
 

 
Abstract— This paper presents a fully automatic 

segmentation of brain lesions from diffusion-weighted 
magnetic resonance imaging (DW-MRI or DWI). The lesions 
are infarction, hemorrhage, tumor and abscess. Pre-processing 
stage is performed for intensity normalization, background 
removal and intensity enhancement. Then, split and merge 
algorithm is designed. Several statistical features are discussed 
and evaluated to select the best feature as homogeneity criteria. 
Lesions are segmented by merging the homogenous regions 
according to the selected criteria. This process produces blocky 
lesion region. Then, histogram thresholding is acquired to 
automate the seeds selection for region growing process. The 
region is iteratively grown by comparing all unallocated 
neighboring pixels to the seeds. The difference between pixel’s 
intensity value and the region’s mean is used as the similarity 
measure. The proposed segmentation technique has been 
validated by using misclassified area (MA), false positive rate 
(FPR), false negative rate (FNR), mean absolute percentage 
error (MAPE) and pixel absolute error ratio (r

 

err

 

), and 
compared with previous methods. The result shows that 
automatic region growing method can successfully segment the 
lesions and is suitable for analysis and classification of DWI. 

Index Terms— Diffusion-weighted MRI, brain lesion, 
segmentation, split and merge, region growing 
 

I. INTRODUCTION 
 

umor, infarction (stroke/ischemia), hemorrhage 
(bleeding/ ischemia) and infection (abscess) are the 

example of brain lesions that are affected in the brain 
cerebrum. In 2006, it was reported that tumor and brain 
diseases such as brain infarction and hemorrhage were the 
third and fourth leading cause of death in Malaysia [1]. The 
incidence of brain tumor in 2006 was 3.9 among males and 
3.2 among females per 100,000 populations with a total of 
664 cases reported by the Minister of Health Malaysia. In 
the United States, the combined incidence of primary brain 
tumor was 6.6 per 100,000 persons per year with a total of 
22,070 new cases in 2009 [2], while brain infarction affects 
approximately 750,000 new cases per year [3]. 
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Detection and diagnosis of brain lesion is the key for 

implementing successful therapy and treatment planning. 
However, the diagnosis is a very challenging task and can 
only be performed by professional neurologists. Any 
difficulty may necessitate more invasive examinations such 
as tissue biopsy [4]. Therefore, radiologists continuously 
seek for greater accuracy in the diagnosis of brain lesions 
from imaging investigations. Quantitative analysis may help 
radiologists to solve the problems. To assist visual 
interpretation of the medical images, computer-aided 
diagnosis (CAD) has become a major research subject in 
diagnostic radiology. With CAD, radiologists use the 
computer output as a second opinion in making the final 
decisions [5]. 

Diffusion-weighted magnetic resonance imaging (DW-
MRI or DWI) has been widely used in the analysis of 
different medical conditions such as stroke, tumor and 
abscess. DWI measures the strength of water diffusion 
within a tissue structure, such as white matter (WM) and 
gray matter (GM), cerebral spinal fluid (CSF) and brain 
lesions (tumor, stroke, etc) which have their own particular 
diffusion character. Image contrast is depends on the 
diffusivity, where lesion or tissues with high diffusion 
appear dark (hypointense), and low diffusion appear bright 
(hyperintense) [6]. DWI provides higher lesion contrast 
compared to conventional MRI. It is considered as the most 
sensitive brain imaging in detecting acute stroke and 
hemorrhage [3, 7] and is useful in giving details of the 
lesion components [6, 8].  

Accurate segmentation of DWI is desirable to allow 
interpretation of brain lesion structures in DWI. This process 
is performed visually by trained neurologists with a 
significant degree of precision and accuracy. Accurate 
segmentation is still a challenging task because of the 
variety of the possible shapes, locations and image 
intensities of various types of problems and protocols. For 
example, brain tumor segmentations in conventional MRI 
performed by experts have approximately 14–22% 
differences [9]. This process is time consuming and very 
subjective to make some treatment decisions [10].  

Generally, the segmentation problem is very challenging 
and has yet to be solved. A large number of approaches have 
been proposed by various researchers to deal with MRI 
protocols. Well known and widely used segmentation 
techniques are k-means clustering algorithm, Fuzzy c-means 
(FCM) algorithm, Gaussian mixture model using 
Expectation Maximization (EM) algorithm, statistical 
classification using Gaussian Hidden Markov Random Field 
Model (GHMRF) and supervised method based on neural 
network classifier [11]. The commonly used segmentation 
techniques can be classified into two-broad categories: (1) 
region-based techniques that look for the regions satisfying 
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a given homogeneity criteria and (2) edge-based 
segmentation techniques that look for edges between regions 
with different characteristics [12]. For the region-based 
segmentation category, adaptive thresholding, clustering, 
region growing, watershed and split and merge are the well 
known methods for segmentation [13].  

Region growing is one of the most popular techniques for 
segmentation of medical images due to its simplicity and 
good performance. The technique groups pixels or regions 
that have similar properties based on predefined criteria. It 
starts with a set of initial seed points that represent the 
criteria, and grow the region. Seeds can be automatically or 
manually selected [14]. Their automated selection can be 
based on finding pixels that are of interest. For example, the 
highest pixel from image histogram can serve as a seed 
pixel. On the other hand, seeds can also be selected 
manually from an image.  

The focus of this study is to develop an automatic region 
growing algorithm that can accurately segment brain 
lesions in DWI. Pre-processing is first applied to the DWI 
for normalization, background removal and enhancement. 
Region splitting and merging is applied to produce blocky 
segmented region before region growing process is started. 
Simple statistical features based on histogram, mean of 
region and number of region pixels are used as 
homogeneity criteria to produce the segmentation. 
Segmentation efficiency is evaluated by comparing the 
results using clinical DWI dataset. 

This paper is organized as follows. In section II, brain 
lesions characteristics in DWI are discussed in detail. 
Chapter III discussed the proposed research methodology. 
The flowchart of the segmentation process is detailed. As a 
pre-requisite, the theory behind the segmentation process is 
presented. The detail implementation of the proposed 
algorithms is also described in this chapter. Performance 
assessment metrics is discussed in Section IV. The 
segmentation results are shown and validated in Section V. 
Performance comparison with previous approach is also 
measured. In section VI, conclusions of this research work 
is presented. 

 

II. DIFFUSION-WEIGHTED MRI 

A. Brain Lesions 
DWI has proven to be useful for evaluation of many 

brain lesions. It has proven valuable in distinguishing brain 
abscess from necrosis tumor, as these two lesions can have 
intensity overlap and difficult to differentiate in 
conventional MRI [15]. In acute infarction, changes in 
DWI may be revealed as early as 2 minutes after onset, 
whereas for conventional MRI and CT scan have 
sensitivities below 50% to detect of infarcts within 6 hours 
[16]. Fig.1 shows DWI intensities in major brain lesions, 
where the lesion is indicated by a white circle. In normal 
brain, the region consists of brain tissue and a cavity which 
is full of cerebral spinal fluid (CSF) located in the middle of 
the brain, as shown in Fig. 1(a). The DWI intensity for CSF 
is dark. Fig. 1 (b-f) shows several brain lesions, in which the 
intensity can be divided into hyperintense and hypointense. 
DWI hyperintense includes acute infarction, hemorrhage, 
solid tumor and abscess. Chronic infarction, hemorrhage and 
necrosis tumor appear hypointense.  

    
(a) Normal (b) Solid tumor (c) Acute infarction 

   
(d) Abscess (e) Hemorrhage (f) Chronic infarction 

 
Fig. 1 Original DWI with brain lesion indicated by a white circle 

 
TABLE I 

DESCRIPTION OF BRAIN LESIONS, TYPES, SYMPTOMS AND 
PATHOLOGICAL FINDINGS [17-20] 

 
The summary of major brain lesions, types, symptoms 

and pathological findings is summarized in Table I. High-
grade solid tumors (glioma, lymphoma and metastasis; 
benign and malignant) typically are variable hyperintense on 
DWI. The common signal intensity of cystic tumor is 
hypointense. The tumors shape is commonly round, ellipse 
or heterogeneous lesion with mild or blur texture. Brain 
abscess is a lesion with inflammatory and pus due to 
bacterial or viral infection. Central small abscess may be 
seen as high signal on DWI. 

 

 

 

 

 

 

  

 

Brain Lesion DWI 
Characteristics 

Symptoms  Pathological 
Findings 

 
Tumor 
 

 
Solid: Hyperintense 
Cystic/Necrosis: 
Hypointense 
 

 
headache; Loss 
of balance; 
walking, visual 
and hearing 
problems; 
nausea; 
vomiting; 
unusual sleep; 
seizure 

 
Abnormal 
growth of cells 
in uncontrolled 
manner 
shape: round, 
ellipse or 
irregular 
texture: clear, 
partially clear, 
blur 
 

 
Infarction 
(Ischemia) 
 

 
Acute / Subacute 
Hyperintense 
 
Chronic 
 Hypointense 

 
Paralysis; 
visual 
disturbances; 
speech 
problems; gait 
difficulties; 
altered level of 
consciousness 
 

 
Cerebral 
vascular 
occlusion/ 
blockage 
 

 
Hemorrhage 
(Bleeding) 

 
Oxygenated 
hemoglobin / 
Acute hemorrhage 
Hyperintense 
 
Deoxy-hemoglobin 
/ Chronic 
Hypointense 
 

 
Paralysis; 
unconsciousne
ss; visual 
disturbances; 
speech 
problems 

 
Presence of 
blood products 
outside of the 
cerebral 
vascular 
 

 
Abscess 
(Infection) 

 
Hyperintense 
 

 
Fever; seizure; 
headache; 
nausea; 
vomiting; 
altered mental 
status 
 

 
Bacterial, viral 
or fungal 
infections, 
inflammatory 
and pus 
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Infarction (stroke) is classified as acute (less than 2 
weeks) and chronic (3 weeks to 3 months), each having its 
characteristic abnormalities as shown in the table. Infarction 
is brain tissue damage due to vascular occlusion or 
blockage. Hemorrhage represents bleeding outside of the 
cerebral vascular. In the early stage of acute hemorrhage, the 
oxygenated blood product will be seen as hyperintense due 
to the high concentration of blood product. The DWI 
demonstrates hypointense on chronic hemorrhage created by 
deoxygenated blood product [16]. 

 

B. Imaging Protocol 
The DW images have been acquired from the General 

Hospital of Kuala Lumpur using 1.5T MRI scanners 
Siemens Magnetom Avanto. Acquisition parameters used 
were time echo (TE), 94 ms; time repetition (TR), 3200 ms; 
pixel resolutions, 256 x 256; slice thickness, 5 mm; gap 
between each slice, 6.5 mm; intensity of diffusion weighting 
known as b value, 1000 s/mm2

 

 and total number of slices, 
19. All samples have medical records which have been 
confirmed by at least 2 neurologists. Images were encoded 
in 12-bit DICOM (Digital Imaging and Communications in 
Medicine) format. The testing dataset consists of 3 abscess, 
4 hemorrhage, 11 acute infarction, and 2 tumor which 
represent hyperintense lesions, and 3 samples for 
hypointense cases. In total, 20 hyperintense and 23 normal 
slices are used for validating the segmentation performance. 

III. RESEARCH METHODOLOGY 
 

DWI

Image Pre-
processing

Region Splitting and 
Merging

Automatic 
Histogram Threshold

Stop iteration?

ROI

stop

Automatic Seeds 
Selection

Region Growing

Pixel’s intensity-
region mean

N
Y

 
Fig. 2 Flowchart of the Segmentation Process 

 
The flowchart of the whole analysis is shown in Fig. 2. 

The image is firstly pre-processed to normalize, remove the 
background and enhance the image intensity. Region 
splitting and merging is performed for region detection.   
Histogram is then calculated and an optimal threshold is 
acquired. Seed pixels are automatically selected from the 
pixels that are higher than the set optimal threshold value. 
After that, region growing is performed. The region is 
iteratively grown by comparing all unallocated neighboring 
pixels to the region. The difference between the pixel's 

intensity value and the region’s mean is used as a measure 
of similarity. This process stops when the intensity 
difference become larger than the difference between 
region’s mean and optimal threshold. 

 

A. Pre-processing Stage 
Several pre-processing algorithms are applied to DWI for 

intensity normalization, background removal and intensity 
enhancement. The original DWI has 12-bit intensity depth 
unsigned integer. In normalization process, the type of the 
intensity depth is converted to double precision, where the 
minimum value is set to 0 while for the maximum is to 1. 
This process is required to simplify algorithm computation.  

The DWI includes background image which needs to be 
removed. This is because the background shares similar gray 
level values with certain brain structures. This is done 
simply by using thresholding method [21]. From our 
experiments, the best threshold value has been set to 0.023. 
Then, the outer brain boundary is traced and the inner 
boundary is removed. Here, pixels that are inside the brain 
boundary are assigned as 1 (white) while the rest are set to 0 
as background, as shown in Fig. 3(a). By multiplying this 
binary image to the original image, the brain image is 
obtained with background value equals to zero, as shown in 
Fig. 3(b). The steps of background removal can be 
summarized as follows: 

1. Convert the image into binary using thresholding 
method. 

2. Trace the outer region boundaries based on edge. 
3. Run morphological operation to remove small pixels. 
 
Next, Gamma-law transformation algorithm is chosen to 

enhance the narrow range of low input gray level values of 
the DWI to a wider range. It has the basic form of s=crγ

 

, 
where s is the output gray level intensity, c is the amplitude, 
and γ is the constant power of the input gray level, r [22]. 
γ=0.4 has been found to be the best value based on 
experiments to enhance the output histogram. Plot of s 
versus r for γ=0.4 is shown in Fig. 4. Typically, Gamma-law 
curves with values of γ<1 expand the gray level intensity of 
dark area in input, r, and produce enhanced output, s.  

(a) (b)  
 

Fig. 3 DWI at pre-processing stage: (a) image after thresholding and 
boundary tracing (b) image after background removal 

 

 
 

Fig. 4 Gamma-law response with constant power of γ=0.4 
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Fig. 5 illustrates the results of preprocessing steps. Fig. 
5(a) shows the original normalized image and its histogram. 
In Fig. 5(b), all background pixels have been removed, and 
therefore improve the shape of the image histogram which 
strongly bimodal between CSF and tissue components.  The 
maximum peak is located at 0.1.  The intensity range for the 
background removed image lies between 0 and 0.15, which 
is very dark and narrow. After applying Gamma-law 
transformation algorithm, the histogram has been enhanced 
in which the peak is located at 0.4 as shown in Fig. 5(c).  

 

 

 
(a) Image and histogram of intensity normalization 

 

 
(b) Image and histogram of background removal 

 

 
(c) Image and histogram of Gamma-law transformation 

 
Fig. 5: Pre-processing steps for segmentation. (a) Original normalized 

image, (b) Result of background removal, (c) Result of Gamma-law 
transformation. Corresponding histogram are shown on the right. 

 

B. Split and Merge Algorithm 
Split and merge algorithm [23, 24] is based on a quad tree 

structure representation whereby a square image segment is 
broken (split) into four quadrants if the original image is 
non-uniform in attribute. If four neighboring squares are 
found to be uniform, they are replaced (merged) by a single 
square composed of the four adjacent squares.  

Fig. 6 shows the representation of the quad tree structure. 
The process is divided into three partition levels. Each level 
splits the region into four sub-regions. Statistical features are 
calculated to find the homogeneity criteria. The regions that 
are homogenous to the criteria are then merged to form the 
ROI. 

 

Level n

Level n+1

Level n+2

 

Fig. 6 The quad tree structure [25] 

 
Fig. 7 shows the process in DWI, which is outlined by 

specific line weights. The splitting levels divided the image 
into another four sub-regions. The first partition level is 
outlined by thick cross-lines, the second and the third levels 
are specified by light weight white colors. The merged level 
is outlined by a thick box. It is the final segmentation result 
that forms the ROI. 

 

 
Fig. 7 Example of the split and merge segmentation process. The thick box 

shows the merged segmentation region 

 

C. Homogeneity Criteria 
First order statistics are used to represent intensity of 

level of the image. The statistical features that are frequently 
used are mean and standard deviation. Mean is average 
value of a random variable. Standard deviation is the 
variation from its mean. Let i be the random variable 
representing the N intensity levels of the image and P(i) is 
its histogram, its mean and standard deviation can be 
defined by Eq. (1) and Eq. (2) [26] respectively.  

 

∑
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Another parameter that results from histogram is entropy. It 
measures histogram uniformity, in which the closer the 
histogram is to the uniform distribution, the higher is the 
entropy [26]. Entropy can be defined by 
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Fig. 8 shows region 3 and region 4 at first partition level. 
In this figure, there is a hyperintense lesion in region 4, 
while region 3 appears normal. Their histogram distribution 
is shown in Fig. 9. The intensity range of the lesion can be 
acquired from the histogram and the optimal threshold is 
determined based on the average value obtained from 
dataset.  
 

 
 

Fig. 8 Region splitting at first stage shows split image of region 3 and 4, the 
arrow in region 4 shows hyperintense lesion 

 

   
 

Fig. 9 Histogram of region 3 and 4, the arrow shows the histogram of 
hyperintense lesion 

 
Table II shows the optimal threshold value based on 

histogram. The minimum and maximum hyperintense is 
0.47 and 0.8, respectively, whilst for hypointense the value 
is 0.1 and 0.25. 

TABLE II 
INTENSITY OF LESIONS BASED ON HISTOGRAM 

Optimal Threshold of Lesion Appearance 
Hyperintense Hypointense 
Minimum Maximum Minimum Maximum 
0.47 0.8 0.1 0.25 

 
Table III shows the setting value of homogeneity criteria 

for hyperintense and hypointense lesions. The homogeneity 
criteria calculated within the lesion are mean and number of 
lesion pixels. Mean of lesion is chosen because it is the most 
uniform criterion for lesion detection. Mean value for 
hyperintense is high because the intensity is bright, whilst 
for hypointense, the value is low. The mean for hyperintense 
and hypointense has been set to 0.495 and 0.2, respectively. 
Both values are chosen based on average from the samples. 

 
TABLE III 

THRESHOLD VALUE OF SELECTED HOMOGENEITY CRITERIA 

Type of Lesion Selected Homogeneity Criteria 
Minimum Mean 
of Lesion, µ 

Minimum Number 
of Lesion Pixels, N 

Hyperintense 
Lesion 

µ > 0.495 N  > 30 

Hypointense 
 Lesion 

µ  ≤ 0.2 and µ  ≠ 0 N  > 100 

For hypointense, the mean must not equal to zero since it 
is the background value. If the mean is smaller than its set, 
then the number of lesion pixels is used. From our dataset, 
the smallest number of pixels for hyperintense and 
hypointense is 30 and 100, respectively. The region is 
selected for the next level if the number of lesion pixels is 
higher than these values.  

Fig. 10 shows region 4 from the first partition level is 
further split to four regions at the second partition level. 
This figure shows the regions with lesion appearance at 
region 4-1 and region 4-3.  

 

 

 
 

Fig. 10 Region splitting at second level with lesion appearance in region 
4-1 and 4-3 

 
Statistical features in the area of lesion are shown in 

Table IV. The features are standard deviation, entropy, mean 
and number of lesion pixels. From the table, the statistical 
values for region 4-2 and region 4-4 are zero because there 
is no lesion pixel. For region 4-1 and region 4-3, the number 
of lesion pixels is 216 and 47, respectively. The mean of 
lesion for both regions are 0.4977 and 0.4824.  

The mean for region 4-1 is higher than its set and is 
selected for the next partition level. For region 4-3, the mean 
is smaller than its set. However, its number of lesion pixels 
is higher than 30, thus this region is also selected for the 
next partition level. Standard deviation and entropy are also 
calculated for all levels. From this table, standard deviation 
is low since all pixels intensities of the lesion are closer to 
its mean. For the entropy, the value for region 4-1 is higher 
because it depends on the total number of lesion pixels, 
whilst for region 4-3 the value is lower. Thereby both 
standard deviation and entropy are not selected as 
homogeneity criteria. 

 
TABLE IV 

STATISTICAL FEATURES FOR LESIONS IN REGION SPLITTING LEVEL 2 

Regio
n 

Pixel
s Size 

Statistical Features in area of Lesion 
Standard 
Deviation 
of Lesion, 
σ 

Entrop
y of 
Lesion, 
Entr 

Mean of 
Lesion, 
µ 

Numbe
r 
of 
Lesion 
Pixels, 
N 

4-1 

64x6
4 

0.019482
1 

5.7067 0.49765
5 

216 

4-2 0 0 0 0 
4-3 0.008541 4.2932 0.48242

9 
47 

4-4 0 0 0 0 
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eq

ue
nc

y

 

 

region 3
region 4

Region 3 Region 4 

Lesion 

Region 4-3 Region 4-4 

Region 4-2 Region 4-1 

Lesion 

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_03

(Advance online publication: 26 May 2012)

 
______________________________________________________________________________________ 



 

The process of splitting is then continued to the third 
partition level. This is the final level, in which each block, 
size is 32x32. Fig. 11 shows the example of the third 
partition level for region 4-1.  

 

  

  
 

Fig. 11 Region splitting at third level with lesion appearance in 4-1-4 
 
From the split regions, their statistical features are again 

calculated, as shown in Table V. From the table, only region 
4-1-4 has lesion appearance. The mean is 0.4977 and the 
number of lesion pixels is 216 which are similar to the 
values in the second partition level, region 4-1. Thus, only 
this region is selected for segmentation. Similar process is 
also calculated for region 4-3 to calculate the third partition 
level. Lesion regions are then merged to get the final 
segmentation result. 

 
TABLE V 

STATISTICAL FEATURES FOR LESIONS IN REGION SPLITTING LEVEL 3 

Regio
n 

Pixel
s Size 

Statistical Features in area of Lesion 
Standard 
Deviation 
of Lesion, 
σ 

Entrop
y of 
Lesion, 
Entr 

Mean of 
Lesion, 
µ 

Numbe
r 
of 
Lesion 
Pixels, 
N 

4-1-1 

32x3
2 

0 0 0 0 
4-1-2 0 0 0 0 
4-1-3 0 0 0 0 
4-1-4 0.019482

1 
5.7067 0.49765

5 
216 

 

D. Region Growing Segmentation Process 
Region growing is a procedure that groups pixels or sub 

regions into larger regions based on predefined criteria. 
Seeded region growing requires seeds as additional input. 
The basic approach is to start with a set of seed points and 
grow the regions by appending to each seed’s neighboring 
pixels that have similar properties to the seed.  The region 
growing algorithm applied in this study is summarized as 
follows: 

 
1. Histogram: calculate histogram of the merged 

segmentation region. 
2. Automatic thresholding: calculate divergence 

measure using Eq. (4), where P(i) is histogram from 
step 1.  

)()( iP
dx
dyidiv =                (4) 

3. Set optimal threshold at the first nearest to zero value 
after divergence’s maximum peak. 

4. Automatic Seeds selection: Select pixels that are 
higher than the optimal threshold as seeds. 

5. Region Growing: select the 1st

6. Measure the difference between the pixel’s intensity 
with the region’s mean. The growing process is 
stopped when this intensity difference is larger than 
the difference between region’s mean and optimal 
threshold, shows in Eq. (5) and (6). 

 seed pixel as the first 
region mean. Grow the region by comparing with 
neighboring pixels to this region.  

 
TyxI ≥− µ),(             (5) 

optimalTT −= µ            (6) 
7. Repeat step 4 to 6 until there are no more seed pixel 

that does not belong to any segmented region. 
 
Fig. 12 illustrates the DWI of acute infarction. Fig. 12 (a) 

shows the pre-processed image and the results after the 
splitting and merging process. As for automatic seeds 
selection, histogram from the lesion region is calculated 
(shown in Fig. 13(a). Optimal threshold value is acquired by 
measuring the divergence from the histogram. The 
divergence reaches its maximum when the histogram is at 
the greatest rate of change. The optimal threshold is set at 
the first nearest to zero divergence value after the maximum 
peak. Each pixel higher than this value is assigned as seeds. 
The divergence is shown in Fig. 13 (b). 

Once the seed point is selected, the region growing 
process is started. When the growth of one region stops, it 
will choose another seed pixel which does not yet belong to 
any segmented region and the process will start again. The 
iterations stop when all seeds have been used for the region 
growth.  

 

(a)  (b)  
Fig. 12 (a) Acute infarction image (b) Image after region splitting and 

merging 
 

 
Fig. 13 (a) Histogram of region (b) Divergence measure from histogram 

 

IV. PERFORMANCE ASSESSMENT METRICS 
 
Performance assessment of the segmentation results is 

done by comparing the ROI results obtained from the 
analysis with the manual segmentation which has been 
visually inspected by neurologist. Area overlap (AO), false 
positive rate (FPR), false negative rate (FNR) and 
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misclassified area (MA) are used as the performance 
metrics. These metrics are computed as follows [27] 
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where S1 represents the segmentation results obtained by the 
algorithm and S2 

Mean absolute percentage error (MAPE) was used as 
index for misclassified index for mean and number of pixels 
value in the segmentation area, while pixel absolute error 
ratio (r

represents the manual segmentation. AO 
computes the segmented similarity by comparing the 
overlap region between the manual and the automatic 
segmentation. FPR and FNR are used to quantify over-
segmentation and under-segmentation respectively. High 
AO, and low FPR and FNR showed low error, i.e. high 
accuracy of the measurement. MA must be low to provide 
better segmentation accuracy. 

err

 

     
1

|21|100
S

SSMAPE −
×=

) was for misclassified pixels for normal control. 
MAPE is an index that measures the difference between 
actual and measured value and is expressed as 

       (11) 

Besides MAPE, absolute error ratio, rerr is also applied to 
quantify the accuracy of the segmentation for normal image.  
rerr is defined as the ratio between the absolute difference in 
the number of over segmented  pixels between the actual 
and the proposed segmentation method, ndiff

%100   ×=
N

n
r diff

err

, and the total 
number of pixels, N, of an image.  Normal image should 
result in 0 number of pixel in the segmented image.  
Otherwise the result is over segmented. 

           (12) 

Low MA, MAPE and rerr 

 

show low error, which is high 
similarity with respect to neurologist’s judgments.  

V. RESULTS 
 
The proposed method has been tested on our dataset, as 

discussed in section II. Fig. 14 shows six samples of 
hyperintense lesion, indicated by white circle and their 
segmentation results. The lesions are indicated by white 
circle. Fig. 14 (a-d) show DWI with acute infarction and 

their segmentation results are shown on the second row of 
each image. Fig. 14 (e-f) show tumor and abscess, and their 
segmentation results are shown on the next row. The figures 
show that the proposed method has successfully segmented 
the hyperintense lesion, even in very small acute infarction 
in Fig. 14(c).  

 

                
 

(a)  (b) (c)  
 

                
 

(d)  (e)  (f)  
 

Fig. 14 Hyperintense lesions and split and merge segmentation results:  
(a-d) acute infarction, (e) tumor, (f) abscess 

 
Fig. 15 shows hypointense lesion and normal samples and 

their segmentation results. Fig. 15 (a-b) show DW images 
with chronic infarction and their segmentation results are 
shown on the second row. For normal brain, no region is 
segmented. The normal brain has a cavity which is full of 
cerebral spinal fluid (CSF) at the centre of the brain. The 
intensity is dark, which is similar to the intensity of the 
hypointense lesion and normally symmetric, as shown in 
Fig. 15(c). To remove the CSF from being segmented with 
the hypointense lesion, detection based on location is used. 
It is simply done by removing the CSF regions at the merge 
level. The regions are 1-4-4, 2-3-3, 3-2-2, 4-1-1, 3-2-4, and 
4-1-3.  

 

               
 

(a) (b) (c)  
 

Fig. 15 Split and Merge Segmentation Results for hypointense lesion 
and normal 
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Fig. 16 shows the final results of hyperintense 
segmentation, while Fig 17 shows the hypointense 
segmentation. The figures clearly show that the proposed 
segmentation algorithms can successfully segment the 
lesions.  

 

              
 

(a)  (b)  (c)  
 

              
 

(d)   (e)  (f)  
 

Fig. 16 Hyperintense lesions and their segmentation results: (a) acute 
infarction, (b) hemorrhage, (c) abscess, (d) tumor, (e) acute infarction,  

(f) hemorrhage 
 

                
 

(a) (b)  (c)  
 

Fig. 17 Hypointense lesions and their segmentation results: (a) - (c) 
chronic stroke 

 
Fig. 18 shows average segmentation performance of the 

proposed automatic region growing method with 
comparison of semi-automatic region growing [28]. Semi-
automatic region growing provides lower misclassified area 
(MA) which means better similarity to manual 
segmentation. This is expected because semi-automatic 
segmentation is usually applied if automatic segmentation is 
not accurate enough. 

In this analysis, MA of the automatic algorithms is 
comparable with the semi-automatic. Both segmentations 
provide almost similar performance. On the other hand, the 
automatic segmentation provides better mean absolute 
percentage error (MAPE) compared to the manual 
segmentation results.  For normal control, the misclassified 

pixel (rerr

 

) is very small. This measurement is not applicable 
for semi-automatic segmentation. Overall, the automatic 
region growing provides comparable results with the semi-
automatic segmentation technique. 

 
Fig. 18 Average performance of the algorithm 

 
Table VI shows the performance evaluation between the 

proposed fully automatic segmentation, with comparison of 
conventional semi-automatic region growing. The results 
show that the proposed automatic method offers very good 
segmentation results for abscess, hemorrhage and infarction.  
It provides comparable performance with semi-automatic 
segmentation. However, it has a slightly remarkable 
difference for tumor. The automatic segmentation cannot 
fully characterize the tumor lesion as good as semi-
automatic region growing. In addition, some tumor lesions 
consist of fuzzy boundary and iso-intense area compared to 
the other type of lesions. The errors for under-segmentation 
(FNR) are bigger than over-segmentation (FPR) for all 
cases. The shaded areas show the best average performance. 

 
TABLE VI 

PERFORMANCE EVALUATION FOR EACH LESIONS: COMPARISON BETWEEN 
THE PROPOSED AUTOMATIC REGION GROWING WITH SEMI-AUTOMATIC 

REGION GROWING TECHNIQUES 

 Index  
Area Overlap 

False Positive 
Rate (over-

segmentation) 

False Negative 
Rate (under-

segmentation) 
Techniq
ue 

Auto R. 
Growin
g 

Semi-
auto R. 
Growing 

Auto R. 
Growing 

Semi-
auto R. 
Growing 

Auto R. 
Growing 

Semi-
auto R. 
Growing 

Abscess 0.2504 0.2158 0.0161 0.0056 0.2343 0.2102 
Hemor-
rhage 0.2980 0.3029 0.0850 0.0395 0.2130 0.2634 
Infarc-
tion 0.2755 0.2249 0.0837 0.0211 0.1918 0.2038 

Tumor 0.3458 0.1841 0.1072 0.1001 0.2386 0.0840 

Average 0.2911 0.2623 0.0766 0.0368 0.2145 0.2255 
 

 
Fig. 19 shows comparison of segmentation performance 

of the proposed automatic region growing method and semi-
automatic region growing with gray level co-occurrence 
matrix (GLCM) and thresholding techniques. For reference, 
GCLM and thresholding techniques have been discussed in 
[29]. As described in the subchapter VI, low misclassified 
error, over segmentation and under segmentation errors 
(FPR and FNR), mean absolute percentage error (MAPE) 
and misclassified pixels (rerr

 

) show high accuracy of the 
measurements with respect to the neurologist’s judgments.  
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Fig. 19 Average performance of the algorithms comparison with 
thresholding and gray level co-occurrence matrix [29] 

 
The comparison performance is detailed in Table VII. The 

shaded area in the table shows the highest accuracy. Both 
region growing methods provide lower misclassified error, 
FPR and FNR, MAPE and rerr 

 

compared to GLCM and 
thresholding techniques which means more accuracy.  
Overall, the automatic region growing provides better 
segmentation accuracy compared to GLCM and 
thresholding techniques. 

TABLE VII 
COMPARISON BETWEEN THRESHOLDING, GRAY LEVEL CO-OCCURRENCE 
MATRIX, AUTOMATIC REGION GROWING AND SEMI-AUTOMATIC REGION 

GROWING TECHNIQUES 

  
Misclassified 
Error FPR FNR MAPE r err 

Thresholding 0.3211 0.1410 0.1801 0.1524 0.0377 

GLCM 0.3167 0.0785 0.2381 0.1440 0.0205 
Auto Region 
Growing 0.2911 0.0766 0.2145 0.1353 0.0094 
Semi automated 
Region Growing 0.2623 0.0368 0.2255 0.1534 0.0000 

 

VI. CONCLUSION 
 
This paper described segmentation of brain lesion in 

diffusion-weighted MRI (DWI) using automated region 
growing approach. It used clinical DWI lesions such as 
infarction, hemorrhage, tumor and abscess. Region splitting 
and merging was carried out to obtain the lesion region. 
Histogram thresholding was used to find the optimal 
intensity threshold value and to obtain automatic seeds 
selection. The regions according to hyperintense and 
hypointense lesions were segmented. Comparison with gray 
level co-occurrence matrix (GLCM) and thresholding 
techniques were also obtained. The results have shown that 
the automatic region growing provides comparable results 
with the semi-automatic region growing segmentation. The 
proposed method can successfully segment the lesions and 
suitable for analysis of DWI and for classification purpose. 
Overall, automatic region growing provides better 
segmentation accuracy compared to GLCM and 
thresholding techniques. 
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