The Where Masks may also be nested in an analogous

way to the nesting of ordinary if statements.

The PVectors within the scope of a Where mask must

conform to the mask, which in most cases means they must

have the same number of elements as the mask. The one

exception is keyed-reduce, for which the Target PVector

may have a different length than the mask because the

masking applies only to the input Data and Index PVectors.

The select and append operations are not permitted within

the scope of a Where Mask.

Where Masks can also be used to create a data parallel

version of looping. In many parallel numerical programs, a

while loop iteratively repeats a series of PVector operations

until a convergence criterion is achieved. In this case, every

virtual processor is engaged in every loop iteration. Now

consider a different type of algorithm in which the

convergence test is local at each point, so that some virtual

processors should stop looping while others continue. This

can be accomplished using a Loop Mask with a true value at

every position where looping is to continue, and a false at

positions where computation should cease. This allows some

virtual processors to be idle, while others continue to

execute the loop. The following illustrates the overall

structure of the code required to accomplish this using our

data parallel Scala library:

loopMask: PVector[Boolean] = ...

while(Where.any(loopMask)) {

 ... // series of PVector operations

 loopMask = ... // recompute loop_mask

 Where.end;

}

In the above, the loopMask is recomputed each time

around the loop. The number of true values in the mask

gradually decrease, causing more virtual processors to cease

executing the loop. Eventually, the loopMask will be all

false values, at which time the entire while loop terminates.

This is accomplished with the Where.any method that

computes the logical and of the elements in the loopMask.

The PVector operations inside the loop body will be

executed in the normal way, but only on those elements

where the corresponding loopMask element is true.

Fortran 90 [1] does have a Where construct to accompany

the array operations, but it is more limited than our Where

class. In Fortran 90, the Where may not be nested, and there

is no provision for looping using the Where. Thus, our Scala

data parallel library expands the utility and applicability of

the Where construct, so that a wider range of parallel

programs can be easily expressed. Also, in Fortran 90, the

compiler is involved in the implementation of the Where

construct. We have done it completely with a library,

requiring no change to the Scala compiler.

V. SAMPLE PARALLEL PROGRAM: JACOBI RELAXATION

After describing the PVector class and its associated

methods (operations), we can now present a sample data

parallel Scala program for solving Laplace‘s Equation using

the Jacobi Relaxation algorithm. Consider a two-

dimensional (square) conducting metal sheet with the

voltage held constant along the four boundaries. The

resultant voltage v(x, y) at all the internal points is described

by Laplace‘s Equation in two dimensions:

def JacobiRelaxation(n: Int) = {

 val tolerance: Double = 0.0001

 PV.setNumThreads(4)

 ... // Initialize data array A (not shown)

 var Done = new PVector[Boolean](n+2)

 val In = Init.Index(n+2)

 val lShift = In + 1

 val rShift = In - 1

 val Mask = new PVector[Boolean](n+2,true)

 Mask.set(0,false)

 Mask.set(n+1, false)

 Where.begin(Mask)

 do {

 B = A.map(leftAndRight)

 B = A.permute(rShift).combine(arraySum,B)

 B = A.permute(lShift).combine(arraySum,B)

 B = B.map(divideByFour)

 Done = A.combine(getChange,B)

 done = Done.reduce(_&&_)

 A.assign(B)

 } while(!done)

 Where.end

 PV.endThreads()

}

def leftAndRight(a: Array[Double]) =

 { ... // see section IV.A }

def arraySum(a: Array[Double],

 b: Array[Double]) = {

 val c = new Array[Double](a.length)

 for {i <- 1 to b.length-2}

 c(i) = a(i) + b(i)

 c(0) = a(0); c(c.length-1) = a(a.length-1)

 c

}

def divideByFour(a: Array[Double]) = {

 val b = new Array[Double](a.length)

 for {i <- 1 to b.length-2}

 b(i) = a(i)/4.0

 b(0) = a(0); b(a.length-1) = a(a.length-1)

 b

}

def getChange(a: Array[Double],

 b: Array[Double]) = {

 var maxchange: Double = 0.0

 var change: Double = 0.0

 for {i <- 1 to b.length-3} {

 change = a(i)-b(i)

 if (change < 0) change = -change

 if (change > maxchange) maxchange = change

 }

 maxchange < tolerance
}

Figure 3. Jacobi Relaxation.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

0
2

2

2

2

y

v

x

v

This equation can be solved numerically using a two-

dimensional array of discrete points across the surface of the

metal sheet. Initially, the points along the boundaries are

assigned the appropriate constant voltage. The internal

points are all set to 0 intially. Then Jacobi Relaxation is used

to iteratively recompute the voltage at each internal point as

the average of the four immediate neighboring points

(above, below, left, right). Convergence is tested by

comparing a desired tolerance value to the maximum change

in voltage across the entire grid.

The basic data structure is a two-dimensional (n by n)

array of Double values, representing the voltage at each

point on the metal sheet. For data parallel execution, a

PVector A is created, each of whose elements is a single row

from the two-dimensional array. Thus, PVector A has n

elements, each one of which is a one-dimensional array:

Array[Double](n). This data parallel PVector provides a

virtual processor for each row of the original two-

dimensional array. To recompute the value at each point, the

four immediate neighboring points are needed. The left and

right neighboring points are easy to find because they are in

the same row, and therefore the same element of the PVector

A. However, the neighboring points in the rows above and

below are in neighboring elements of the PVector A. Access

to these is implemented by shifting A left or right using the

permute operation described in section IV.C. The data

parallel Jacobi Relaxation algorithm in Scala is shown in

Fig. 3.

The main body of the algorithm is the do-while loop in the

JacobiRelaxation function body. Prior to the loop are the

initializations which create the boolean Where Mask and the

lShift and rShift PVectors to assist in the left-shift and right-

shift permutations, respectively. During the looping, PVec-

tor A contains the initial value of the voltage at each point,

and the new recomputed values are stored in PVector B. At

the end of each iteration, the assign operation copies the

values from B back to A, in preparation for the next iteration.

In the first operation of the loop, the user-defined operation

LeftandRight() is used to add the left and right neighboring

values to each point. The map operation causes each virtual

processor to apply the function LeftandRight() to the

corresponding element of PVector A. The result is stored

temporarily in vector B.

In the following instruction, the permute operation shifts

A right and then uses combine to add the corresponding

element of B in each virtual processor. This requires an

additional user-defined operation arraySum(), which is then

used again to add the left-shift of A to B. Finally, the

resultant sum of the neighbors is divided by four using the

user-defined function divideByFour(). This completes the

calculation of the new value at each point as the average of

the four immediate neighboring points. The user-defined

operation getChange() determines if the change at each

point is less than the desired tolerance. The result is a

boolean PVector Done that is aggregated into a single

boolean value done by the reduce operation.

Notice the use of the Where.begin(Mask) operation at

the start of the do-while loop. This plays a key role in the

correctness of the algorithm. Since the voltage at the

boundary edges of the two-dimensional grid are held

constant, the relaxation must only be applied to the internal

points and not the boundaries. Element 0 of PVector A is the

top row of the grid, and element n+1 is the bottom row. Both

of these rows must be held constant as the internal points are

modified by the relaxation. This is accomplished by setting

Mask(0) and Mask(n+1) to false, so that all the PVector

operations inside the do-while will not be applied to A(0)

and A(n+1).

VI. LIBRARY IMPLEMENTATION

The basic structure of our implementation of PVectors in

the library is illustrated in Fig. 4. The User Program is

embedded in the Master Thread, along with the PVector

class. Each collection-oriented library operation in the User

Program will invoke a method in the class PVector.

However, the actual computation to implement the operation

is performed by the Worker Threads in parallel. Each

Worker Thread has an Instruction Queue containing the

sequence of operations it is to perform. The PVector class

puts the instructions for the Workers into the Instruction

Queues. Each Worker will have the same sequence of

instructions in its Queue. We do not permit any out-of-order

execution by the Workers.

The output data PVector is simply divided among the

Worker Threads by using contiguous blocks as illustrated in

Fig. 4. If the PVector has length 300, then the first block of

100 is assigned to Worker Thread 0, the next block of 100 to

Worker Thread 1, and the last block of 100 to Worker

Thread 2. Input PVectors are also partitioned into blocks in

the same way. The total number of Worker Threads is

determined by the user with the library function call

PV.setNumThreads(). Using this block allocation technique,

it is completely predictable in advance which Worker

Thread will be operating on each element of the PVector,

based only on the length of the PVector and the total number

of Workers.

The operator fusion is facilitated by the PVector class in

the following way: as soon as the PVector class receives a

method invocation from the User Program, it allocates an

empty PVector (with no data) to serve as the container for

the output data from the Worker Threads, and returns an

object reference to this PVector to the User Program. The

User Program then continues executing even though the

actual data to fill the output PVector has not yet been created

by the Worker Threads. This implementation technique does

not cause any errors because the User Program cannot

directly access the data inside a PVector — it can only

access the data indirectly by calling methods in the PVector

class.

Since the collection-oriented parallel operations are fairly

primitive in nature, the User Program will usually generate a

long sequence of PVector operations. All of the real

computational activity is done in the Worker Threads, which

usually fall behind the User Program. Thus, the requested

PVector operations will build up in the Instruction Queues.

Operator fusion allows the Worker Threads to continue

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

executing independently without having to synchronize with

each other after each PVector operation.

However, depending on the nature and implementation of

the specific sequence of requested PVector operations, it is

sometimes necessary for some Thread synchronization.

Sometimes the Worker Threads must execute a barrier

synchronization, and sometimes the Master Thread must

participate in this synchronization. Since our library

implementation clearly has the isolation and partitioning

properties described in section III, we can use the operator

fusion algorithm of section IIIC to determine when a barrier

(or strong barrier) is needed. The input data for this

algorithm is the OpInfoTab shown in Table I with the basic

properties of each of the fifteen operations in our collection-

oriented library. Only the properties InputCross,

OutputCross, and HasBarrier are shown because these are

the most interesting and are implementation dependent. The

other four properties follow obviously from the definition of

each operation. The abundance of False values in this table

shows that our implementation has ample opportunity for

operator fusion.

To illustrate the principle of operator fusion, consider the

following series of data parallel operations starting with data

PVectors A, B, C:

T1 = A.map(_*2.0) // T1 = 2*A

T2 = T1.combine(_+_ , B) // T2 = T1 + B

D = T2.combine(_/_ , C) // D = T2/C

Assume three Worker Threads perform these operations

by dividing the PVectors into blocks as described above.

The Worker Threads could perform a synchronization

barrier after each operation. However, this is not necessary

because the intermediate results computed by the Workers

do not cross the block boundaries. Worker 0 reads and

writes only elements in block 0 of PVectors A, B, C, D, T1,

T2. Similarly, Worker 1 reads and writes only elements in

block 1 of all the PVectors. Worker 2 uses only elements in

block 2. Therefore, there is no possibility of interference

between the Workers: they read and write separate elements

of the PVectors. Thus, the (map, combine, combine)

sequence of data parallel operations could be fused within

each Worker Thread without any intervening barriers. This

operator fusion of data parallel operations greatly improves

the performance.

User

Program

class

PVector

Instruction

Queue

Instruction

Queue

Instruction

Queue

Worker

Thread

0

 Block 0 Block 1 Block 2

Worker

Thread

1

Worker

Thread

2

Output PVector

Master

Thread

Figure 4. Parallel Implementation of PVector Operations.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

TABLE I. PROPERTIES OF DATA PARALLEL OPERATIONS

Operation
Properties (True or False)

Input Crossing Output Crossing Has Barrier

map F F F

combine F F F

reduce F F True

scan True F True

keyed-reduce F True F

permute True F F

select F True F

broadcast F F F

index F F F

append F True F

assign F F F

list-input F F F

read F F F

get F F F

set F F F

A. Instruction Queue

As illustrated in Figure 4, each Worker has its own

instruction queue to receive the sequence of required

operations from the class PVector. Each data parallel

operation in the User Program requires invocation of a

method in the class PVector, which in turn will encode the

requested data parallel operation into an instruction, and

write this instruction into the queue of each Worker thread.

When there is a series of data parallel operations generated

from the User program, the instructions will build up in the

Worker instruction queues.

Our implementation uses a very simple form for the

instructions with a numeric opcode field and five additional

fields for arguments:

Instruction Field Type
 1 Int
 2 PVector
 3 PVector
 4 PVector
 5 function of one parameter
 6 function of two parameters

Each of the fifteen data parallel operations currently

included in the library has a specific numeric opcode ranging

from 1 to 15, which is placed in Instruction Field 1. To

produce an output, the data parallel operations do not

modify the input PVector, but rather create a new PVector

and return it to the caller. The initial allocation of the output

PVector is done in the class PVector. Then a reference to the

empty output PVector is passed in Field 2 to the Workers,

which write the data into it. Field 3 is used for a reference to

the input PVector. Some data parallel operations, such as

keyed-reduce, also require a reference to a third PVector,

which is placed in Field 4. Fields 5 and 6 are used for

references to user-defined functions supplied as parameters

to many of the data parallel operations, such as reduce and

combine.

These simple instructions represent a kind of data parallel

machine language with fifteen opcodes. Each instruction is

conveniently represented in Scala as a tuple. The instruction

queue of each Worker Thread is implemented by the library

class LinkedBlockingQueue() as found in the library

java.util.concurrent. The writing of the queue from the

Master Thread and the reading of the queue from the

Worker Thread is done in parallel. Therefore, proper

synchronization is needed to make the queue work properly.

This is all handled within the library code of

LinkedBlockingQueue().

With this implementation, each Worker Thread is free to

execute its instructions at its own speed, working on its

assigned block of the PVector. Thus, the required vertical

integration of the data parallel operations results naturally

from this implementation. However, some of the operations

in our library may cause Worker Threads to cross block

boundaries into portions of the PVector assigned to other

Workers. For these operations, a barrier synchronization

among the Workers may be required either before or after

the operation.

B. Barrier Synchronization

As briefly explained in previous sections, the ability to do

operator fusion of the data parallel PVector operations

originates from the fact that all the Worker Threads are

assigned to disjoint blocks of the PVectors. As long as the

reading and writing of data values by each Worker remains

within its own block, there is no possibility of any timing-

dependent errors, and the Workers can just proceed

independently at their own relative speeds. However, among

the fifteen operations in our data parallel library, there are

some operations that do require the Workers to cross block

boundaries and either read or write an element in a block

assigned to another Worker.

Consider a simple example of the following sequence of

data parallel operations in a User program:

T1 = A.map(_*2.0) // T1 = 2*A

T2 = T1.permute(Index) // permute T1

The first operation creates a new PVector T1 by

multiplying every element of PVector A by 2.0. Then the

second operation permutes (reorders) the elements of T1 to

create a new PVector T2. This is illustrated in Fig. 5.

Assume there are three Worker Threads and the PVector

size is 300. As shown in the Figure, each Worker is assigned

a distinct block of 100 elements from PVector A and T1.

Therefore, the multiplication by 2.0 can proceed

independently in each Worker.

The next step for each Worker is to perform the permute

operation using the PVector Index. The Index specifies

which element of PVector T1 will be copied into the output

PVector T2 (see discussion of permute in section IV.C). In

Fig. 5, only one specific element of Index is shown: a value

of 150 in the block assigned to Worker 0. This will select the

value 216.6 from element 150 of PVector T1 and write it

into PVector T2, as illustrated in the Figure. However, this

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

value 216.6 must be written into T1 by Worker 1 during the

previous data parallel operation (multiply A by 2.0).

If Worker 0 is faster than Worker 1, it may try to retrieve

element 150 from T1 before Worker 1 writes, causing the

old value to retrieved. To prevent this type of data race

error, the first operation (multiply A by 2.0) must be

completed before the permute operation begins. Thus, a

barrier synchronization of all the Worker Threads is required

between the operations, as shown in Fig. 5.

Using the general terminology developed in section III,

the value 216.6 is an example of a cross-thread data

element. For convenience, the definition is repeated here: a

data element e of a DP-Collection v is said to be a cross-

thread data element if there exist DP-Operations di and dj,

such that e ϵ O(dj, v, k) and e ϵ I(di, v, m) and k m. In this

example, operation dj is the map operation in the assignment

to T1 and operation di is the permute operation in the

assignment to T2. The PVector v is T1, and the value 216.6

is data element e. Thus, we have e ϵ O(map, T1, 1) and e ϵ

I(permute, T1, 0). Since 1 0, e satisfies the definition of a

cross-thread data element, and therefore, a barrier

synchronization is required after the map operation. This

requirement for a barrier will be detected by the Operator

Fusion Algorithm of Fig. 2, which is included as part of our

data parallel library implementation.

In our block-based implementation, any data parallel

operation that may cause a Worker to cross block boundaries

will create a cross-thread data element and therefore requires

some kind of barrier synchronization of the Workers. If the

boundary crossing occurs in one of the input PVectors to an

operation, then a barrier is required before the operation

begins, as is the case with the permute operation illustrated

in Fig. 5. Using the general terminology developed in

section III, the permute operation has an input crossing, as

shown in Table I. If the boundary crossing occurs in the

output PVector of an operation, it is called an output

crossing, and a barrier is required at the end of the

operation. In Table I, we see a few input and output

crossings for our data parallel library operations. However,

the vast majority of operations do not have crossings,

resulting in ample opportunity for operator fusion.

C. Master Thread Synchronization

One additional consideration is synchronization between

the Master and Worker Threads. The Master Thread

contains the User program and class PVector (see Fig. 4).

When an operation is requested by the User program, the

class PVector sends an instruction to each Worker Thread,

then returns to the User program before the operation is

actually completed by the Workers. The User program

continues to execute and may request additional data parallel

operations. Thus, the User program can progress far ahead

Worker

Thread

0

 216.6

Worker

Thread

1

Worker

Thread

2

 Block 0 Block 1 Block 2

 150

 216.6

A

T1

Index

T2

Barrier required here

Figure 5. Permute Operation Requires Barrier

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

of the actual implementation of the data parallel operations

by the Workers.

The question then arises: are there any circumstances

under which the User program must wait for the Workers to

complete an operation? As long as the output of the data

parallel operation goes into another PVector, then the User

program does not have to wait for completion. However, if

the result of an operation comes out of the PVector space

and into an ordinary program variable, then the User

program must wait for completion of the operation before

moving on execution of the next program instruction. This

issue was previously discussed in section III.A with respect

to the non-PVector object x shown in History Graph of Fig.

1.

For a specific example, consider the following

instructions found at the end of the do-while loop in the

Jacobi Relaxation program shown in Fig. 3:

 done = Done.reduce(_&&_)

 } while(!done)

The Boolean PVector Done is reduced using the logical

and operation to a single Boolean value that is assigned to

Boolean variable done, which is used to determine whether

to do another loop iteration. Clearly, the User program must

wait until this data parallel reduction operation is complete

before moving on the next program instruction (the while

instruction). This is a situation where the data from a

PVector is coming out into an ordinary program variable

that can be used for something other than the fifteen data

parallel library operations. Therefore, the User program

must wait for the result. Using the terminology of section III,

a strong barrier is needed. The need for such strong barriers

is detected automatically by the Operator Fusion Algorithm

of Fig. 2, which is embedded in the library implementation.

VII. PERFORMANCE BENCHMARKS

To measure the performance improvement resulting from

operator fusion, we created a version of our collection-

oriented parallel library with no operator fusion: all of the

Worker Threads execute a barrier synchronization after each

operation, and the User Program waits for completion of the

operation before executing the next instruction. In previous

sections, we have called this a strong barrier. For three

benchmark parallel programs, we determined the execution

time using the two different versions of our library (one

without operator fusion and one with operator fusion). The

computer used for performance testing is a Dell Studio XPS

7100 Minitower with 8 GB of memory and a 6-core

processor (AMD Phenom II X6 1035T).

For the Jacobi Relaxation program described in section V,

Fig. 6 shows the performance improvement resulting from

operator fusion for a range of data sizes and varying

numbers of cores. The vertical axis shows the percentage

reduction in the overall program execution time when the

operator fusion optimization is turned on. The horizontal

axis shows the number of elements (n) in the PVector.

Recall that each element of the PVector is an array with n

elements, so the total data size is proportional to n
2
. We see

that operator fusion provides quite a significant performance

improvement especially for smaller data sizes. Also as

expected, the performance improvement is greater for larger

numbers of cores, because the barrier execution time

increases with the number of cores.

Now let us do a more general analysis of the expected

performance improvement from operator fusion. The

execution of each collection-oriented parallel operation in

our library has three basic phases: Setup, Operation

Execution, and Barrier. Fig. 4 shows the Setup Phase

consisting of the original library function call in the User

Program and the initial processing of this call in the PVector

class. The Operation Execution Phase is the parallel

execution of the PVector operation by the Worker Threads.

Finally, the Barrier Phase synchronizes the Worker

Threads. Operator fusion removes the need for this Barrier

Phase. If n is the PVector size, and p is the number of

Worker Threads (number of cores), then the expected

execution time is as follows:

Setup: O(p); Operation Execution: O(n/p); Barrier: O(p);

If the p is very large, then the Setup and Barrier can be

reduced to O(log p). This analysis shows that decreasing the

data size n will increase the relative impact of operator

fusion on improving performance. This is clearly seen in the

graphs of Fig. 6. Similarly, increasing the number of cores p

will also increase the performance gain from operator fusion

(also seen in Fig. 6). Even for a six-core processor we see a

Data Size (n)

Figure 6. Performance Improvement for Jacobi Relaxation

Figure 7. Performance Improvement for Merging Sorted Lists

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

significant performance improvement from operator fusion

of up to 60%. This general analysis indicates even more

significant improvement is expected as the number of cores

is increased. Therefore, as multi-core processor technology

continues to evolve, operator fusion will become

increasingly important as powerful technique for improving

the performance of data parallel operations.

To further investigate the impact of operator fusion, we

considered an additional benchmark program to Merge Two

Sorted Lists X and Y into a single sorted list Z. A simple

algorithm that is easily parallelized is as follows: for each xi

in list X, do a binary search of list Y to determine the

position j where xi should be inserted in list Y to preserve the

ordering. Then the final position of xi in the output list Z

should be Z[i+j]. To create a parallel version of this

algorithm using our collection-oriented library, X, Y, and Z

are represented as PVectors. The binary search of Y by all

the elements in X is done in parallel using the PVector

library operations. Similarly, to find the proper location for

the elements of Y, each yi is used to do a binary search of list

X (all yi in parallel).

We executed this Merging Sorted Lists program for a

range of data sizes using the two versions of our library, with

and without operator fusion. The results for six cores are

shown in Fig. 7. The vertical axis shows the percentage

reduction in the overall program execution time when the

operator fusion optimization is turned on. The horizontal

axis shows the number of elements in list X (and Y). There is

a significant performance improvement of up to 25%.

However, this is much less than the 60% improvement for

the six-core Jacobi Relaxation program. The performance

improvement in a particular program just depends on how

many data parallel library operations can be fused in that

program.

To determine the maximum possible improvement from

operator fusion, we considered one additional ―best case‖

program: a simple iterative loop with a series of thirty

PVector map and combine operations doing basic arithmetic

on scalar floating point numbers. We call this the Map

Benchmark program. As seen in Table I, the map and

combine operations always can be fused. So the program

requires no barriers. The performance improvement

resulting from operator fusion is shown in Fig. 8. The

horizontal axis is the PVector size. The graph shows a

reduction in overall execution time of up to 82% by using

the operator fusion optimization only.

REFERENCES

[1] J. C. Adams, W. S. Brainerd, J. T. Martin, T. Smith, and J. L.

Wagener, Fortran 90 Handbook. McGraw-Hill, 1992.

[2] High Performance Fortran Forum. High Performance Fortran

specification version 2.0, January 1997.

[3] C. Koelbel and P. Mehrotra, ―An overview of high performance

Fortran,‖ SIGPLAN Fortran Forum, vol. 11, No. 4, pp. 9–16, 1992.

[4] J. Dean and S. Ghemawat, ―MapReduce: Simplified data processing

on large clusters,‖ Commun. ACM, vol. 51, no. 1, pp.107–113, 2008.

[5] W. D. Hillis, The Connection Machine. MIT Press series in artificial

intelligence, 1985.

[6] G. E. Blelloch, Vector Models for Data-Parallel Computing. The

MIT Press, Cambridge, Massachusetts, 1990.

[7] K. E. Iverson, A Programming Language. John Wiley & Sons, Inc.,

New York, NY, 1962.

[8] A. Ghuloum, E. Sprangle, and J. Fang, ―Flexible parallel

programming for terascale architectures with Ct,‖ Intel White Paper,

Intel Corporation, 2007.

[9] M. D. McCool, ―Data-Parallel programming on the Cell BE and the

GPU using the RapidMind Development Platform,‖ GSPx Multicore

Applications Conference, Santa Clara, CA, November 2006.

[10] Array Building Blocks Application Programming Interface Reference

Manual, Intel Corporation, 2011.

[11] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,

and P. Hanrahan, ―Brook for GPUs: Stream computing on graphics

hardware,‖ ACM Transactions on Graphics, Volume 23, Issue 3, pp.

777-786, 2004.

[12] P. Charles, et. al., ―X10: An object-oriented approach to non-uniform

cluster computing,‖ 20th ACM SIGPLAN OOPSLA Conference, San

Diego, CA, pp. 519 – 538, 2005.

[13] B. Carpenter and G., ―HPJava: A data parallel programming

alternative,‖ Computing in Science and Engineering, vol. 5, no. 3, pp.

60-64, May/June 2003.

[14] B. Lester, ―Improving Performance of Collection-Oriented Operations

through Parallel Fusion,‖ Lecture Notes in Engineering and Computer

Science: Proceedings of The World Congress on Engineering 2011,

WCE 2011, 6-8 July, 2011, London, U.K., pp. 1519-1529.

[15] D. Wampler and A. Payne, Programming Scala, Chapter 12,

O‘Reilly, 2008.

Figure 8. Performance Improvement for Map Benchmark

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_06

(Advance online publication: 27 February 2012)

__

