

The challenge of uncertainty and ambiguity is ubiquitous in

the development of complex systems and needs to be faced. The
all-embracing integration of specialists from multiple
disciplines is proven to be a major challenge in the product
engineering process.

This article presents the experiences and advancements
made within one year of explorative industrial application of
an integrated technique for sustainable, multidisciplinary
model-based systems engineering. The technique consists of
two main partitions: the consistent specification of objectives
and requirements on the one hand and a function-based
modeling technique for the according System Architecture
using the Contact & Channel – Approach (C&C²-A) on the
other hand. Embedding it into the integrated Product
engineering Model (iPeM) provides a capable and flexible
guideline for managers and engineers.

This article starts with a short introduction to Model-based
Systems Engineering (MBSE) and the most popular modeling
language SysML, followed by an outline of current challenges
in application. After a brief summary of related research work,
the identified issues as motivation for this research work are
derived. Then, a common understanding of important terms is
established through semantic definitions using the Contact &
Channel-Approach (C&C²-A). An according SysML-profile
implementation is presented afterwards, followed by an
integration of the modeling technique into the process model
iPeM. An application example from hybrid powertrain
development demonstrates the strengths of the presented
technique and remaining room for improvements. A short
summary and an outline to current and future researches
complete this article.

Manuscript received April 23, 2012; revised April 25, 2012.
1st (corresponding) author: Christian Zingel: IPEK – Institute of Product

Engineering at Karlsruhe Institute of Technology, D-76131 Karlsruhe,
Germany (phone: 0049-721-60845486; fax: 0049-721-60845487; e-mail:
Christian.zingel@kit.edu).

2nd author: Albert Albers: IPEK – Institute of Product Engineering at
Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany (phone:
0049-721-60842371; fax: 0049-721-60846051; e-mail:
Albert.albers@kit.edu).

3rd author: Sven Matthiesen: IPEK – Institute of Product Engineering at
Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany (phone:
0049-721-60847156; fax: 0049-721-60846051; e-mail:
Sven.Matthiesen@kit.edu).

4th author: Michael Maletz: AVL List GmbH, A-8020 Graz, Austria.
(phone: 0043-664-8379249; e-mail: michael.maletz@avl.com).

Index Terms— Model-Based Systems Engineering, C&C²-A,

SysML, term formalization, function-based modeling
technique, multidisciplinary systems, traceability of objectives

I. INTRODUCTION

Continuously high product recalls, which are particularly
observable in the automotive industry [1], reveal the
ubiquitous challenges of manufacturers of technical
products in handling the inherited, rapidly rising
complexity. Traditional, document-based development
approaches gradually reach their limit of capability. The
NATIONAL INSTITUTE OF STANDARDIZATION figured out,
that the total failure costs of projects cause about 15% of the
total capital expenditure [2], BARBER ET AL. even report a
percentage of 30% of reducible costs in civil engineering in
the UK due to quality failures [3].

An emerging trend to face the challenge to maintain or
even improve product quality without increasing effort is a
transition to Model-based Systems Engineering (MBSE).
The International Council on Systems Engineering
(INCOSE) is a non-profit membership organization founded
to develop and disseminate the interdisciplinary principles
and practices that enable the realization of successful
systems [4]. This organization, comprising more than 8.000
members from research and industry promotes Systems
Engineering standards, Methodologies and tools in order to
improve industrial product engineering. In its “Systems
Engineering Vision 2020”, MBSE is defined as “the
formalized application of modeling to support system
requirements, design, analysis, verification and validation
activities beginning in the conceptual design phase and
continuing throughout development and later life cycle
phases” [5].

For this purpose, the Systems Modeling Language
(SysML) has been developed in collaboration with the
Object Management Group (OMG), which became available
as a standardized specification in September 2007 [6].
SysML is a general-purpose graphical modeling for
specifying, analyzing, designing, and verifying complex
systems that may include hardware, software, information,
personnel, procedures, and facilities [7]. Meanwhile, several
tool vendors have implemented SysML as enhancing Profile
within their UML-tools. Henceforth, the modeling language

Experiences and Advancements from One Year of
Explorative Application of an Integrated Model-
Based Development Technique Using C&C²-A in

SysML

C. Zingel, A. Albers, S. Matthiesen, M. Maletz

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

has been applied in several pilot research and development
projects, i.e. at a Telescope development project of
European Southern Observatory (ESO) [8].

Beside the strengths of SysML in being a capable,
graphical modeling language for socio-technical systems,
which is applicable throughout the whole product
engineering process, these first applications determined
several remaining issues and weaknesses of the language.
Due to this fact, the authors of this article identified a need
to further investigate the capabilities of SysML. One
important finding during these assessments was a major lack
of usability, especially for mechanical engineers. These are
commonly not skilled in the principles of inheritance or
classes & instances, which is crucial for understanding and
usage of object-oriented modeling languages like SysML.
Furthermore, participants of SysML trainings remarked, that
the model representation in diagrams and the tool usability
is in need of improvement from their point of view.

The ProSTEP iViP society conducted a study at several
German industrial enterprises in 2011, which figured out
that Systems Engineering is still not extensively applied in
industrial practice, at most punctually in the disciplines of
Software Engineering or Electrics & Electronics. Beyond
that, even important terms are still not defined for
discipline-crossing usage purposes, what already leads to
problems in communication of engineers and also managers
[9]. These findings from the study underline the experiences
of the authors, that especially the discipline of construction
technology is still not sufficiently considered in the
development of discipline- and process-spanning modeling
languages like SysML.

The most important related research work in the field of
MBSE beside SysML is introduced in the following chapter.

II. RELATED RESEARCH WORK

Model-based Systems Engineering is a comparatively
young research field, which has emerged from several
model-based approaches from software engineering and
aims to cover the communication interfaces between
multiple disciplines. However, the underlying model theory
traces back to the seventies towards the beginning of the
computer age. STACHOWIAK [10] provided an important
basis with his General Model Theory (Ger. “Allgemeine
Modelltheorie”) in 1973, where he declared a model as a
representation of a certain original. The three main
characteristics of a model define it is an image of the reality,
which is shortened (or simplified) and pragmatically set up
for a certain purpose. YOSHIKAWA’s General Design Theory
(GDT) from 1981 [11] is an axiomatic theory of design,
where he defined the basic elements entity, entity concept,
abstract concept and attribute and proclaimed three axioms:
the Axiom of Recognition, the Axiom of Correspondence
and the Axiom of Operation. The theory has been applied
and advanced, i.e. by KIKUCHI and NAGASAKA [12], and
crucially contributed to the development of modern CAD-
Softwaretools. HITCHINS [13] devised the Generic
Reference Model (GRM), which is a comprehensive,
abstract model for the cross-linked description of properties,
capabilities and behavior of arbitrary systems. A well-

known modeling methodology is SUH’s Axiomatic Design
[14], which describes a “zig-zagging”-approach between
requirements in the customer domain, the functional domain
and the physical domain during decomposition of the
problems in the design process. LINDEMANN and MAURER
[15] addressed structural complexity management by
proposing the use of matrices for cross-linking partial
models. Design Structure Matrices (DSM) and Domain
Mapping Matrices (DMM) can be combined or integrated in
a Multiple Domain Matrices (MDM), which enables the
analysis and graphical representation of complex
interrelations in multidisciplinary systems. This
methodology has been integrated in a proprietary software
tool and is still advanced, i.e. by STARK ET AL. [16]. DORI
[17] presents Object Process Diagrams, which are entailed
in the Object Process Methodology (OPM), a formal yet
intuitive paradigm for systems architecting, engineering,
development, lifecycle support, and evolution [18].

Beside these interdisciplinary approaches for the
specification of systems, several executable models have
been developed, which are mostly more discipline-specific.
The most popular so-called Multi-Body-Simulation tools
(MBS) are Modelica [19], which has also been extended by
elements from SysML and is then called ModelicaML [20],
and the proprietary Mathworks Simulink [21].

III. PROBLEM STATEMENT AND MOTIVATION

All the previously presented methodologies and tools are
not adequately capable to improve communication and
collaboration of engineers; however some of them present
promising approaches. Summarizing the literature review,
combined with the experiences of the authors in research
and industrial practice, the main identified issues for an
efficiency improvement in product engineering are:
1. There is no general agreement reached on the

understanding of a common basic set of terms in order
to obtain a communication basis across all product
engineering and management disciplines.

2. There is no generally accepted modeling language for
engineers and managers of all disciplines due to a too
high complexity in application and/or representation.

3. A consistent model-based system documentation and
representation technique including easily
comprehensible traceability, especially between
objectives and System Architecture, does still not exist.

This is what the presented approach aims to obtain by
term definitions and formalizations by the application of the
Contact & Channel – Approach (C&C²-A) [22], [23],
integration into a modeling language and an according
modeling methodology.

As basis for the modeling language, SysML was chosen
due to several reasons: SysML is standardized and relatively
well established, especially in Software engineering and
Electrics-/Electronics, commonly called “Embedded
Systems”. These domains also made good experiences with
the extensibility of the language using ergonomic profiling
[24], [25] or the integration with other modeling languages
like MARTE [26], AUTOSAR [27] or OPM [28].
Furthermore, the integration of SysML into an existing tool

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

environment using model transformations is technically
possible. This has already been prototypically done towards
simulation tools in [29], [30] and also by the authors of this
paper, as introduced in Chapter IX.

IV. INTRODUCTION OF THE CONTACT & CHANNEL -

APPROACH

The development of mechanical products is often started
with defining several requirements, followed by first
sketches of principle solutions. These visualizations show
geometrical shapes, which implicitly shall fulfill several
intended functions. Some approaches for documenting
functions in terms of a function structure as for instance
introduced by PAHL & BEITZ [31] are also quite popular.
Unfortunately, functions are usually recorded separately
from the embodiment design. Therefore, functions are not
comprehensible assigned to the fulfilling components and
are often insufficiently considered in following design tasks
(i.e. dimensioning, tolerance calculation, material selection
etc.). This issue becomes even more critical for mechatronic
systems, where the networking between functions and their
interrelations are surging.

The Contact & Channel – Approach (C&C²-A) is
developed at the IPEK – Institute of Product Engineering
exactly to face this challenge. It supports design engineers
as a pre-thinking tool in analysis and synthesis of systems.
The approach was first introduced by MATTHIESEN in 2002,
when it was called Element Model “Working Surface Pairs
& Channel and Support Structures” [32]. During the last ten
years, it has frequently been attempted and advanced in
research projects [33], but also in industrial practice [23].

The C&C²-A uses four basic elements for the description
of systems: the Working Surface Pair (WSP), which
represents a pair of two connected Working surfaces (WS),
the Channel and Support Structure (CSS) and
Connectors (C). A WSP describes an interface (contact)
between two CSS (channels), which again transfer matter,
energy, force or information from one WSP to another. The
Connector was introduced by ALINK [34] in order to specify
the interaction of the system with its environment. These
virtual elements represent and comprise relevant influences,
parameters or constraints, which are linked to the Working
Surfaces at the system boundary. Hence, the relation of
effects, functions and the fulfilling embodiment (the shapes
and structure of the product) are described by the elements
in Contact & Channel Models. This approach can also be
applied for mechatronic systems, which is elucidated
afterwards. Three basic hypotheses define the rules for a
consistent application of the approach.

“The first hypothesis states, that every technical system
fulfills its function by interacting with adjacent systems.
Effects can only take place if a WS is in contact with a
further WS and thus a WSP is built up.” [35] The second
hypothesis defines, that “…Functions are represented by at
least two WSP’s, the connecting CSS and at least two
Connectors which embed the model into the environment.
The properties of WPSs, CSSs, Connectors and the effects
taking place in the WSPs and CSSs are determining for the
fulfillment of the function.” [35] (cf. Figure 1).

Figure 1: Representation of "effect" and "function"
by C&C²-A

The effects, which take place in every WSP, are caused
by properties of the WSP (i.e.: surface shapes, friction,
electric resistance between a material pair or data types).
The transformation of the incoming object flows (matter,
energy, force and information) to outgoing object flows in
the CSS is characterized by properties of the CSS (i.e.
geometrical shape, material stiffness, data processing) and
appearing effects within CSS. Furthermore, relevant
properties of the Connectors also influence a function,
which comprises these effects and properties. Hence, these
aspects define the characteristic of the function. That means,
an output object flow value can be calculated for a given
input object flow value using the information, which is
defined and provided by the C&C²-A.

“The third hypothesis defines the adaptable (fractal)
character of the approach according to the focus of
observation. Thus every system and subsystem can be
described by the basic elements WSP, CSS and Connector
on different levels of abstraction and detail.” [35] This
allows designers to increase or decrease the level of detail
during analysis of design problems and synthesis of
solutions for them.

ECKERT ET AL. [36] have investigated the application of
the approach for functional analysis of an axial piston pump
in a survey with several engineers. They aimed to identify
the different notions of functions and pointed out, that the
approach in fact helps to analyze products, but the
procedure and the results are still too heterogeneous.

Thus, the approach provides the basis for a formal and
clear modeling of function and embodiment of technical
systems. However, there is still a need for unambiguous and
formal specification and decomposition of functions with an
according tool support for function-based modeling,
including all aspects of the Contact & Channel - Approach.
This is why the authors of this article have presented an
integration of the elements of the approach as an enhancing
profile into the modeling language SysML [37] in order to
provide adequate tool support. An according modeling
methodology was defined and initially applied in industrial
pilot projects [38]. Similar efforts have also been conducted
by Albers et al. [39] using other modeling tools with
valuable success. The added value of using SysML instead
of specifically developed languages for modeling systems
with C&C²-A are the technical compatibility to other
modeling languages and the possibility to also model and
trace System Architectures to objectives and requirements
within one model, as already explained at the end of chapter
III. However, the findings from these research works are
very beneficial for advancing the C&C²-A-profile and the
modeling methodology at hand.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

Before introducing this profile in detail, crucial terms will
be defined and formalized in graphical representation in the
following chapter.

V. TERM DEFINITIONS AND FORMALIZATION

In the previous chapter, the Contact & Channel –
Approach has been introduced and the terms function and
effect have been explained in their semantic context. These
aspects will be addressed later in this chapter again.

New product engineering or innovation processes start
with the identification of the stakeholder’s needs and
objectives. They are central elements and coevally very
uncertainty-affected, which obstructs the definition of clear
and durable requirements for engineers. The aspect of
uncertainty is closer investigated by ALBERS ET AL. [40].
OERDING [41] conducted extensive assessments on the
specifications of objectives using the Contact & Channel –
Approach. He stated the hypothesis, that every product
engineering process is unique and individual. Furthermore is
stated, that this process can be described by the System of
Operation, which constructs and completes the System of
Objectives and develops the according System of Objects
that comprises the resulting product and adjacent findings.
Objects are described by the elements of C&C²-A and need
to be validated in terms of fulfillment of the Objectives
before becoming part of the System of Objects. All these
aspects are described and represented in the Integrated
Product Engineering Model (iPeM) [42], [43]. Figure 2
shows a representation of the System Triple as well as
contained engineering activities, problem solving activities
and the emerging phase model. The System of Objectives
and the System of Objects are here illustrated by
exemplified SysML Diagrams.

Figure 2: The Integrated Product Engineering Model
(iPeM)

One important part of the presented approach at hand is
the advancement and formalization of the specification of
the System of Objectives and the integration into a SysML-
Profile in form of according modeling entities and relations,
including the findings and hypotheses from the previously
introduced research works. Thus, the modeling language
must be capable to describe and represent the traceability
from partially vague stakeholder objectives via technical
requirements and according functions right up to the system
embodiment.

First of all, Use Cases are applied for modeling the

purpose of the system under development or - in other
words - the features the product shall provide. A feature
describes in textual manner, what the entire product shall

do, without stating any quantitative information. For a more
clear description of the internal progress of Use Cases
(features), or a qualitative description of the intended system
behavior, Activity Diagrams are applied. These are capable
to model logical procedures and decisions among others.
Due to the fact, that activities will be used for modeling
aspects of realized product functions as well, they are here
called Target Functions and have a differing appearance in
diagrams (light blue instead of green, see Figure 3).

Usually, stakeholders not only define what the product
shall do, but also desired characteristics (i.e. measureable
parameters or shapes) of these features. External objectives
coming from outside the company (i.e. from end-customers,
suppliers etc.), and internal objectives (i.e. corporate
strategy, available resources or competences) need to be
captured. These aspects are put into the model by a new
type of requirement, the Stakeholder Objectives. Beside
these aspects, stakeholders also state restricting conditions
for possible solutions. These constraints are called
Boundary Conditions and can contain limits (i.e. max.
weight) or regulations (i.e. laws, standards) for the product
to be kept. The interacting system environment contains also
crucial information about the interfaces of the product with
adjacent systems. The according element Connector has
already been introduced as an element of C&C²-A in
chapter IV. Connectors define the relevant properties of
interfaces to interacting systems. Usually, these adjacent
systems contain a lot more of information, which are indeed
available, but not of interest for the current purpose. All the
previously introduced aspects are part of the stakeholder
information and usually documented and communicated in
the User Requirements Specification (URS) in product
engineering. Based on the Stakeholder Objectives and
Boundary Conditions, technical requirements and binding
objectives have to be derived through an interpretation and
translation by engineers. This activity is necessary in order
to assure purposive and deliberate objectives and to
minimize the risk of aberrations and results in the initial
System of Objectives. This is either done in preceded
exploratory research projects or at the very beginning of a
product engineering process (for more information about
this synthesis activity, refer to ALBERS ET AL. [46]). The
System of Objectives contains all binding objectives to
meet, derived technical requirements and all their
interrelations and cross-links. Technical requirements will
be assigned to concrete System Architecture elements
(functions or components) during the progressing
development process and the System of Objectives is further
amended by derivation of new emerging requirements.
Modeling and cross-linking all these aspects assures that
technical requirements can always be traced back to the
responsible stakeholder objectives and use cases. Only
technical requirements may be edited independently by
engineers or managers, modification of any captured
information from stakeholders must be agreed with them.
The previously introduced systems and their elements are
visualized in Figure 3.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

Figure 3: Model elements and relations of User
Requirement Specification

From the previously defined aspects, the first central
hypothesis for the application of the presented modeling
technique is derived:

This hypothesis assures the maximum possible solution
space for an innovative technical solution for the system
under development and a minimization of ambiguity. The
system boundary comprises not only the external boundaries
to adjacent socio-technical systems like the environment
(i.e. climate, underground), technical neighbor systems (i.e.
radio communication, data interfaces, mountings),
interacting humans, but also internal boundaries like
purchased subsystems or software, which have to be
integrated. The system boundaries can only be modified in
agreement with the stakeholders. Adjacent systems and their
properties may never be manipulated, only system
boundaries may be relocated (i.e. in order to access different
interfaces). In contrast, no element of the User Requirement
Specification shall affect any subsystem within the system
under development. The URS is ideally completely defined
at the beginning of a new product engineering process. The
information from the URS and the derived initial System of
Objectives are applied as starting point for the product
engineering process.

When the first activities of the Operation System are
performed (cf. Figure 2), the System Architecture will be
developed. Coevally, further technical Requirements will be
derived and added to the System of Objectives. The set of
all technical requirements is often called Systems
Requirement Specification (SRS) in product engineering.
Hence, the SRS is part of the System of Objectives. For a
better discriminability, technical requirements are also
subdivided into several types with specific characteristics.
In the modeling technique at hand, three types of technical
requirements are defined: the Continuous-Function
Requirement, the Statechange-Function Requirement
and the Property Requirement. This distinction stems
from the Functional Concept of Systems Theory according
to ROPOHL [45], depicted in Figure 4.

Figure 4: Concepts of Systems Theory (translated
from ROPOHL)

ROPOHL divides between three concepts of Systems
Theory, the Functional Concept, the Structural Concept and
the Hierarchical Concept. The aim of the presented
modeling technique is to support a function-based modeling
approach, but based on the understanding of “function”
according to the C&C²-A, comprising, but not limited to the
definition according to ROPOHL.

A system can take up several states, which is analog to
the Functional Concept. Within a certain state, the system
can perform continuous functions (i.e. transmit torque,
record temperature, process audio data). When the system
changes its state, this is usually triggered from outside the
system (i.e. a user) or by a function (i.e. gear shift command
from automatic transmission control unit). When performing
this state change, the system again performs functions, but
in this case, these functions are discrete with a dedicated
initial state and a dedicated final state (i.e. shift from gear 1
to 2, load application, start engine). These two types of
functions need to be distinguished, which is also realized in
SysML by default through activities within state transitions
and so-called “do:activities” within states. How this concept
is applied for functional modeling is elucidated later. In the
current context, this distinction is important in terms of clear
requirement specification, hence the two types Continuous-
Function Requirement and Statechange-Function
Requirement are defined for this purpose. The third type
(Property Requirement) is by itself a non-functional
requirement and defines properties of WSP or CSS.
Nevertheless, these properties are responsible for effects,
which again influence the characteristic of a function.

H1: The User Requirement Specification (URS)
contains information about the purpose and the
boundaries of the product under development from the
stakeholder’s viewpoints and is limited to Use Cases,
Stakeholder Objectives, Boundary Conditions and
Connectors. The System of Objectives, consisting of
binding Objectives and technical requirements is
derived from the URS.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

From the three types of technical requirements and their
application results the second hypothesis of the modeling
technique:

The most important statement of this hypothesis is that all
defined and technically relevant aspects of the URS have to
be translated into technical requirements. This means for the
modeling practice, that System Engineers can for instance
reproduce the traceability from Stakeholder Objectives or
Boundary Conditions to Technical Requirements and
furthermore verify the fulfillment of all objectives.

In real product engineering processes, usually not all
elements of the URS are completely defined and not all
properties of adjacent systems are explicitly excluded or
included from the beginning. This accounts on the state of
knowledge and the state of definition. ALBERS ET AL. [46]
propose the Advanced System Triple Approach, which
describes this co-evolutionary and iterative process of
synthesis and analysis including the human-based,
knowledge-based and process-based aspects and supports
the understanding of handling Systems of Objectives in
complex and uncertainty-affected product development.

After having formalized the entities and relationships for

modeling all user requirements and the System of
Objectives, the according modeling artifacts for the System
of Objects are defined and formalized. The technique for
modeling the System Architecture is function-based and
applies the concepts of C&C²-A. According to ALINK [34]
and ECKERT ET AL. [36], the term “function” is interpreted
in many different manners. Their assessments figured out,
that the 5-key-concept of VERMAAS [47] is the most
promising definition to bring these different viewpoints
together (see Figure 5).

Figure 5: 5-key-concept of VERMAAS [47]

 This definition is divided into two main sections, the
intentional description and the physical/chemical
description. The former section is fully covered by the
elements of the System of Objectives. So are goals of the
device equaling the Stakeholder Objectives, actions with the
device and environment-centric functions of the device are

described by Use Cases (the features of the product) and
their internal progress, which is realized by the Target
Functions in SysML. For a better discriminability, the
standard-activities are green; Target Functions appear in
light blue color (similar to Use Cases).

The physical/chemical description of functions concerns
those functions, which are part of the System of Objects,
respective the realized System Architecture. The device-
centric functions of the device in the 5-key-concept are
defined using the C&C²-A. Functions by itself are a
solution-neutral description of what a system (or subsystem)
does. But due to that a function according to C&C²-A can
only be fulfilled by an embodiment, certain information
about technical principles are inherently applied. This
means, when a required product feature is realized by
development of a System Architecture, it has to transform
the given inputs at the affected Connectors to the system
environment into the demanded outputs at the according
Connectors towards the system environment. Connectors
itself would also be CSS whether they were completely part
of the system under development. But when these CSS are
located outside the system boundary, not all information of
them is relevant for the currently regarded function. Hence,
these “virtual” CSS are called differently (namely
Connector) and contain only the function-influencing
information share of the CSS. ALINK [34] defines, that
Connectors are always a reduced model of the system
environment, which contains only that share of information,
which is relevant for the analyzed function at hand.

The development of a System Architecture is done by
decomposition of functions into sub-functions, which step
by step fulfill all demanded aspects. This decomposition is
an engineering activity, which applies suitable technical
principles. An example: the main Use Case (feature) is
“transformation of chemical energy into electrical energy”
(in fact the purpose of a generator). When decomposing it,
the chemical energy is firstly transformed into pressure (by
combustion). Then, this pressure is transformed into a
guided force (i.e. by a piston in a cylinder liner). The force
is transformed into a torque (by a crankshaft), which is
finally transformed into electrical energy by a dynamo. The
restrictions and coevally the starting point of possible
solutions are the given Input Object Flows, starting with
these at the system boundary, which are specified by the
Connectors. From the functional decomposition, the
resulting system behavior (or behavior of the device in the
5-key-concept) can be derived. A behavior sets functions
into a logical sequence, depending on the Object Flows,
again starting at the Connectors at the system boundary. A
behavior is the resulting, perceptible interaction of a system
with its environment. Furthermore, a behavior depends on
the structure and the properties of a device (combined
named as embodiment). They quantify how a function is
performed and makes functions and behavior calculable.
HOOVER ET AL. [48] state, that finding the bounds of design
parameters is often useful during the design process, they
can be applied for verification of designs and as a basis for
further, derived requirements. Moreover they state that each
behavior can be analyzed independently, but the behaviors
interact through the embodiment parameters. In fact, this

H2: The System Requirement Specification (SRS) as
Part of the System of Objectives describes all technical
requirements by Continuous-Function Requirements,
Statechange-Function Requirements and Property
Requirements. Technical requirements are derived
from the elements defined in the URS.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

means that design parameters or in other words the
embodiment is responsible for the quality of function
fulfillment. Figure 6 visualizes a formal definition of the
term Function by showing all participating aspects and
relations (colored).

Figure 6: Formalization of the term "Function" in
terms of C&C²-A

The main elements in this figure are the Object Flows
and their transformations (green) and the applied WSP’s
and CSS’s. More in detail, the Input Object Flow from
Neighbor A (specified by Connector CA) enters the system
at WSPA-N. Then it is transformed within an Activity
(performed by CSSN). Finally, it leaves the system at WSPN-

B as Output Object Flow towards the neighbor system B
(specified by Connector CB). The effects appearing in
WSPA-N, CSSN and WSPN-B are affected by Property
Parameters (in the figure shortly: Properties). The CSSN is
contained in the system embodiment N, which may also
contain other CSS’s. All elements belonging to the
embodiment are colored in red within Figure 6.

An example may help to explain the meaning of Channel
and Support Structures. CSS’s only comprise the structure
share of an embodiment, which participates in a function.
For instance the transmission of a certain force from one
WSP to another would only be conducted by that structure
share, which in fact carries that force. The structure of an
embodiment, which does not carry any force, is called
Remaining Structure (RS) [32]. When one embodiment
carries multiple forces between different WSP’s, i.e. in
different states or loading cases, it would consist of multiple
CSS’s. This is why a CSS is contained in an embodiment,
but an embodiment is usually not equivalent to a CSS.

Coming back to the term “function”, there are some more
important terms to define in order to improve its
understanding. An Input Object Flow is transferred to an
Output Object Flow. This is easily comprehensible for
software engineers, but what about mechanical engineers,
for whom the modeling technique at hand is in particular
made for? Figure 7 attempts to set typical terms for the
description of systems into a semantic context of a function.

Figure 7: Semantic context of "Function"

An important engineering activity for the analysis of
technical systems is validation [49]. When validating a
system, resulting effects at defined WSP’s from appearing
phenomena within a concrete system behavior are analyzed
and balanced with the requirements in the System of
Objectives [50]. These phenomena are the outputs of
functions, which are caused (by triggers or excitations)
through input object flows at the according WPS’s within
the assessed system behavior. This so-called event-chain is
exemplified in Figure 7 and Figure 8 for the transformation
of ignition pressure into force.

Figure 8: C&C²-A analysis of piston function

The system in this case is the piston, which is excited by
ignition pressure at the WSPCombustion Chamber - Piston. This
pressure is transformed into a force within the CSSPiston,
which is transmitted via WSPPiston – Conrod to the conrod. The
force at this WSP impacts the adjacent conrod in terms of
excitation. Coevally, phenomena appear during performance
of this function. One of them is the force itself, which
alternates over time and can hence excite vibrations at the
conrod itself, but also at WSPCylinder Liner – Conrod towards the
cylinder block.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

Concluding, hypothesis 3 states following semantic
relationships for the formal, function-based description of
technical systems:

As already stated before, the system behavior is the
resulting, perceptible interaction of a system with its
environment. In other words, the behavior is the reaction of
the System Architecture onto caused functions by triggers or
excitations. This fact implies a time dependency and
measureable causes for a quantifiable manner of function
performance to make a behavior observable. Moreover,
different excitations or triggers cause different functions or
deviating output quantities and hence a differing system
behavior. This awareness is crucial for the validation
activity: enabling an engineer to validate a system regarding
expected behavior under all possible conditions requires
testing all possible variations. This is why the modeling
methodology also comprises Test Cases, which describe a
concrete instance of a Use Case. When regarding
Continuous Functions, excitations or triggers are
continuous Input Object Flows (i.e. incoming torque or
electrical energy). In contrast, Statechange Functions have
discrete triggers, the Events (i.e. pressed start button, time
limit reached). The according diagram to represent the
progress of a Test Case is the Sequence Diagram. In
combination with the System Architecture (modeled in
activity diagrams, state diagrams and block diagrams), it
complements the specification of a system behavior.

Hypothesis 4 concludes the semantic relationship of
function, behavior and Test Case in terms of the modeling
technique at hand:

The system embodiment, realized and modeled in logical
or physical structures, performs functions within states or
transitions. This becomes perceptible and measureable
through Test Cases, which validate the resulting system
behavior. These statements again correlate with the 5-key-
concept of VERMAAS [47].

The previously formalized terms and their semantic

definitions build the basis for a common language to
facilitate tool-supported modeling of technical systems. The

implementation of this language is done by a SysML-
Profile, which yet complies most of these aspects and which
will be introduced in the following chapter. However,
further advancements are still necessary to create even more
clear and comprehensible representations due to tool-
dependent restrictions. For instance, the sequence diagram
traces from software modeling, just as the model entity
“event” also does. An absolutely consistent representation
and specification of system behavior for non-software
systems is not as yet obtained and still part of research. This
is why the next chapter drops this aspect, but introduces the
important extracts from the meta-model for representing the
other formalized aspects presented before.

VI. ENHANCEMENT PROFILE FOR THE SYSTEMS

MODELING LANGUAGE (SYSML)

SysML applies the OMG Standard Meta-Object Facility
(MOF) [51], which facilitates compatibility of the modeling
language to manifold other standards, as already introduced
in chapter III. Hence, this standard is also applied here. The
basis for the extending SysML-Profile, which is introduced
in this chapter, was set by ALBERS and ZINGEL [37] by the
integration of basic entities of C&C²-A into SysML. Within
the past year, the profile was extended by the elements for
enabling more differentiated modeling of the System of
Objectives through different Requirement Types as
introduced in the first part of the previous chapter. An
extract of the according meta-model is depicted in Figure 9.
All extensions are visualized through blue color.

Figure 9: Extract from the meta-model-extensions for
requirements

From the common SysML-requirement, three specialized
sub-types are implemented: The Boundary Condition, the
Stakeholder Objective and the Technical Requirement.
These elements inherit the properties of the common
Requirement and add new properties. A second level
subdivides the Technical Requirement into the Continuous
Functions Requirement, the Statechange-Function
Requirement and the Property Requirement. All
Requirement Types can apply one or more parameters with
according Value Types for measureable specification of
required system properties (i.e. costs, weight, size) or
phenomena, which require certain Output Object Flows of
Functions (i.e. fuel consumption, noise, response time). Two
important relationship types (reference tags) are also
depicted: Boundary Conditions can derive Technical
Property Requirements towards WSP’s at the System
Boundary (i.e. Interface data types, flange geometries,

H4: The system behavior is the perceptible and
measureable reaction of the System Architecture
(functions, states, and embodiment) on continuously or
discretely caused functions. Discrete function triggers
are Events, Continuous function excitations are
continuous Input Object Flows. System behavior can
be validated through the application of Test Cases,
which are instances of Use Cases.

H3: Functions are the transformation of Input
Object Flows to Output Object Flows, using
Property Parameters of WSP, CSS and Connectors.
Input Object Flows are triggered or excited Causes of
functions. Their Transformation bases on logical or
physical/chemical Effects within WSP and CSS. The
resulting Output Object Flows Impact other functions
through characteristic Phenomena.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

installation space), which will interact with existing,
adjacent systems. Technical Requirements refine
Stakeholder Objectives (i.e. “pure electrical driving”
towards “E-Motor must have at least x kW”), defined in the
engineering activity (cf. Figure 2) of modeling principle
solutions and embodiment design (what the mentioned E-
Motor is part of).

Beside the extension of the SysML towards traceable

modeling of the user requirements and the System of
Objectives, the metamodel is also applied and extended
towards function-based modeling according to C&C²-A. For
this purpose, the affected entities and relations are extended
(see Figure 10). The stereotype Function extends the
metaclass Activity and is specialized by Target Functions
(describing the desired process of a Use Case), Continuous
Functions and Statechange Functions. The according
causes and performing entities (States respective
Transitions) are also depicted. A Function is performed by a
block, which again can consist of multiple CSS’s. This
stereotype again has attributes like values (which are in fact
Parameters) and Flow Ports (which can transport Object
Flows. The extended entities and relations are visualized in
blue color within Figure 10.

Figure 10: Extract from the function-related meta-
model-extensions

Activity Groups can be allocated to Blocks or directly to
CSS’s. One block should consist of at least one CSS, but
may also contain multiple of them due to the principle of
C&C²-A, that one embodiment can perform multiple
Functions (see Figure 11). Blocks in SysML can have Flow
Ports, which are interfaces that can transport Object Flows.
The assignment of Object Flows to Flow Ports is also done
by the allocation-relationship (not depicted in Figure 11).
When having done such an allocation, this equals the
meaning of Working Surfaces, wherefore the Stereotype
Flow Port is extended by three types of WS (Material,
Energy and Info). Connecting two Flow Ports establishes a
potential WSP, which becomes a real WSP in case of
allocating according Object Flows as explained before.
Otherwise, two connected Flow Ports represent only
possible WSP’s, due to that they are actually not part of a
Function. Furthermore, Blocks can gain values, which equal
to Property Parameters.

Figure 11: Extract from the embodiment meta-model-
extensions

There are several more aspects contained in the SysML
Metamodel [52], which are also applied within the modeling
technique at hand. State Diagrams are used to specify
system States and to allocate Continuous Functions to States
and Statechange Functions to Transitions, as depicted
schematically in Figure 12.

Figure 12: System States, State Transitions and
according Functions

State Transitions are triggered by Events (red), the causes
to initiate the performance of Statechange Functions (i.e.
“Shift from 1st into 2nd gear”, violet in Figure 12). Guard
Conditions (green) can optionally be added to assure, that
Transitions are only accomplished under certain conditions
(i.e. “HV battery SOC > 90 %”). During this Transition, the
system conducts a specific behavior, depending on the
concrete Object Flows. Part of this behavior can be the
creation of new possible WPS’s, which may be applied for
the performance of Continuous Functions (violet in grey
boxes in Figure 12) within the now applied State. Hence,
Continuous Functions are performed within a system State
by using the established Working Surface Pairs. The latter
aspect of establishing new WSP and disconnecting WSP is
currently not integrated and represented in SysML, because
of the limitation, that geometrical information yet cannot be
adequately represented in diagrams. However this is aimed
to be realized in the near future.

The next chapter draws the general aspects of the
integrated modeling technique using the previously
introduced SysML profile extension for modeling technical
systems.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

VII. INTEGRATED MODELING TECHNIQUE

As mentioned at the beginning of chapter V, every
product engineering process is unique and individual.
Therefore, this chapter cannot provide one commonly
applicable general modeling guidance for all kind of
engineering processes. However, it assigns engineering
activities of the Integrated Product Engineering Model
(iPeM) to according modeling activities. Each activity runs
through problem solving processes, partially in iterations or
recursively (see Figure 13).

Figure 13: Representation of modeling activities and
applied process in the iPeM

The resulting modeling process can be captured and
documented by an application model of the iPeM (for more
information about application models see [42]) and serves
as “best practice guidance” or starting point for following
product engineering processes. The iPeM itself can yet not
be modeled within SysML in satisfying manner, but ALBERS

AND BRAUN [44] are currently developing methods
including prototypic tool support for modeling all process-
relevant information. The advancement towards integration
of product-relevant information into the process model is
part of current research.

Before starting to model products, a crucial activity is to
be conducted: identification of the model purpose(s). The
amount of efforts spending for modeling systems must be
balanced with the benefit of improving communication and
collaboration as well as knowledge documentation and
representation. In most cases, not all aspects of SysML are
required for obtaining benefits from the model-based
approach, especially in case of smaller companies and/or
projects.

The first frequently beneficial modeling activity is the
specification of the User Requirement Specification before
starting the product development itself. For this purpose, the
relevant share of the system environment, Use Cases,
Stakeholder Objectives and Boundary Conditions are
captured. During the activities of project planning and
profile detection, the initial System of Objectives is derived
from the URS using primarily Technical Requirements. The
activities of profile detection and idea detection identify first
candidate System Architectures, which can be specified in
the system model. From here on, the C&C²-A acts as
creativity-supporting pre-thinking tool (see chapter IV).
Within the activity of modeling principle solutions and
embodiment design, the modeling language is most
extensively used and crucial for communication and

collaboration of involved engineers and managers, i.e. by
supporting them in substantiation of important decisions.
Functions are determined or derived from Use Cases and
their progress models and according system states are
defined. This information is used as basis to design the
performing embodiments with according properties. Both
aspects (functions and embodiment) are cross-linked (or
allocated) to each other in order to establish a combined
view on the system architecture. Emerging Technical
Requirements are now iteratively and recursively derived in
order to sharpen the System of Objectives towards finding
satisfying embodiments as part of the System of Objects.

As stated in chapter V, validation is substantial for
product engineering. Therefore, the focus in modeling
during this activity is set on networking the elements within
the System of Objects to the according requirements within
the System of Objectives. Furthermore, Test Cases are
specified as validation sequence documentations. These Test
Cases are also linked to requirements, whose satisfaction is
to be verified. Figure 14 gives an overview of all modeling
activities, contained in the modeling technique.

Figure 14: Overview of modeling activities

Within the last years, several Systems Engineering
methodologies have been developed and published (i.e. the
Object Oriented Systems Engineering Method (OOSEM)
[53] or the Systems Modeling Process (SysMOD) [54]),
which are also compatible with the presented technique. For
more information, refer to ESTEFAN [55], who conducted a
survey of the most popular SE-methodologies.

The next chapter introduces some aspects of an
application example of the presented system modeling
technique and points out, how the resulting model was
integrated into the engineering environment.

VIII. APPLICATION EXAMPLE: HYBRID POWERTRAIN

The aim of applying a hybrid powertrain as a complex
mechatronic system was to verify and advance the presented
integrated modeling technique, including the abstract and
concrete syntax of the modeling language, its provided
views and the modeling methodology.

The first modeled aspects are the system features as Use
Cases. An extract is depicted in Figure 15. The main benefit
of this diagram is a structured view on the system features
and its interaction with according actors, representing
adjacent systems (including technical and human systems).
Use Cases can be decomposed by using “include”-
relationships or complemented by optional sub-Use Cases

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

using the “extend” relationship. A further decomposition by
Target Functions has been omitted in this application
example, due to that this aspect has not yet been
implemented in the herein applied profile extension. (The
reason is that this improvement is the newest one in the
profile.)

Figure 15: System Use Cases respective features

The yellow entity is a Test Case, which will be specified
further later. Figure 16 shows some fictive Stakeholder
Objectives (green) and Boundary Conditions (grey) for the
hybrid powertrain system. Additionally, the information
about the objective type from the company’s point of view
(external or internal) is depicted.

Figure 16: Stakeholder Objectives and Boundary
Conditions

During the engineering activities, these common, superior
requirements are translated (derived) into technical
requirements, as shown in Figure 17.

Figure 17: Technical Requirements

The different colors help to distinguish between the
different types of requirements. Modeling requirements in
SysML is beneficial for networking them with according
model artifacts of the System Architecture. Thus, existing
requirements can within most commercial tools be imported

from Requirement Management Tools like DOORS or
MKS, which spares additional effort in copying them by
hand. Some tools also provide bidirectional synchronization
interfaces. For more information towards integrated
requirements modeling, refer to MALETZ [56].

Coevally to modeling requirements, the system
environment, respective connectors to adjacent interacting
systems can be modeled in order to derive additional
Technical Requirements or Boundary Conditions. Figure 18
represents the system environment of the hybrid powertrain.

Figure 18: System environment

The implemented images enable an easier understanding
by non-professionals in terms of modeling. The symbols
between the depicted systems are possible Working
Surfaces, whereof the red color stands for energy-
transmitting interfaces, blue for material and yellow for
information. The WS are called “possible WS”, because
they do not yet participate at any function, but they may be
applied later. However, these interfaces already obtained
names and information about the type of transmittable
Object Flows across the system boundaries in order to
specify the interaction channels of the system under
development with its adjacent systems. Hence, these WS
have to be designed by systems engineers and constructors
by pre-thinking their future functional purpose.

The entire product features, represented as Use Cases,
can already be decomposed using Activity Diagrams. These
Target Functions are initially transferred into Functions of
the System Architecture and then further decomposed.

In general, SysML can be integrated into any tool
environment using application programming interfaces,
provided by most of the available modeling tools. These
interfaces use the Extensible Markup Language (XML) [57]
for data exchange. The ISO 10303, also known as the STEP
family [58], contains several application protocols, which
specify the transmitted information for certain purposes or
disciplines. One of them is AP233, the application protocol
for Systems Engineering data representations.

However, it makes no sense to integrate all existing
engineering tools into one discipline-crossing system model,
because this would become much too large and confusing.
A better approach is to establish a set of coherent partial
models, which are cross-linked by one central System
Architecture model. The partial models can then be
synchronized with programming tools, CAD-tools or Multi-
Body Simulation (MBS) tools. Chapter IX demonstrates the

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

capability of the SysML-extension to realize such
integration at the example of Simulink. For this purpose,
some sub-systems of the hybrid powertrain were further
detailed in a separate, synchronized model using internal
block diagrams. The modeled information also resulted
from application of the function-based approach, which was
presented in the previous chapters.

Before demonstrating the model synchronization, some
shares of the modeled hybrid powertrain System
Architecture is introduced. The provided information basis
in the previously introduced System of Objectives is starting
point for identifying function-based technical solutions for
the demanded features, before designing the function-
fulfilling embodiment. Functional models have the purpose
to depict the transformation of Input Object Flows by
Activities into Output Object Flows. Commonly, this
transformation is not a linear sequence, but rather decision-
driven. This is why the applied Activity Diagrams provide
decision-, fork-, join- and merge-nodes for modeling the
logical progress of functions.

A simple example for a function-based representation of
the actuation of the accelerator pedal is depicted in Figure
19.

Figure 19: Function-based model of accelerator pedal
actuation

The blue entities stand for Functions, which are
networked to a logical order using control flows (the dashed
lines). Additionally, the small yellow and blue boxes
represent PIN’s, which are connected by Object Flows.
These artifacts represent the flow of information (yellow)
and energy/force (red). In this diagram, also the Events,
which cause (trigger) the depicted function, are represented
at the upper end in dark blue color. The entire information
in this diagram describes the function “actuate accelerator
pedal”, which is yet not performed by any embodiment. The
distinction between Continuous Functions and Statechange-
Functions is done by assigning the Stereotypes “continuous”
or “discrete” to Object Flows, as exemplarily shown for the
information flow “Position” in Figure 19.

Functions can be iteratively or recursively decomposed
by creating new diagrams on activities and modeling the
logical progress of a function in more detail. Very complex

functions can also be represented in multiple diagrams on
the same level of detail for more clearness. These
possibilities to switch between different levels of abstraction
and to depict different views for different stakeholders
contribute to the application of the fractal character of
C&C²-A.

Beside the representation of the logical progress and the
Object Flows within functions (for more information refer
to [54]), the according system States need to be modeled.
The purpose is to represent which functions are performed
in or between which states and under which preconditions.
This is done within State Diagrams. Here is modeled, when
States are changed under which conditions and which
functions are performed within certain States (the
Continuous Functions) or during Transitions (Statechange
Functions). Figure 20 shows a simplified State Diagram
with two main States “Acceleration” and “Deceleration”.

Figure 20: State Diagram with Acceleration States

Within both States, sub-States are embedded, which
refine the main States. The blue elements within the round
brackets are linked Events, which trigger the transitions.
The elements in the square brackets are guard conditions
(here: the Parameter “Acc. Pedal Position”, which has to
exceed 10% when switching from Deceleration to
Acceleration). The elements after the slash are Statechange
Functions (i.e. “Start fuel injection”). In the Sub-State
“Motoring”, an example for a Continuous Function is
represented. This Diagram applies to the representation in
Figure 12. These two diagram types (Activity Diagram and
State Diagram) are capable to model comprehensive
information about system functions. Moreover, these
aspects will be applied for the definition of Test Cases later
on.

Using the obtained information within the function-based
model, the development of performing embodiment designs
(using Block Diagrams) can also be initiated. Here, the same
flexible modeling process like explained for functional
modeling before can be applied. This is exemplified by the
following figures, showing several representations of the
embodiment design. Figure 21 shows components (the
embodiments) of the realized hybrid powertrain, which

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

participate at the energy transmission from the fuel tank or
the HV battery towards the wheels on the road.

Figure 21: Hybrid Powertrain embodiment

The applied Internal Block Diagrams directly show
instantiated Blocks instead of CSS, due to that they are
contained in the Blocks (more information about the
underlying Class-Instance-Principle of UML/SysML can be
found here: [7], [54]). The different colors help to
distinguish more easily between the main functional
purposes of the components. For instance, all blue
components are energy storages, the grey components are
part of the conventional powertrain and the red elements are
part of the electrical powertrain. However, this distinction is
only made for representation purposes and has no meaning
for the deposited powertrain model. Figure 22 shows the
same system detail level, but from another viewpoint. Some
components appear again (i.e. ICE, transmission), but the
majority is now shielded, although other components
appear. This view emphasizes on sensor systems and their
connections within the system compound.

Figure 22: Extract from applied sensor systems

Among others, the “Accelerator pedal position sensor”
appears which is intended to perform the function “Measure
Acc. Pedal Position” from Figure 19. When all necessary
components for performing certain functions are developed,
components and functions can be cross-linked (see chapter
VI). An example for this integrated view is depicted for the
function “Actuate Accelerator Pedal” in Figure 23.

Figure 23: System Architecture of accelerator pedal
actuation

This representation shows the integration of functions and
structure and is hence the System Architecture of the
subsystem that is responsible for the actuation of the
accelerator pedal. Coevally, this diagram needs to be further
advanced towards more detailed integration of the function-
based information and the performing embodiments. For
instance, Object Flows (solid arrows) have an equivalent
meaning like Item Flows in Internal Block Diagrams. It
would be desirable to allocate the effectively conducted
Object Flows during performance of a certain function
directly into the applied Connectors. The same applies to
PIN’s and Flow Ports. This is principally already possible
by using the Allocate-Relationship of SysML.
Unfortunately, there is no integrated visualization of Object
Flows using connectors provided in SysML. This
advancement is important for the full integration of C&C²-A
in SysML, where an engineer should be able to see, which
Objects flow via which CSS’s and WSP’s. There will be
some more information on that issue in the outlook at the
end of this article (chapter X).

After having developed the System Architecture, the
functions and the components (embodiments) can be linked
to the affected requirement types. This is done using the
“satisfy” relationship within Requirement Diagrams. When
existing embodiments (i.e. purchased parts) are applied,
they entail new requirements like needed interfaces. These
can be modeled using the “trace” relationship in SysML.
However, it is preferable to include a new, clearer
relationship type (reference tag) for this aspect. Figure 24
depicts a simple example for some cross-links between the
System of Objectives (i.e. requirements) and the System of
Objects (System Architecture elements).

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

Figure 24: Traceability between System of Objectives
and System of Objects

Here, the HV Battery is a purchased part, which entails
the exemplified Boundary Condition “Technical data of
purchased battery system” that contains several refining
Technical Requirements (not shown in the diagram).
Blocks, which are in fact embodiments (components), can
only satisfy Property Requirements, Continuous Functions
may only satisfy Continuous Function Requirements and
Statechange Functions may only satisfy the according
Statechange Function Requirements. Restricting the
modeling language in this way aids to avoid incorrect
networking of elements.

All this information can easily be represented and
exported into requirement tables or matrices, what is very
beneficial for requirement engineers, but also for
development engineers. The traceability between the System
of Objectives and the System of Objects contains another
aspect beside requirement fulfillment: the definition of Test
Cases.

As stated before (see chapter V), validation is a crucial
product development activity. For this purpose, the second
aspect of cross-linking between the two Systems
(Objectives and Objects) is done by modeling Test Cases
for certain Use Cases in order to provide a validation
specification. This is done within Sequence Diagrams,
which complement the System Architecture by defining
concrete Events for specific usage sequences respective Test
Cases. As shown in Figure 15, the Use Case “Recuperation
at Motoring” was declared as Test Case (yellow element in
the diagram). Now having the information about the
developed System Architecture, concrete functions for
embodiments can be predefined by events in order to verify
the intended behavior. Thus, the functions are now caused
by the definition of certain trigger (or excite) Events and
specific parameters are predefined by the Property
Parameters of embodiments. This leads to a measureable
behavior, because the resulting object flows can now for
instance be calculated or simulated. Figure 25 shows a very
simplified example Test Case sequence.

Figure 25: Sequence Diagram for a Test Case

On the left side, the sequence progress is defined (i.e. by
sequential steps, iterations or parallel steps). The blue
colored names represent the performed functions, which
have been dragged and dropped from the modeled System
Architecture. The red elements at the upper side are the
affected embodiments (components). Moreover, adjacent
interacting systems (Actors like the driver in this example)
are integrated. The arrows represent the triggered Events, or
in other words, the caused functions in this test sequence.
As stated before, this representation is just a preliminary
solution due to several inconsistencies, tracing from the
original purpose of Sequence Diagrams to only model
software systems (they are in fact just adopted UML-
diagrams).

The following chapter introduces an example for the
synchronization of the SysML-model with Simulink in order
to facilitate executable simulations of the powertrain
behavior.

IX. INTEGRATION OF SYSML AND SIMULINK FOR A

HYBRID POWERTRAIN SYSTEM

SysML itself is not executable. However the compound
of behavioral diagrams (Activity Diagram, State Diagram
and Sequence Diagram) is capable to specify a formal and
thus executable set of information, due to that they have
been directly adopted from UML. Though, the effort of
modeling technical systems on a high level of abstraction is
contradictory to a formal code-conform modeling approach.
Much easier is the integration of an interface to Multi-Body-
Simulation Tools, which are synchronized with Internal
Block Diagrams. The information from the SysML-model
serves as framework including “functional blocks” and
interfaces in Simulink, which have to be completed within
the MBS-tool for enabling simulation of the model. Several
tool vendors already provide such interfaces, i.e. towards
Simulink. This interface has also been applied within a
student project work for a modification of the presented
hybrid powertrain.

Firstly, Internal Block Diagrams (IBD) as part of the
system architecture of a hybrid powertrain were modeled in
SysML, using the extending profile of the modeling
technique at hand (see Figure 26).

Figure 26: Top-Level Internal Block Diagram of a
hybrid powertrain

The figure shows several parts, connected by Flow Ports
and the according Connectors. Several more IBD’s are also
modeled in SysML on deeper levels of detail, which will
also be synchronized. The functions of this model are not
realized by according SysML-Diagrams, but within
Simulink. For this purpose, the SysML-Model is
synchronized with the MBS-tool using an existing interface

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

of the applied SysML-modeling tool. Figure 27 shows the
synchronization result in Simulink.

Figure 27: Synchronized Top-Level diagram of the
according Simulink-Model

In addition to the provided information from the SysML-
model, physical elements are added in Simulink in order to
enable a “real” transformation of Object Flows from inputs
to outputs. Afterwards, real Test Cycles can be defined in
Simulink. For this purpose, concrete Input Object Flows are
set, in the given example, this was done for “throttle”,
“brake”, “boost” and “shift”. Their progresses and the
according simulation outputs are depicted in Figure 28.

Figure 28: Simulation results of hybrid powertrain

The synchronization interface itself was not modified
here. The focus was set on testing the feasibility of
application of such a tool interface within the presented
modeling technique and on relevant information to
synchronize.

X. CONCLUSION AND OUTLOOK ON FURTHER

RESEARCHES

This article introduced the advancements of an integrated
modeling technique, which was initially presented by Albers
and Zingel [37] and Albers et al. [38] in 2011. During the
last year, the heterogeneous term understanding was a
ubiquitous challenge, wherefore important terms have been
formalized and set into semantic relationships. Four main
hypotheses have been derived from these findings. The
efforts on improving this common discipline-crossing
language are currently continued, among others through
evaluating term understandings in research and industry by
an online-survey or by observing and supervising further
pilot projects in industry.

The functional modeling approach will be advanced
through combination with LAMM’s and WEILKIENS’ “FAS-
Method” (Functional Architectures for Systems) [59], [60],
which is capable to automate several modeling steps and to

support engineers by integrating a new, function-based
block diagram view. This method also applies matrices to
visualize the relationships between activities and functional
blocks. The aims for the future are further advancements
towards easier application of discipline-crossing system
model for mechanical engineers and managers, i.e. by
integration of new views like the matrices from the
DSM/MDM-approach (see [15]) or more geometry-related
representations. Especially the issue to represent the
information about the system functions and the performing
embodiment design with according property parameters like
geometrical location and shape of WSP more adequately is
still part of current research. The aim is to enhance the
current SysML diagrams by some kind of “Embodiment
Diagram” in order to improve its comprehensibility and
applicability by mechanical engineers. Currently, a compact
interface to CAD-software systems is under development at
IPEK-Institute of Product Engineering, based on an extract
of information transmitted via STEP-files. The aim is to
reduce the information amount by only exchanging crucial
instead of comprehensive information. The resulting
information is intended to establish the previously drawn
Embodiment Diagram as an abstraction of 3D-CAD models.

Furthermore, the presented function-based modeling
approach according to C&C²-A is capable to serve as a
modular, function-based product portfolio management
technique. The K2-funded research project “Functional
Management of Mechatronic Products”, which is conducted
by the Virtual Vehicle in Graz in collaboration with the
IPEK, the AVL List GmbH, the Chair of Product
Development from the Technical University of Munich and
BMW AG, focusses on development and advancement of
such a function-based portfolio management technique [61].

The software-supported integration of product- and
process-modeling is also part of current research at the
IPEK. The aim is a combination of the strengths of both
modeling techniques and the integration into a
comprehensive development framework. The results from
the advancements of the common language and the
functional modeling approach will also be integrated there
in order to provide a tool-supported, discipline-crossing
development and management environment. Part of this tool
environment will also be the derivation of further views on
the emerging models, which are easier comprehensible by
managers. The extracted information in such views can for
instance be applied as basis for strategic decisions,
supplemented by analyses like estimated costs, reliability or
sustainability.

This article also presented the feasibility of integrating
software interfaces for model synchronizations. This
precondition facilitates an integration of the discipline-
crossing development and management environment into a
comprehensive software tool environment with automated
model synchronization. Hence, the establishment of a
consistent tool chain for all engineering activities over the
entire product engineering process is the long-term goal of
the Model-Based Systems Engineering research activities at
the IPEK – Institute of Product Engineering.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

Concluding, the modeling technique is continuously
advancing towards a fundamental support for engineers and
managers of all disciplines in communication and
collaboration over the entire product engineering process.
First applications of the current modeling technique in pilot
projects proved benefits in overcoming traditional
document-based approaches by improving consistency,
clearness, completeness and sustainability through Model-
Based Systems Engineering approaches.

XI. ACKNOWLEDGEMENTS

This research work is done in close cooperation with
several colleagues at the IPEK – Institute of Product
Engineering, who significantly contributed to the presented
findings. In particular, the authors thank to Andreas Braun,
Björn Ebel, Quentin Lohmeyer and Eike Sadowski for their
fruitful feedbacks and constructive inputs. Moreover, the
authors appreciate the contributions of Kurt Kruppok for his
assessments towards coupling SysML and Simulink, which
was presented in chapter IX. Finally, the authors gratefully
acknowledge the close and valuable collaboration of all
involved colleagues from AVL List GmbH in Graz, who
contributed their share to the application example of the
hybrid powertrain.

REFERENCES

[1] Bae, Y.-K.; Bénitez-Silva, H.: The Effects of Automobiles Recalls on
the Severity of Accidents. Department of Economics Working Paper,
New York, USA, 2010.

[2] Gallaher, M. P.; O’Connor, A. C.; Dettbarn, J. L.; Gilday, L. T.: Cost
Analysis of Inadequate Interoperability in the U. S. Capital Facilities
Industry. NIST, U.S. department of Commerce, Galthersburg,
Maryland, 2004.

[3] Barber, P.; Graves, A.; Hall, M.; Sheath, D.; Tomkins, C.: Quality
failure costs in civil engineering projects. In: International Journal of
Quality & Reliability Management, Vol. 17, issue 4. Emerald
Publishing, UK, 2000.

[4] International Council on Systems Engineering (INCOSE) Homepage,
http://www.incose.org, 2012.

[5] International Council on Systems Engineering (INCOSE): Systems
Engineering Vision 2020, Version 2.0.3, TP-2004-004-02, September,
2007.

[6] Specification: OMG Systems Modeling Language (OMG SysML™),
Version 1.2. http://www.sysml.org, 2010 (publisher: Object
Management Group).

[7] Friedenthal, S. et al.: A Practical Guide to SysML – The Systems
Modeling Language. 2008 (publisher: Morgan Kaufmann, Waltham,
Massachusetts).

[8] Karban, R.; Hauber, R.; Weilkiens, T.: MBSE in Telescope Modeling.
In: INCOSE INSIGHT, Vol. 12, Issue 4, 2009.

[9] Stark, R.: Challenges in Modern Product Creation Processes -
PEP2015. Presentation on ProSTEP iViP event “Systems
Engineering”, Darmstadt, Germany, 15th December, 2011.

[10] Stachowiak, H.: Allgemeine Modelltheorie. Springer, Vienna, 1973.
[11] Yoshikawa, H.: General Design Theory and a CAD system, In: Man-

Machine Communication in CAD/CAM, Sata, T. and Warman, E.
(eds.), pp. 35–58, North-Holland, Amsterdam, 1981.

[12] Kikuchi, M; Nagasaka, I.: On the three Axioms of General Design
Theory. In: Proceedings of the Int. Workshop of Emergent Synthesis
02. Kobe, Japan, 2002.

[13] Hitchins, D. K.: Systems Engineering: A 21st Century Systems
Methodology. John Wiley & Sons, 2007. Chichester, West Sussex,
England.

[14] Suh, N.P.: On functional periodicity as the basis for longterm stability
of engineered and natural systems and its relationship to physical
laws. Research in Engineering Design, Volume 15, Number 1.
Springer, London, 2004.

[15] Lindemann, U.; Maurer, M.; Braun, T.: Structural Complexity
Management: An Approach for the Field of Product Design. Springer,
Berlin, 2009.

[16] Stark, R.; Beier, G.; Wöhler, T.; Figge, A.: Cross-domain dependency
modelling - how to achieve consistent system models with tool
support. In: Proceedings of the 7th European Systems Engineering
Conference (EuSEC), Stockholm, Sweden, 2010.

[17] Dori, D.: Object-Process Methodology - A Holistic Systems
Paradigm. Springer, New York, 2002.

[18] Sharon, A.; de Weck, O. L.; Dori, D.: Project Management vs.
Systems Engineering Management: A Practitioners’ View on
Integrating the Project and Product Domains. In: Systems Engineering
Journal, Vol. 14, Iss. 4, pp. 427-440. Pub: Wiley, USA, 2011.

[19] Engell, S.; Lunze, J.; Otter, M.; Mosterman, P.J.; Schmidt, G.;
Schnieder, E.; Frehse, G.; Buss, M.; Raisch, R.; Pereira Remelhe, M.
A.: Modeling, Analysis and Design of Hybrid Systems. In: Lecture
Notes in Control and Information Sciences, Springer, Berlin, 2002.

[20] Schamai, W.; Fritzson, P.; Paredis, C.; Pop, A.: Towards Unified
System Modeling and Simulation with ModelicaML: Modeling of
Executable Behavior Using Graphical Notations. In: Proceedings 7th
Modelica Conference, September 20-22, Como, Italy, 2009.

[21] Angermann, A.; Beuschel, M.; Rau, M.; Wohlfarth, U.: Matlab -
Simulink - Stateflow: Grundlagen, Toolboxen, Beispiele. 7. Issue,
Oldenbourg Wissenschaftsverlag, Munich, 2011.

[22] Albers, A.; Matthiesen, S.; Thau, S.; Alink, A.: Support of Design
Engineering Activity through C&CM – Temporal Decomposition of
Design Problems. In: Proceedings of the Tools and Methods for
Competitive Engineering (TMCE). Izmir, Turkey, 2008.

[23] Matthiesen, S.: Seven Years of Product Development in Industry –
Experiences and Requirements for Supporting Engineering Design
with ‘thinking tools’. In: Proceedings of the International Conference
on Engineering Design (ICED), August 15-18, Copenhagen,
Denmark, 2011.

[24] Andrianarison, E.; Piques, J.-D.: SysML for embedded automotive
Systems: a practical approach. In: Proceedings of the Embedded Real
Time Software and Systems Conference (ERTS² 2010), Toulouse,
France, 2010.

[25] Shah, A.A. et al: Multi-view Modeling to Support Embedded Systems
Engineering in SysML. In: Lecture Notes in Computer Science,
Volume 5765/2010, pp. 580-601. Springer, Heidelberg, 2010.

[26] Espinoza, H; Cancila, D.; Selic, B.; Gérard, S.: Challenges in
Combining SysML and MARTE for Model-Based Design of
Embedded Systems. In: Proceedings of the 5th European Conference
on Model Driven Architecture - Foundations and Applications.
Springer, Berlin, 2009.

[27] Giese, H.; Hildebrandt, S.; Neumann, S.: Model Synchronization at
Work: Keeping SysML and AUTOSAR Models Consistent. In:
Lecture Notes in Computer Science, Volume 5765/2010, pp. 555-579.
Springer, Berlin, 2010.

[28] Grobshtein, Y.; Dori, D.: Generating SysML Views from an OPM
Model: Design and Evaluation. In Journal of Systems Engineering,
Vol. 14, No. 3. Wiley, 2011.

[29] Cao, Y.; Liu, Y.; Paredis, C. J. J.: System-level model integration of
design and simulation for mechatronic systems based on SysML. In:
Mechatronic Journal, No. 21, pp 1063-1075, publisher: Elsevier,
Amsterdam, 2011.

[30] Johnson, T.; Paredis, C. J. J.; Burkhart, R.: Integrating Models and
Simulations of Continuous Dynamics into SysML. In: Proceedings of
the Modelica Conference. Bielefeld, Germany, 2008.

[31] Pahl, G.; Beitz, W.: Engineering Design - A systematic approach. 3rd
edition, Springer, Berlin, 2007.

[32] Matthiesen, S., “A contribution to the basis definition of the element
model “Working Surface Pairs & Channel and Support Structures”
about the correlation between layout and function of technical
systems”, IPEK Forschungsberichte, Editor: Albert Albers, Vol. 6,
Karlsruhe, 2002.

[33] Albers, A.; Enkler, H.-G.; Ottnad, J.: Managing Complex Simulation
Processes – the Generalized Contact and Channel Model. In:
International Journal of Product Development, Vol. 13, No. 3.
Inderscience, 2011.

[34] Alink, T.: Meaning and notation of function for solving design
problems with the C&C-Approach. IPEK Forschungsberichte, Editor:
A. Albers, Vol. 48, Karlsruhe, 2010.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

[35] Matthiesen, S.; Ruckpaul, A.: New insights on the Contact & Channel
Approach - Modelling of Systems with several logical states. In:
Proceedings of the DESIGN Conference, Dubrovnik, Croatia, 2012
(accepted).

[36] Eckert, C.; Alink, T.; Ruckpaul, A.; Albers, A.: Different notions of
function: results from an experiment on the analysis of an existing
product. In: Journal of Engineering Design. Publisher: Taylor &
Francis, London, UK, 2011.

[37] Albers, A.; Zingel, C.: Interdisciplinary Systems Modeling Using the
contact & Channel-model for SysML. In: Proceedings of the
International Conference on Engineering Design (ICED ‘11).
Copenhagen, Denmark, 15-18th of august, 2011.

[38] Albers, A.; Zingel, C.; Maletz, M.: Interdisciplinary Functional
Systems Modeling Approach Applied for Hybrid Powertrain
Development. In: Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and
Computer Science 2011, WCECS 2011, 19-21 October, 2011, San
Francisco, USA, pp1135-1140.

[39] Albers, A.; Braun, A.; Sadowski, E.; Wynn, D. C.; Wyatt, D. F.;
Clarkson, P. J.: System Architecture Modeling in a Software Tool
Based on the Contact and Channel Approach (C&C-A). In: Journal of
Mechanical Design, Vol. 133. ASME, 2011.

[40] Albers, A.; Lohmeyer, Q.; Ebel, B.: Dimensions of Objectives in
interdisciplinary Product Development Projects. In: Proceedings of
the International Conference on Engineering Design (ICED ‘11).
Copenhagen, Denmark, 15-18th of august, 2011.

[41] Oerding, J.: A contribution towards model understanding of product
development – structuring of objectives using C&CM. IPEK
Forschungsberichte, Editor: A. Albers, Vol. 37, Karlsruhe, 2009.

[42] Albers, A.: Five Hypotheses about Engineering Processes and their
Consequences. TMCE 2010, Ancona, Italy, 2010.

[43] Albers, A.; Sadowski, E.; Marxen, L.: A new Perspective on Product
Engineering – Overcoming Sequential Process Models. In: The Future
of Design Methodology, 2011.

[44] Albers, A.; Braun, A.: A generalised framework to compass and to
support complex product engineering processes. In: International
Journal of Product Development, Vol. 15, No.1/2/3 pp. 6 – 25, 2011.

[45] Ropohl, G.: Allgemeine Technologie – Eine Systemtheorie der
Technik. 3rd edition, Universitätsverlag Karlsruhe, Germany, 2009.

[46] Albers, A.; Ebel, B.; Lohmeyer, Q.: Systems of Objectives in complex
Product Engineering. In: Proceedings of TMCE 2012, Karlsruhe,
Germany, May 7–11, 2012. (accepted)

[47] Vermaas, P. E.: Technical functions: towards accepting different
engineering meanings with one overall account. In: Proceedings of the
8th international TMCE symposium (Tools and methods of
competitive engineering), Ancona, Italy. Publisher: Delft University
of Technology, pp. 183–194, 2010.

[48] Hoover, S. P.; Rinderle, J. R.; Finger, S.: Models and abstractions in
design. In: Design Studies, Vol. 12, No. 4. Publisher: Butterworth-
Heinemann Ltd, Oxford, UK, 1991.

[49] Albers, A.; Behrendt, M.; Ott, S.: Validation – Central Activity to
Ensure Individual Mobility. In: Proceedings of the FISITA World
Automotive Congress. Budapest, Hungary. 2010.

[50] Albers, A.; Brezger, F.; Freudenmann, T.; Geier, M.; Stier, C.:
Phenomena-Based Methods in Powertrain Validation. In: Proceedings
of the 10th int. CTi Symposium of Innovative Automotive
Transmissions and Hybrid & Electric Drives. Berlin, Germany, 2011.

[51] Specification: OMG Meta Object Facility (OMG MOFTM), Version
2.0. http://www.omg.org, 2006 (publisher: Object Management
Group).

[52] Specification: OMG Systems Modeling Language (OMG SysMLTM),
Version 1.3. http://www.omgsysml.org, 2011 (publisher: Object
Management Group).

[53] Friedenthal, S.; Moore, A.; Steiner, R.: A Practical Guide to SysML:
The Systems Modeling Language, 2nd edition. Elsevier, Amsterdam,
2011.

[54] Weilkiens, T.: Systems Engineering with SysML/UML, 2nd edition.
Elsevier, Amsterdam, Holland, 2008.

[55] Estefan, J. A.: Survey of Model-Based Systems Engineering (MBSE)
Methodologies. In: INCOSE MBSE Initiative, INCOSE MBSE Focus
Group, California, USA, 2008.

[56] Maletz, M. (2008): Integrated Requirements Modeling – A
Contribution towards the Integration of Requirements into a holistic

Product Lifecycle Management Strategy. PhD Thesis (publisher:
Technical University of Kaiserslautern. ISBN-13: 978-3939432920)

[57] Rusty, E. H.; Means, W. S.: XML in a nutshell. O'Reilly Media, Inc.,
Sebastopol, CA, USA, 2004.

[58] Anderl, R.; Trippner, D.: STEP Standard for the Exchange of Product
Model Data. Eine Einführung in die Entwicklung, Implementierung
und industrielle Nutzung der Normenreihe ISO 10303 (STEP).
Teubner, Stuttgart, Germany, 2000.

[59] Lamm, J. G.; Weilkiens, T.: Functional Architectures in SysML. In:
Proceedings of the TdSE 2010, Hamburg, Germany, 2010.

[60] Korff, A.; Lamm, J. G.; Weilkiens, T.: Tools for Forging the
Functional Architecture. . In: Proceedings of the TdSE 2011,
Hamburg, Germany, 2011.

[61] Denger, A.; Fritz, J.: Funktionale Lenkung mechatronischer Produkte.
In: Virtual Vehicle Magazine, No. 12, II-2012, p. 12. Publisher:
Competence Center – The Virtual Vehicle Research Society b. m. H.,
Graz, 2012.

IAENG International Journal of Computer Science, 39:2, IJCS_39_2_04

(Advance online publication: 26 May 2012)

__

