
Formal Social Norms and Their Enforcement in

Computational MAS by Automated Reasoning
Roman Neruda, Ondřej Kazı́k

Abstract—Role-based frameworks enrich multi-agent system
models with new organizational concepts: roles and groups. We
present a formalization of a role-based approach in description
logics serving as the common organizational model both for
the development process and the management of the system.
A central authority of role ontology agent is proposed in this
paper. This agent performs management of the system: keeping
track of the actual state of the system, querying the model
and checking its social norms. Agents in the system can thus
act in a sociable way especially in complicated configurations.
Algorithms controlling agents in a computational intelligence
modeling scenario are shown.

Index Terms—role model; description logic; integrity con-
straints; computational intelligence.

I. INTRODUCTION

A
GENT is a computer system situated in some en-

vironment that is capable of autonomous action in

this environment in order to meet its design objectives

[1]. Its important features are adaptivity to changes in the

environment and collaboration with other agents. Interacting

agents join in more complex societies, multi-agent systems

(MAS). These groups of agents gain several advantages,

as are the applications in distributed systems, delegacy of

subproblems on other agents, and flexibility of the software

system engineering. The effort to reuse MAS patterns brings

the need of separation of the interaction logic from the inner

algorithmic logic of an agent. There are several approaches

providing such separation and modeling MAS from the

organizational perspective, such as the tuple-spaces, group

computation, activity theory or roles [2].

Generally speaking, a role is an abstract representation

of stereotypical behavior common to different classes of

agents. Moreover, it serves as an interface, through which

agents perceive their execution environment and affect this

environment. Such a representation contains a set of patterns

of interactions, capabilities, and knowledge which an asso-

ciated agent may utilize to achieve its goals. On the other

hand, the role defines constraints, which a requesting agent

has to satisfy to obtain the role, as well as responsibilities

for which the agent playing this role holds accountable.

The role also serves as a mean of definition of protocols,

common interactions between agents. An agent may handle

more roles, and a role can be embodied by different classes of

agents. Moreover, agents can change their roles dynamically.

The role-based solutions may be independent of a par-

ticular situation in a system. This allows to design an

overall organization of multi-agent systems, represented by

R. Neruda is with The Institute of Computer Science, Academy of
Sciences of the Czech Republic, 182 07 Prague 8, Czech Republic, e-
mail: roman@cs.cas.cz. This work has been supported by the Czech Science
Foundation under the project no. . O. Kazı́k is with The Faculty of
Mathematics and Physics, Charles University, 118 00 Prague 1, Czech
Republic, e-mail: kazik.ondrej@gmail.com

roles and their interactions, separately from the algorithmic

issues of agents and to reuse the solutions from different

application contexts. The coordination of agents is based on

local conditions, namely the positions of an agent playing

some role, thus even a large MAS can be built out of simple

organizational structures in a modular way.

The above mentioned properties are crucial for agent use in

the computational intelligence models for data mining where

we typically have a collection of available methods that coop-

erate in order to build a hybrid model based on data. Hybrid

models including combinations of computational intelligence

methods, such as neural networks, genetic algorithms, and

fuzzy logic controllers, can be seen as complex systems with

large number of components and computational methods,

and with potentially unpredictable interactions between these

parts. Typical set up of a data mining task employing a

computational method contains the agent encapsulating such

a method, such as multilayer perceptron neural network,

or an RBF (radial basis function) network which is used

throughout our example; the data source; and some managing

entity responsible for proper configuration and execution

of the task. These approaches have demonstrated better

performance over individual methods in many data modeling

tasks [3]. The modes of cooperation are partially expressed

by ontological constraints, while some aspects are dynamical

and data dependent.

There are not many software packages that provide a large

collection of individual computational methods, as well as

the possibility to connect them into hybrid schemes in various

ways. Multi-agent systems seem to be a suitable solution to

manage the complexity and dynamics of hybrid systems.

The next section discusses the work related to the role-

based methodologies, their formalization and implementation

support. In Section III the computational intelligence and its

role-based model are introduced. In Section IV this model

is formalized in description logic with respect to both open

world and closed world reasoning. The role ontology agent

dealing with this model is introduced in Section V. In

Section VI typical agents exploiting services of the ontology

agent are shown.

II. RELATED WORK

There are various methodologies exploiting concept of

role for development of MAS. These methodologies vary

in their support of different phases of the development. For

example, the Gaia methodology [4] fully exploits roles only

in the analysis phase and leaves them during the design

phase of development. The BRAIN framework [5], one of the

role-based approaches, describes roles by means of XML-

files and offers also the implementation support in JAVA

language. The ALAADIN framework [6] is a organization-

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_09

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



centered generic meta-model of multi-agent systems. It de-

fines a general conceptual structure which is utilized in the

MAS development. The framework describes MAS from an

organizational perspective, instead of using terms of agents’

mental states (agent-centered). This model (also called AGR)

focuses on three basic concepts: agent, group and role.

In [7], the OWL-based representation of policies and

norms in MAS, called OWL-POLAR was proposed. The

OWL-POLAR also uses reasoning mechanisms to make

policy-governed decisions and policy analysis. This formal-

ization is near to the role-based frameworks but, in order

to represent policy it has to express it in other formalism,

namely SPARQL queries.

The matchmaking, which is one of the functions provided

by the ontology agent of our system described in Section V,

is also well established discipline in the field of web services.

Various middle agents are presented in [8].

Data-mining algorithms and their interfaces are described

in a domain ontology KDDONTO [9], based on description

logics. This ontology is used for automatic composition of

algorithms forming valid data-mining processes

We focused our analysis on the field of hybrid intelligence

and computational MAS. In these research areas is laid

emphasis on collaboration of different heteronomous compu-

tational methods. The multi-agent systems allow distributing

not only the computation but also the data sources sensing in

real time. This would enable ubiquitous and pervasive com-

puting scenarios. The distribution of sensors is extensively

studied in wireless sensor network technology, e.g. [10].

In our approach, a computational MAS contains one or

more computational agents, i.e. a highly encapsulated objects

embodying a particular computational intelligence method,

and collaborating with other autonomous agents to fulfill its

goals. Several models of development of hybrid intelligent

systems by means of MAS have been proposed, e.g. [11],

[12], and [13].

III. ROLE MODEL OF COMPUTATIONAL MAS SCENARIO

In order to verify the abilities of role-based models we

will present an example of analysis of a computational MAS

scenario. We are exploiting the conceptual framework of

the AGR model [6]. Its organization-centered perspective

allowing modular and variable construction of MAS is well

suited especially to more complicated configurations of com-

putational agents.

As an example we take the computational MAS from [14].

The system consists of a Task Manager agent, Data Source

agent, two computational agents (RBF neural network and

Evolutionary algorithm agent) and supplementary agents. In

the case of RBF network, there are unsupervised (vector

quantization) and supervised (gradient, matrix inverse) learn-

ing agents. The evolutionary algorithm agent needs Fitness,

Chromosome and Tuner agents. We want to decompose this

scenario by means of AGR concepts, i.e. agents, groups and

roles.

Such a computational MAS is represented by a role

organizational structure, depicted in Figure 1, consists of

the following group structures:

• Computational Group Structure. It contains three roles:

a Task Manager, Computational Agent implementing a

Fig. 1. Organizational structure diagram of a computational MAS.

computational method and Data Source which provides

it with training and testing data.

• Simple Learning Group Structure consisting of two

roles: a Teacher and Learned Computational Agent. This

structure can be instantiated by groups for different

Teacher (e.g. Vector Quantization, Gradient and matrix

inverse).

• Evolutionary Algorithm Group Structure contains an

Evolutionary Algorithm agent, Evolved Computational

Agent, Chromosome which translates representation of

an individual into model’s parameters, and Tuner with

probabilities of the algorithm.

Every concrete organization is built with respect to the

rules of the organizational structures. Aims of the agents are

fulfilled by assuming of roles or establishing of groups and

interactions. The agents can play different roles in different

groups and even complicated MAS can be built from these

structures.

We can see, that the role model allows to simplify the

construction of more complicated computational multi-agent

systems by its decomposition to the simple group structures

and roles, to which the agents assigns. Moreover, the position

of an agent in MAS in every moment of the run-time is

defined by their roles without need to take into account

their internal architecture or concrete method it implements.

It also reduces a space of possible responding agent when

interactions are established.

IV. DESCRIPTION LOGIC MODEL

The family of Description Logics (DL [15]), fragment of

first-order logic, is nowadays de facto standard for ontology

description language for formal reasoning. In DL a knowl-

edge base is divided into T-Box (terminological box), which

contains expressions describing concept hierarchies, and A-

Box (assertional box) containing ground sentences.

In [14], an ontological description of computational MAS

has been proposed. The approach combines description logic

and Horn rules in a single model providing both static and

dynamic aspects of the system. This extension of the DL

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_09

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



model by other formalism is forced by the low expressive

power of the OWL, the language based on the DLs, and its

standard semantics. First of all, it does not use any variables,

thus it is difficult to express more complicated conditions

between entities in the model. Furthermore, semantics of

OWL is designed for scenarios where the complete infor-

mation cannot be assumed, thus it adopts the Open World

Assumption (OWA). According to OWA, a statement cannot

be inferred to be false only on the basis of a failure to

prove it. If there is assumed complete knowledge, the T-Box

axioms cannot be used as Integrity Constraints (IC) which

would test validity of the knowledge base. In order to check

integrity constraints the Closed World Assumption (CWA) is

necessary. There are several approaches simulating CWA by

different formalisms, e.g. rules or queries [16].

We continue in the effort to describe the computational

MAS in description logic model. Our model would incorpo-

rate the concepts of group and role elaborated in the previous

Section. We want to preserve the simplicity of the OWL

models and also to express role ICs in the same language.

In [16] authors presented a IC validation solution reducing

IC validation problem to SPARQL query [17] answering.

Moreover, they introduced prototype IC validator extending

Pellet [18], the OWL reasoner. Thus we divided the T-Box of

proposed model into two parts. The first part contains axioms

describing mainly concepts’ hierarchy and the necessary

relations between their instances. This schema is interpreted

in OWA and defines the facts the reasoner will infer from

the given A-Box. In the second part, there are constraints

which define the integrity conditions of the system related

mainly to the capabilities of agents. These are interpreted on

CWA. The time-dependent information, the actual state of

the system is in A-Box of the ontology.

As we have already mentioned, a role is defined as a set of

capabilities, i.e. actions (interactions) an agent assuming this

role can use, and set of responsibilities or events the agent

should handle. A group is then described by a set of the roles,

the group contains. A hierarchy of concepts should respect

this. The designed T-Box contains the following superior

concepts:

• Responder is a responsibility of a role. It stands for a

message type the agent handles.

• Initiator represents an action from a capability set

and it is closely related to a particular Responder.

The functional role isInitiatorOf relates to the agent

which the action uses. The role sendsTo contains the

agents to which the action is connected.

• RequestInit is a subclass of the previous concept

which defines only those initiators that sends messages

to one agent (unlike e.g. the contract net protocol). This

concept adds the following IC:

RequestInit ⊑C6 sendsTo.1

• Agent is a superclass of all roles. The role assign-

ment is achieved simply by a concept assertion about

the agent. The inverse functional roles hasInitiator

(inverse of isInitiatorOf ) and hasResponder couple

an agent with particular actions and responsibilities.

While the hasResponder relation is a fixed property,

the hasInitiator occurs only when a corresponding

connection is established. Finally, the functional role

isMemberOf indicates belonging to a group.

• Group represents a group in a MAS. It has only

one role, an inverse of the isMemberOf role, called

hasAgent.

The computational group structure contains three agents

with assigned roles of a task manager, computational agent

and data source. Between these roles two connections can be

established. First, the task manager sends a control messages

to the computational agent in order to solve a problem.

It contains necessary parameters (data file name, learning

options) and action the computational agent should perform,

as is training and testing. The second connection is between

the computational agent and data source, which provides data

from a specified file. The sending of control messages be-

tween the task manager (TaskManager), which is initiating

this connection, and computational agent (CompAgent) is

modeled by two concepts, an initiator (ControlMsgInit)

and responder (ControlMsgResp). The initiator of this

connection is an instance of ControlMsgInit which is a

subclass of the RequestInit class. It sends messages only to

an agent with a running responder handling these messages,

and it is coupled with a Task Manager role as a capability.

The schema file of the ontology contains axioms of the

initiator and responder concept hierarchy, and a definition

of the responder individual:

ControlMsgInit ⊑O RequestInit

The following integrity constraints for this concept check the

roles of initiating and responding agents:

ControlMsgInit ⊑C ∀sendsTo.∃hasResponder.

.ControlMsgResp ⊓ ∀isInitiatorOf.TaskManager

The control message responder is a simple descendant of

the Responder concept and this class contains the instance

ControlMsg. The schema axioms follow:

ControlMsgResp ⊑O Responder

ControlMsgResp(ControlMsg)

The data connection between the computational agent and

the source of data (DataSource) is divided in two classes:

an initiator DataMsgInit and responder DataMsgResp.

The following axioms for these concepts are similar to those

for the control connection:

DataMsgInit ⊑O RequestInit

DataMsgInit ⊑C ∀sendsTo.∃hasResponder.

.DataMsgResp ⊓ ∀isInitiatorOf.CompAgent

DataMsgResp ⊑O Responder

DataMsgResp(DataMsg)

Role definitions are descendants of the Agent concept and

have to contain their responsibilities, i.e. responders they

contain (capabilities are defined on the initiator side). The

computational agent (CompAgent) has as a responsibility

to respond on the control connections. These are axioms

inserted in the schema set:

CompAgent ⊑O Agent

⊓ ∋ hasResponder.ControlMsg

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_09

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



Fig. 2. Example of computational group solving data-mining task which
employs two preprocessing agents in order to prepare data for the neural-
network classification.

The data source (DataSource) handles requests for data and

the task manager (TaskManager) role only sends messages

in a group:

DataSource ⊑O Agent

⊓ ∋ hasResponder.DataMsg

TaskManager ⊑O Agent

Finally, the computational group (CompGroup) contains

only the agents which have asserted that they have the

computational agent, task manager or data source role. The

subclass-axiom is important for open world reasoning:

CompGroup ⊑O Group

On the other hand, entrance of the agent with a wrong role

has to be checked by the following closed world constraint:

CompGroup ⊑C ∀hasAgent.

.(CompAgent ⊔ TaskManager ⊔ DataSource)

In real data-mining tasks, separate phase of pre-processing

before main computation is necessary [19], e.g. feature

extraction, missing values and outliers filtering, or resam-

pling etc. The pre-processing agent, i.e. encapsulation of a

preprocessing method, obtains data from a data source and

provides pre-processed data to other agents. The options of

the pre-processing method and source-file have to be set by

a task manager who controls the computation.

Therefore the interactions defined before can be utilized.

The pre-processing agent gains properties of both the data

source (it provides data) and computational agent (it receives

data from another source and waits for control messages).

Thus the role of PreprocessingAgent is defined as an

intersection of DataSource and CompAgent:

PreprocessingAgent ⊑O CompAgent ⊓ DataSource

The pre-processing agent with this role is also able to enter

any computational group according to this definition. It also

includes the possibility of creation of agents chain, where on

the one end is an agent providing original data table and on

the other is a data mining computational method. Diagram

of such a configuration with two preprocessing agent is at

Figure 2.

The simple learning group structure is defined in a similar

way with following schema and integrity rules:

LearningMsgInit ⊑O RequestInit

LearningMsgInit ⊑C ∀sendsTo.∃hasResponder.

.LearningMsgResp ⊓ ∀isInitiatorOf.LearnedCA

LearningMsgResp ⊑O Responder

LearningMsgResp(LearningMsg)

LearnedCA ⊑O Agent

Teacher ⊑O Agent

⊓ ∋ hasResponder.LearningMsg

SimpleLearningGroup ⊑O Group

SimpleLearningGroup ⊑C ∀hasAgent.

.(Teacher ⊔ LearnedCA)

The evolutionary algorithm group structure is example

of more complicated organization and it contains an evo-

lutionary algorithm, evolved computational agent, tuner with

parameters of the algorithm, and chromosome, i.e. represen-

tation of individuals. The interactions between these roles de-

scribe the necessary flow of information to evolutionary learn

a model of the computational agent, i.e. control messages of

the algorithm, messages with parameters of the algorithm,

requests for fitness computation of single individual, and

computation of error rate of CA with chromosome trans-

formed to its model. The structure is defined as follows:

EAControlMsgInit ⊑O RequestInit

EAControlMsgInit ⊑C ∀sendsTo.∃hasResponder.

.EAControlMsgResp ⊓ ∀isInitiatorOf.EvolvedCA

EAParamsMsgInit ⊑O RequestInit

EAParamsMsgInit ⊑C ∀sendsTo.∃hasResponder.

.EAParamsMsgResp ⊓ ∀isInitiatorOf.EvoAlgorithm

FitnessMsgInit ⊑O RequestInit

F itnessMsgInit ⊑C ∀sendsTo.∃hasResponder.

.F itnessMsgResp ⊓ ∀isInitiatorOf.EvoAlgorithm

ComputeModelMsgInit ⊑O RequestInit

ComputeModelMsgInit ⊑C ∀sendsTo.∃hasResponder.

.ComputeMsgResp ⊓ ∀isInitiatorOf.Chromosome

EAControlMsgResp ⊑O Responder

EAControlMsgResp(EAControlMsg)

EAParamsMsgResp ⊑O Responder

EAParamsMsgResp(EAParamsMsg)

FitnessMsgResp ⊑O Responder

F itnessMsgResp(FitnessMsg)

ComputeModelMsgResp ⊑O Responder

ComputeModelMsgResp(ComputeModelMsg)

EvolvedCA ⊑O Agent

⊓ ∋ hasResponder.ComputeModelMsg

EvoAlgorithm ⊑O Agent

⊓ ∋ hasResponder.EAControlMsg

Chromosome ⊑O Agent

⊓ ∋ hasResponder.F itnessMsg

Tuner ⊑O Agent

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_09

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



⊓ ∋ hasResponder.EAParamsMsg

EvoAlgorithmGroup ⊑O Group

EvoAlgorithmGroup ⊑C ∀hasAgent.

.(EvolvedCA

⊔EvoAlgorithm

⊔Chromosome

⊔Tuner)

Fig. 3. Hierarchy of DL concepts in the computational MAS model.

We define concepts in this hierarchy in order to describe

our computational MAS. The system consists of groups

Fig. 4. Architecture of the role ontology agent.

with three types: computational group, simple learning group

and evolutionary algorithm group. Behavior of the agents is

formally described by means of allowed roles and protocols

of their interactions in these groups. The full formal model

is presented in [20]. The main concepts of this ontology are

depicted in Figure 3.

V. IMPLEMENTATION

To coordinate the run-time role organization of MAS built

according to the schemes and constraints of T-Box, it is

necessary to have a central authority, separate agent in which

the DL model has to be represented. Other agents will change

the state of the model and query it by interaction with this

agent.

The model is implemented as an role ontology agent

(ROA) in JADE, Java-based framework for MAS [21]. The

goals of the ROA are:

• Keeping track of the actual state of MAS. Agents

present in the MAS are registering themselves in ROA;

stating changes of their roles; creating and destroying

groups and their membership in them; and establishing

communication channels.

• Verification of correctness of MAS. ROA controls all

changes of the system and does not allow activities

which would violate the integrity constraints.

• Matchmaking of agents and groups. Exploiting the

concept hierarchy it is possible to search groups of

certain types or agents that have a certain role, are

members of certain group, or can handle certain types

of messages.

The ontology agent (shown in Figure 4) consists of the

request handling module which is responsible for processing

of incoming requests and replying. It employs the ontology

functions provided by the Pellet OWL-DL reasoner [18] and

its extensions. The ontology model contains assertional box

of the ontology and describes an actual state of the system.

The open-world reasoner infers new facts from axioms in the

OWL schema file and content of the A-Box. The integrity

constraints saved in separate OWL file are converted into

SPARQL queries and run by the SPARQL engine on the

ontology model. The SPARQL engine is also used to answer

matchmaking queries.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_09

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



The communication ontology for contents of ROA mes-

sages has been created. This ontology consists of three types

of concepts.

The first group contains actions changing state of the

ontology. These actions result in changing of assertions in

the A-Box of the model and are validated by the integrity

constraints. If any of the ICs is violated, the change is not

performed. In this case the action ends by failure.

In the second group are concepts specifying matchmaking

queries on groups or agents. These queries are transformed

in SPARQL queries [16] and executed on the inferred model.

For example, query asking for an agent which is member of

the group grp and has the responder resp is translated in

SPARQL query in the following form:

SELECT ?Agent WHERE {

?Agent isMemberOf grp .

?Agent hasResponder resp .

}

This query can also be translated to OWL-DL query of this

form:

Query ⊑∋ isMemberOf.grp⊓ ∋ hasResponder.resp

On the other hand, more complicated queries require using

variables and cannot be expressed in description logic. For

example, if we need an agent which is connected to a data

source, where both are in the same computational group, it

can be written in SPARQL in the following way:

SELECT ?Agent WHERE {

?Agent hasInitiator ?Init .

?Init sendsTo ?Agent1 .

?Agent1 a DataSource .

?Agent isMemberOf ?Group .

?Agent1 isMemberOf ?Group .

?Group a CompGroup .

}

The third group of concepts contains concepts informing

about results of actions or queries.

VI. EXAMPLE

The role-based model allows introduction of a social logic

in control of agents. So, an agent can directly exploit and

manipulate the concepts and individuals of the DL social

model (e.g. roles, groups) in fulfillment of their goals by

communication with ROA. On the other hand, the agent un-

dertakes by registering of a role to handle messages of certain

types which are among the responders of the role. In this

section we elaborate the computational MAS scenario using

various learning methods which requires more complicated

structure of 3 groups, computational group, simple learning

group and evolutionary algorithm group.

There are seven agents in the MAS: the task manager, RBF

network computing agent, data source, vector quantization

agent, evolutionary algorithm agent and its supplementary

agents, i.e. chromosome representation of an individual and

tuner. The data classification problem by RBF network is

solved by two different learning algorithms. The vector

quantization determines the means of RBF units. In the next

step other parameters of the model are optimized by the

Fig. 5. Organization in a state of the computational MAS during
computation.

evolutionary algorithm. For the sake of simplicity we assume

that these agents are started at the beginning.

Algorithm 1 Pseudocode of the task manager agent

1: Registration of the agent by ROA.
2: Set the TaskManager role.
3: Create of group grp1 with CompGroup type.
4: Enter into grp1.
5: Wait until the group grp1 is prepared, i.e. all agents with corresponding

roles are present.
6: Find any computational agent ca (agent with CompAgent role) in the

group grp1.
7: Establish connection to ca, i.e. create initiator init with type

ControlMsgInit and connect it to the agent ca.
8: repeat

9: Send a request message with description of the problem and random
setting to ca.

10: Wait for a result.
11: until the problem is solved or the time exceeded
12: End the connection of the initiator init.
13: Leave the group grp1.
14: Wait until the group grp1 is empty.
15: Destroy the group grp1.
16: Remove the TaskManager role.

The task manager represents the problem which should

be solved, and coordinates the actions of other agents in

its computational group. A pseudocode of this agent is in

Algorithm 1. The algorithms describe mainly organizational

aspects of this scenario and consist of statements relating the

DL model in ROA. The task manager sends control messages

to the RBF network (Algorithm 2), i.e. a computational agent

which should classify data. In order to do this, it needs

training and testing data from a data source (database agent

Algorithm 3).

The RBF network also creates two new groups with

agents whose purpose is to learn its parameters. The vector

quantization algorithm finds means of clusters in the training

data (Algorithm 4).

The next step, evolutionary learning, is performed by

an evolutionary algorithm (Algorithm 5) and its two sup-

plementary agents. The tuner represents its settings. The

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_09

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



Algorithm 2 Algorithm of the RBF network

1: Registration of the agent by ROA and set the CompAgent role.
2: Wait until a group with type CompGroup is found. Name it grp1.

Enter into grp1.
3: Wait until the group grp1 is prepared, i.e. all agents with corresponding

roles are present.
4: Find any data source agent ds (agent with DataSource role) in the

group grp1.
5: Establish connection to ds, i.e. create initiator init1 with type

DataMsgInit and connect it to the agent ds.
6: while the group is full do

7: if a request for computation (i.e. with the type ControlMsg)
comes then

8: Send a request for a training data to the ds. Wait for the reply.
9: Set a LearnedCA role.

10: Create and enter into group grp2 of type
SimpleLearningGroup.

11: Wait until there is an agent t with Teacher role in the group
grp2.

12: Create initiator init2 of type LearningMsgInit and establish
a connection to the agent t.

13: Send a request for finding means of clusters in the data to the
agent t. Wait until this is finished.

14: End the connection of the initiator init2.
15: Leave the group grp2.
16: Set a EvolvedCA role.
17: Create and enter into group grp3 of type

EvoAlgorithmGroup.
18: Wait until the group grp3 is prepared.
19: Find an agent ea with EvoAlgorithm role in the group grp3.
20: Create initiator init3 of type LearningMsgInit and establish

a connection to the agent ea.
21: Send a request for optimization of other parameters to the agent

ea.
22: repeat

23: if a request of the type ComputeModelMsg comes then

24: Evaluate the model with the received parameters and send
back the results.

25: end if

26: until the ea finds a solution
27: End the connection of the initiator init3.
28: Leave the group grp3.
29: Wait until the group grp2 is empty.
30: Destroy the group grp2 and remove the role LearnedCA.
31: Wait until the group grp3 is empty.
32: Destroy the group grp3 and remove the role EvolvedCA.
33: Do the necessary computations.
34: Send a result of the computation as a reply to the request.
35: end if

36: end while

37: End the connection of the initiator init1.
38: Leave the group grp1.
39: Remove the CompAgent role.

Algorithm 3 Pseudocode of the database agent

1: Registration of the agent by ROA and set the DataSource role.
2: Wait until a group with type CompGroup is found. Name it grp1.

Enter into grp1.
3: Wait until the group grp1 is prepared, i.e. all agents with corresponding

roles are present.
4: while the group is full do

5: if a request of the type DataMsg comes then

6: Find the data file according to the specification in the database.
7: Send the data as a reply to the request.
8: end if

9: end while

10: Leave the group grp1.
11: Remove the DataSource role.

chromosome translates individuals’ representation into CA’s

models and computes fitnesses. After the processing of data

and successful classification, the task manager is informed

about its result. The developed state of the MAS is showed

in Figure 5.

In this scenario, we have not taken into account possibil-

Algorithm 4 Pseudocode of the vector quantization agent

1: Registration of the agent by ROA and set the Teacher role.
2: Wait until a group with type SimpleLearningGroup is found. Name

it grp1. Enter into grp1.
3: Wait until the group grp1 is prepared, i.e. both agents with corre-

sponding roles are present.
4: while the group is full do

5: if a request of the type LearningMsg comes then

6: Execute the learning process.
7: Send the reply.
8: end if

9: end while

10: Leave the group grp1.
11: Remove the CompAgent role.

Algorithm 5 Pseudocode of the evolutionary algorithm agent

1: Registration of the agent by ROA and set the EvoAlgorithm role.
2: Wait until a group with type EvoAlgorithmGroup is found. Name

it grp1. Enter into grp1.
3: Wait until the group grp1 is prepared.
4: Find an agent t with the role of Tuner.
5: Create initiator init1 of type EAParamsMsgInit and establish a

connection to the agent t.
6: Find an agent ch with the role of Chromosome
7: Create initiator init2 of type FitnessMsgInit and establish a

connection to the agent ch.
8: while the group is full do

9: if a request of the type EAControlMsg comes then

10: Execute the evolutionary process, where parameters of the algo-
rithm are obtained from the agent t and individual’s fitness is
computed by the agent ch.

11: Send the reply.
12: end if

13: end while

14: End the connections init1 and init2.
15: Leave the group grp1.
16: Remove the EvoAlgorithm role.

ities of automatic creation and configuration of the system

which can exploit the formal description of agents’ capa-

bilities. For example, there could be various chromosome

representations of an evolved CA in the evolutionary algo-

rithm which influences learning speed of the evolution. The

creation of suitable agent type playing the chromosome role

according to the evolved CA may be subject of metalearning.

This is also the case of choice of the computational method

with respect to the character of data.

VII. CONCLUSION

In large and open multi-agent systems, where agents can

join and leave different groups and behave according to its

changing position in the environment, the emphasis shifts

from the inner structure and algorithmic logic of individual

agents to their interaction and cooperation aspects. Concept

of role is a tool for modeling of MAS from this organi-

zational perspective. An example of such a heterogeneous

system is computational MAS, system supporting creation

of hybrid intelligence model.

In this paper we have proposed a role-based model of

computational MAS. We presented description logic formal-

ization of this model and of its elementary blocks, roles,

groups and interactions. The necessity of division of the

model between open-world and closed-world rules has been

highlighted. In the next step we implemented the ontology

agent which exploits this model to manage MAS. The ontol-

ogy agent keeps track the current state of the system, controls

correctness of the system, and serves as a matchmaking

middle agent.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_09

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



These functionalities have been tested by implementation

of computational MAS scenario. Even this simple example

has proved that employing of social concepts simplifies

not only the application development process but also the

run-time control of agents. The expansion of the model to

more complicated MAS is easy with respect to the modular

character of the role model.

The future work will be put in improvement of the model

in order better to cope with dynamic character of MAS.

The groups in the system could be in different modalities,

e.g. in the state of their creation in contrast to the complete

state, where all agents with appropriate roles are present. The

description of such states in the model would allow the agents

better to detect the current situation of the environment.

We will also implement and test other more sophisticated

matchmaking algorithms which would take into account

also a description of computational capabilities and previous

results of the agent.

REFERENCES

[1] G. Weiss, Ed., Multiagent Systems. MIT Press, 1999.
[2] G. Cabri, L. Ferrari, and L. Leonardi, “Agent role-based collaboration

and coordination: a survey about existing approaches,” in Proc. of the

Man and Cybernetics Conf., 2004.
[3] P. Bonissone, “Soft computing: the convergence of emerging reasoning

technologies,” Soft Computing - A Fusion of Foundations, Methodolo-

gies and Applications, pp. 6–18, 1997.
[4] M. Wooldridge, N. R. Jennings, and D. Kinny, “The gaia methodology

for agent-oriented analysis and design,” Journal of Autonomous Agents

and Multi-Agent Systems, vol. 3, no. 3, pp. 285–312, 2000.
[5] G. Cabri, L. Ferrari, and L. Leonardi, “Supporting the development

of multi-agent interactions via roles,” in AOSE 2005, J. P. Mller and
F. Zambonelli, Eds., no. LNCS 2935, 2006, pp. 154–166.

[6] J. Ferber, O. Gutknecht, and M. Fabien, “From agents to organizations:
An organizational view of multi-agent systems,” in AOSE 2003,
P. Giorgini et al., Eds., no. LNCS 3950, 2004, pp. 214–230.

[7] M. Sensoy, T. J. Norman, W. Vasconcelos, and K. Sycara, “OWL-
POLAR: Semantic policies for agent reasoning,” in 9th International

Semantic Web Conference (ISWC2010), 2010, pp. 679–695.
[8] K. Sycara, “Multi-agent infrastructure, agent discovery, middle agents

for web services and interoperation,” in Multi-agent systems and

applications, no. LNCS 2086. Springer Berlin / Heidelberg, 2006,
pp. 17–49.

[9] C. Diamantini, D. Potena, and E. Storti, “KDDONTO: An ontology for
discovery and composition of KDD algorithms,” in ECML/PKDD09

Workshop on Third Generation Data Mining: Towards Service-

oriented Knowledge Discovery, 2009, pp. 13–24.
[10] G. Fortino and S. Galzarano, “Programming wireless body sensor

network applications through agents,” in WOA, 2010.
[11] Z. Zhang and C. Zhang, Agent-Based Hybrid Intelligent Systems.

Springer Verlag, 2004.
[12] R. Neruda and G. Beuster, “Emerging hybrid computational models,”

in Proc. of the ICIC 2006, no. LNCS 4113, 2006, pp. 379–389.
[13] R. Neruda and O. K. k, “Role-based induced social norms in com-

putational multi-agent systems,” in Lecture Notes in Engineering and

Computer Science: Proceedings of The World Congress on Engineer-

ing and Computer Science 2011, WCECS 2011, 19-21 October, 2011,
pp. 437–442.

[14] R. Neruda and G. Beuster, “Toward dynamic generation of com-
putational agents by means of logical descriptions,” International

Transactions on Systems Science and Applications, pp. 139–144, 2008.
[15] F. Baader et al., The description logic handbook: Theory, implemen-

tation, and applications. Cambridge University Press, 2003.
[16] E. Sirin and J. Tao, “Towards integrity constraints in OWL,” in

OWLED, 2009.
[17] E. Prud’hommeaux and A. Seaborne, “SPARQL query language for

RDF,” W3C, Tech. Rep., 2006.
[18] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A

practical OWL-DL reasoner,” Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, 2007.
[19] K. Gibert, J. Izquierdo, G. Holmes, I. Athanasiadis, J. Comas, and

M. Sanchez-Marre, “On the role of pre and post-processing in envi-
ronmental data mining,” in International Congress on Environmental

Modelling and Software – 4th Biennial Meeting, 2008, pp. 1937–1958.

[20] O. Kazı́k and R. Neruda, “Role-based ontology model for management
of data mining mas,” in Proc. of The Seventh International Workshop

on Agents and Data Mining Interaction, 2011, submitted.
[21] F. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent

systems with JADE. John Wiley and Sons, 2007.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_09

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 




