
The c-Fragment Longest Arc-Preserving Common
Subsequence Problem

Anna Gorbenko, Vladimir Popov

Abstract—Arc-annotated sequences are useful in representing
the structural information of RNA and protein sequences. In
particular, arc-annotated sequences are useful in describing
the secondary and tertiary structures of RNA and protein
sequences. Structure comparison for RNA and for protein
sequences has become a central computational problem bearing
many challenging computer science questions. The longest arc-
preserving common subsequence problem has been introduced
as a framework for studying the similarity of arc-annotated
sequences. It is a sound and meaningful mathematical formal-
ization of comparing the secondary structures of molecular
sequences. In this paper, we consider two special cases of
the longest arc-preserving common subsequence problem, c-
fragment LAPCS (unlimited, plain), c-fragment LAPCS (un-
limited, unlimited). In particular, we consider a parameterized
version of the 1-fragment LAPCS (unlimited, plain) problem,
parameterized by the length l of the desired subsequence. We
show W [1]-completeness of the problem. Also, we describe an
approach to solve c-fragment LAPCS (unlimited, unlimited).
This approach is based on constructing logical models for the
problem.

Index Terms—arc-annotation, longest common subsequence,
parameterized complexity, W [1]-complete, logical models.

I. INTRODUCTION

SEQUENCE-LEVEL investigation has become essential
in modern molecular biology. But to consider genetic

molecules only as long sequences consisting of the 4 basic
constituents is too simple to determine the function and
physical structure of the molecules. Additional information
about the sequences should be added to the sequences.
Early works with these additional information are primary
structure based, the sequence comparison is basically done on
the primary structure while trying to incorporate secondary
structure data [1], [2]. This approach has the weakness that
it does not treat a base pair as a whole entity. Recently, an
improved model was proposed [3], [4].

Arc-annotated sequences are useful in describing the sec-
ondary and tertiary structures of RNA and protein sequences.
See [3], [5]–[8] for further discussion and references. Struc-
ture comparison for RNA and for protein sequences has
become a central computational problem bearing many
challenging computer science questions. In this context,
the longest arc preserving common subsequence problem
(LAPCS) recently has received considerable attention [3]–
[5], [8]–[13]. It is a sound and meaningful mathemati-
cal formalization of comparing the secondary structures of
molecular sequences.

Ural Federal University, Department of Intelligent Systems and Robotics
of Mathematics and Computer Science Institute, 620083 Ekaterinburg, Rus-
sian Federation. Email: gorbenko.aa@gmail.com, Vladimir.Popov@usu.ru

The work was partially supported by Analytical Departmental Program
”Developing the scientific potential of high school”.

II. PRELIMINARIES AND PROBLEM DEFINITIONS

Given two sequences S and T over some fixed alphabet Σ,
the sequence T is a subsequence of S if T can be obtained
from S by deleting some letters from S. Notice that the order
of the remaining letters of S bases must be preserved. The
length of a sequence S is the number of letters in it and is
denoted as |S|. For simplicity, we use S[i] to denote the ith
letter in sequence S, and S[i, j] to denote the substring of S
consisting of the ith letter through the jth letter.

Given two sequences S1 and S2 (over some fixed alphabet
Σ), the classic longest common subsequence problem asks
for a longest sequence T that is a subsequence of both S1

and S2.
An arc-annotated sequence of length n on a finite alphabet

Σ is a couple A = (S, P) where S is a sequence of length n
on Σ and P is a set of pairs (i1, i2), with 0 < i1 < i2 < n+1.
In this paper we will then call an element of S a base. A
pair (i1, i2) ∈ P represents an arc linking bases S[i1] and
S[i2] of S. The bases S[i1] and S[i2] are said to belong to
the arc (i1, i2) and are the only bases that belong to this arc.

Given two annotated sequences S1 and S2 with arc sets P1

and P2 respectively, a common subsequence T of S1 and S2

induces a bijective mapping from a subset of {1, . . . , |S1|} to
subset of {1, . . . , |S2|}. The common subsequence T is arc-
preserving if the arcs induced by the mapping are preserved,
i.e., for any (i1, j1) and (i2, j2) in the mapping, (i1, i2) ∈
P1 ⇔ (j1, j2) ∈ P2.

The longest arc-preserving common subsequence problem
(LAPCS) is to find a longest common subsequence of S1

and S2 that is arc-preserving (with respect to the given arc
sets P1 and P2) [3].

LAPCS:
INSTANCE: An alphabet Σ, annotated sequences S1 and

S2, S1, S2 ∈ Σ∗, with arc sets P1 and P2 respectively.
QUESTION: Find a longest common subsequence of S1

and S2 that is arc-preserving.
The arc structure can be restricted. We consider the

following four natural restrictions on an arc set P which
are first discussed in [3]:

1. no sharing of endpoints:
∀(i1, i2), (i3, i4) ∈ P , i1 6= i4, i2 6= i3, and i1 =

i3 ⇔ i2 = i4.
2. no crossing:

∀(i1, i2), (i3, i4) ∈ P , i1 ∈ [i3, i4]⇔ i2 ∈ [i3, i4].
3. no nesting:

∀(i1, i2), (i3, i4) ∈ P , i1 < i3 + 1⇔ i2 < i3 + 1.
4. no arcs:

P = ∅.
Following [3] these restrictions are used progressively and

inclusively to produce five distinct levels of permitted arc
structures for LAPCS:

– UNLIMITED — no restrictions;

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_01

(Advance online publication: 28 August 2012)

__

– CROSSING — restriction 1;
– NESTED — restrictions 1 and 2;
– CHAIN — restrictions 1, 2 and 3;
– PLAIN — restriction 4.
The problem LAPCS is varied by these different levels

of restrictions as LAPCS(x, y) which is problem LAPCS
with S1 having restriction level x and S2 having restriction
level y. Without loss of generality, we always assume that x
is the same level or higher than y.

We give the definitions of two special cases of the LAPCS
problem, which were first studied in [9]. The c-diagonal
LAPCS problem is an extension of the c-fragment LAPCS
problem, where base S2[i] is allowed only to match bases in
the range S1[i− c, i+ c].

In the decision version the c-fragment LAPCS problem
(c > 0) can be formulated as following.

INSTANCE: An alphabet Σ, annotated sequences S1 and
S2, S1, S2 ∈ Σ∗, with arc sets P1 and P2 respectively, where
S1 and S2 are divided into fragments of lengths exactly c (the
last fragment can have a length less than c).

QUESTION: Is there a common subsequence T of S1 and
S2 that is arc-preserving, |T |+1 > k? (The allowed matches
are those between fragments at the same location).

The special cases are motivated from biological appli-
cations [14], [15]. The c-diagonal LAPCS and c-fragment
LAPCS problems are relevant in the comparison of con-
served RNA sequences where we already have a rough
idea about the correspondence between bases in the two
sequences.

The theory of parameterized computational complexity
introduced in [16] is designed to address a natural and im-
portant qualitative complexity distinction which lies beyond
NP-completeness.

A parameterized problem is a set L ⊆ Σ∗ × Σ∗ where
Σ is a fixed alphabet. For convenience, we consider that a
parameterized problem L is a subset of L ⊆ Σ∗×N . We say
that a parameterized problem L is uniformly fixed-parameter
tractable if there is a constant α and an algorithm Φ such that
Φ decides if 〈x, k〉 ∈ L in time f(k)|x|α where f : N → N
is an arbitrary function. If the function f is recursive, then
L is strongly uniformly fixed-parameter tractable.

A problem L reduces to L′ by a uniform parameterized
reduction if there is an algorithm Φ which transforms 〈x, k〉
into 〈x′, g(k)〉 in time f(k)|x|α, where f, g : N → N are
arbitrary functions, and α is a constant independent of k,
and 〈x, k〉 ∈ L if and only if 〈x′, g(k)〉 ∈ L′. As before, if
f is recursive then the reduction is termed a strong uniform
parameterized reduction.

Notably, most reductions from classical complexity turn
out not to be parameterized ones [17]. For instance, the
well-known reduction from INDEPENDENT SET to VERTEX
COVER (see [18]) is not a parameterized one. This is due
to the fact that the reduction function of the parameter g(k)
strongly depends on the instance itself, hence contradicting
the definition of a parameterized reduction. However, the
reductions from INDEPENDENT SET to CLIQUE and vice
versa, which are obtained by simply passing the original
graph over to the complementary one for g(k) = k, indeed
are parameterized ones. Therefore, these problems are of
comparable difficulty in terms of parameterized complexity.

The classes of the W hierarchy are based intuitively on

the complexity of the circuits required to check solutions. A
Boolean circuit defined to be of mixed type if it consists of
circuits having gates of the following kinds:
• Small gates: not gates, and gates, and or gates with

bounded fan-in.
• Large gates: and gates and or gates with unrestricted

fan-in.
The depth of a circuit C is defined to be the maximum
number of gates (small or large) on an input-output path
in C. The weft of a circuit C is the maximum number of
large gates on an input-output path in C.

We say that a family of decision circuits F has bounded
depth if there is a constant h such that every circuit in the
family F has depth at most h. We say that F has bounded
weft if there is a constant t such that every circuit in the
family F has weft at most t. The weight of a boolean vector
x is the number of 1’s in the vector.

Let F be a family of decision circuits. We allow that F
may have many different circuits with a given number of
inputs. To F we associate the parameterized circuit problem
LF = {〈C, k〉 : C accepts an input vector of weight k}.

A parameterized problem L belongs to W [t] if L reduces
to the parameterized circuit problem LF (t,h) of mixed type
decision circuits of weft at most t, and depth at most h,
for some constant h. A parameterized problem L belongs to
W [P] if L reduces to the circuit problem LF , where F is the
set of all circuits. We designate the class of fixed-parameter
tractable problems FPT .

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [P].

A problem which lets all other problems in W [i] reduce
to it is called W [i]-hard; if, additionally, it is contained in
W [i] then it is called W [i]-complete. See [17] for further
discussion.

The arc structure can provide many natural parameters
for LAPCS. For example, we can consider following three
examples of such parameters concerning arc structure. Given
an arc-annotated sequence (S, P), the cutwidth of the arc
structure is the maximum number of arcs that pass by or
end at any position of the sequence. Given an arc-annotated
sequence (S, P), the bandwidth of the arc structure is the
maximum distance between the two endpoints of an arc. The
degree of an arc-annotated sequence (S, P) with unlimited
arc structure is the maximum number of arcs from P that
start or end in a base in S.

III. PREVIOUS RESULTS

It is shown in [9] that the problem c-diagonal LAPCS
(nested, nested) (c-fragment LAPCS (nested, nested)) admits
a PTAS. The 1-fragment LAPCS (crossing, crossing) and
0-diagonal LAPCS (crossing, crossing) are solvable in time
O(n) [9]. An overview on known NP-completeness results
for c-diagonal LAPCS and c-fragment LAPCS is given in
Table I.

Since many of variations of LAPCS are NP-hard or
have no currently known polynomial time algorithm, the
parameterized complexity of these problems has also been
investigated. The parameters being used include: the length
l of the desired subsequence, the cutwidth k of the arc

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_01

(Advance online publication: 28 August 2012)

__

TABLE I
NP-COMPLETENESS RESULTS [9] FOR c-DIAGONAL LAPCS (WITH

c > 0) AND c-FRAGMENT LAPCS (WITH c > 1)

unlimited crossing nested chain plain
unlimited NP NP NP ? ?
crossing — NP NP ? ?
nested — — NP ? ?

structure, bandwidth d of the arc structure, the degree b of
an arc-annotated sequence with unlimited arc-structure.

If parameterized by the length of the desired subsequence,
the LAPCS problem with at least one sequence having an
unlimited arc structure was shown to be W [1]-complete [3].
If the arc structures of both sequences are crossing, the
problem also turns out to be W [1]-complete [3]. It is shown
in [3] that there exists an algorithm whose running time
O(9knm), where k is the cutwidth or bandwidth of the
arc structure, to solve the LAPCS problem for variations
with arc structure of both sequences being at most crossing.
If the arc structures of both sequences are at most nested,
then the LAPCS problem, parameterized by the cutwidth or
bandwidth k of the arc structure, is fixed-parameter tractable
and can be solved in time O(k24knm) [3]. The c-fragment
LAPCS (crossing, crossing) problem, parameterized by the
length l of the desired subsequence, is fixed-parameter
tractable and can be solved in time O((B + 1)lB2 + c3n),
where B = c2 + 2c − 1 (see [7]). The c-diagonal LAPCS
(crossing, crossing) problem, parameterized by the length
l of the desired subsequence, is fixed-parameter tractable
and can be solved in time O((B + 1)lB2 + c3n), where
B = 2c2 + 7c+ 2 (see [7]).

Note that the c-fragment LAPCS (unlimited, unlimited)
problem and the c-diagonal LAPCS (unlimited, unlimited)
problem are fixed-parameter tractable, when the parameters
are the length l of the desired subsequence and the maximum
degree b of the two sequences: they can be solved in time
O((B + 1)lB2 + (c3 + 2bc2)n), where B = c2 + 2bc − 1,
and in time O((B′ + 1)lB′

2
+ (c3 + 2bc2)n), where B′ =

2c2 + (4b+ 3)c+ 2b, respectively.

IV. W [1]-COMPLETENESS

Let us consider a parameterized version of the c-fragment
LAPCS problem, parameterized by the length l of the
desired subsequence.
c-fragment LAPCS[l]:
INSTANCE: An alphabet Σ, a positive integer l, annotated

sequences S1 and S2, S1, S2 ∈ Σ∗, with arc sets P1 and P2

respectively, where S1 and S2 are divided into fragments of
lengths exactly c (the last fragment can have a length less
than c).

PARAMETER: l.
QUESTION: Is there a common subsequence T of S1 and

S2 that is arc-preserving, |T |+1 > l? (The allowed matches
are those between fragments at the same location).

Theorem 1. If |Σ| = 1, then 1-fragment LAPCS[l] (unli-
mited, plain) is W [1]-complete.

Proof. Let G = (V,E) be an undirected graph, and let
I ⊆ V . We say that the set I is independent if whenever
i, j ∈ I then there is no edge between i and j.

Let us consider the k-INDEPENDENT SET problem.
INSTANCE: A graph G = (V,E).

PARAMETER; k.
QUESTION: Is there an independent set I , I ⊆ V , with

|I|+ 1 > k?
Note that the INDEPENDENT SET is NP-complete (see

[18]) and the k-INDEPENDENT SET problem is W [1]-
complete (see [17], [19]).

Let us suppose that Σ = {a}. We will show that the
k-INDEPENDENT SET problem can be strong uniform pa-
rameterized reduced to the 1-fragment LAPCS[l] (unlimited,
plain) problem.

Let G = (V,E) where V = {1, 2, . . . , n}. Let 〈x, k〉
be an instance of k-INDEPENDENT SET where x = (V,E).
Now we transform an instance 〈x, k〉 of the k-INDEPENDENT
SET problem to an instance 〈x′, g(k)〉 of the 1-fragment
LAPCS[l] (unlimited, plain) problem as follows.
• S1 = S2 = an.
• P1 = E,P2 = ∅.
• x′ = (S1, P1), (S2, P2).
• g(k) = k.
It is easy to see that there is an algorithm Φ which

transforms 〈x, k〉 into 〈x′, g(k)〉 in time f(k)|x|α where
α = 1 and f(k) = 2 is a recursive function.

Suppose that the graph G has an independent set I of
size k. By definition of independent set, (i, j) /∈ E for each
i, j ∈ I . For a given subset I , let M = {(i, i) : i ∈ I}.
Since I is an independent set, if (i, j) ∈ E = P1 then either
(i, i) /∈ M or (j, j) /∈ M . This preserves arcs since P2 is
empty. Clearly, S1[i] = S2[i] for each i ∈ I , and the allowed
matches are those between fragments at the same location.
Therefore, there is a common subsequence T of S1 and S2

that is arc-preserving, |T | = k, and the allowed matches are
those between fragments at the same location.

Now suppose that there is a common subsequence T of
S1 and S2 that is arc-preserving, |T | = k, and the allowed
matches are those between fragments at the same location.
In this case there is a valid mapping M , with |M | = k. Since
c = 1, it is easy to see that if (i, j) ∈ M then i = j. Let
I = {i : (i, i) ∈ M}. Clearly, |I| = |M | = k. Let i1 and i2
be any two distinct members of I . Then let (i1, j1), (i2, j2) ∈
M . Since i1 = j1, i2 = j2, i1 6= i2, it is easy to see that
j1 6= j2. Since P2 is empty, it is clear that (j1, j2) /∈ P2. So,
(i1, i2) /∈ P1. Since P1 = E, the set I of vertices is a size k
independent set of G.

It is easy to see that our reduction is a strong uniform
parameterized reduction. Therefore, the k-INDEPENDENT
SET problem can be strong uniform parameterized re-
duced to 1-fragment LAPCS[l] (unlimited, plain). Since
the l-INDEPENDENT SET problem is W [1]-complete the 1-
fragment LAPCS[l] (unlimited, plain) is W [1]-hard.

Now we will show that the 1-fragment LAPCS[l] (unli-
mited, plain) problem can be strong uniform parameterized
reduced to the k-INDEPENDENT SET problem.

Let S1 = an, S2 = am. If m > n, then it is easy to see
that there is a common subsequence T of S1 and S2 that
is arc-preserving, |T | + 1 > l, and the allowed matches are
those between fragments at the same location if and only
if there is a common subsequence T ′ of S1 and an that is
arc-preserving, |T ′| + 1 > l, and the allowed matches are
those between fragments at the same location. Therefore, we
can suppose that n+ 1 > m. Since the allowed matches are
those between fragments at the same location, if n > m, then

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_01

(Advance online publication: 28 August 2012)

__

for arc-annotated sequences (S1, P) and (S2, ∅), S1 = an,
S1 = am, and c = 1 there is a common subsequence T of an

and am that is arc-preserving, |T |+ 1 > l, and the allowed
matches are those between fragments at the same location
if and only if for arc-annotated sequences (S1[1, n], Q) and
(S2, ∅) there is a common subsequence T ′ of S1[1, n] and an

that is arc-preserving, |T ′|+ 1 > l, and the allowed matches
are those between fragments at the same location where Q =
{(i1, i2) | (i1, i2) ∈ P, i2 < n + 1}. Therefore, we can
suppose that n = m.

Let 〈x, l〉 be an instance of the 1-fragment LAPCS[l] (un-
limited, plain) problem where x = (S1, P1), (S2, P2). Now
we transform an instance 〈x, l〉 of the 1-fragment LAPCS[l]
(unlimited, plain) problem to an instance 〈x′, g(l)〉 of the
k-INDEPENDENT SET problem as follows.
• V = S1.
• E = P1.
• x′ = (V,E).
• g(l) = l.
It is easy to see that there is an algorithm Φ which

transforms 〈x, l〉 into 〈x′, g(l)〉 in time f(l)|x|α where α = 1
and f(l) = 2 is a recursive function. Clearly, there is an
independent set I , I ⊆ V , with |I| + 1 > g(l), if and
only if for arc-annotated sequences (S1, P1) and (S2, P2) and
c = 1 there is a common subsequence T of S1 and S2 that
is arc-preserving, |T | + 1 > l, and the allowed matches are
those between fragments at the same location. Therefore, the
1-fragment LAPCS[l] (unlimited, plain) problem is W [1]-
complete.

V. LOGICAL MODELS OF c-FRAGMENT LAPCS
(UNLIMITED, UNLIMITED)

The satisfiability problem (SAT) was the first known NP-
complete problem. The problem SAT is the problem of
determining if the variables of a given boolean function in
conjunctive normal form (CNF) can be assigned in such a
way as to make the formula evaluate to true. Considered also
different variants of SAT. The problem SAT remains NP-
complete even if all expressions are written in conjunctive
normal form with 3 variables per clause (3-CNF). The
problem 3SAT is the problem of determining if the variables
of a given 3-CNF can be assigned in such a way as to make
the formula evaluate to true.

In practice, the satisfiability problem is fundamental in
solving many problems in automated reasoning, computer-
aided design, computer-aided manufacturing, machine vision,
database, robotics, integrated circuit design, computer ar-
chitecture design, and computer network design. In recent
years, many optimization methods, parallel algorithms, and
practical techniques have been developed for solving the
satisfiability problem (see e.g. [20]).

It is natural to use a reduction to different variants of the
satisfiability problem to solve computational hard problems.
Encoding problems as Boolean satisfiability and solving
them with very efficient satisfiability algorithms has recently
caused considerable interest. There are several ways of SAT-
encoding constraint satisfaction, clique, planning, coloring,
the Hamiltonian cycle, and some other problems (see e.g.
[21]–[28]). In this paper we consider reductions from c-
fragment LAPCS (unlimited, unlimited) to SAT and 3SAT.

Consider an alphabet Σ, annotated sequences S1 and S2,
S1, S2 ∈ Σ∗, with arc sets P1 and P2 respectively, where S1

and S2 are divided into fragments of lengths exactly c (the
last fragment can have a length less than c). Let |S1| = u,
|S2| = v,

ϕ1 =
∧

1 ≤ i ≤ u,
1 ≤ j[1] < j[2] ≤ k

(¬x[i, j[1]] ∨ ¬x[i, j[2]]),

ϕ2 =
∧

1 ≤ j ≤ k

∨
1 ≤ i ≤ u

x[i, j],

ϕ3 =
∧

1 ≤ i[1] < i[2] ≤ u,
1 ≤ j ≤ k

(¬x[i[1], j] ∨ ¬x[i[2], j]),

ϕ4 =
∧

1 ≤ i ≤ u,
1 ≤ j ≤ k,
1 ≤ s ≤ u,
1 ≤ t ≤ k,
s > i,
t < j

(¬x[i, j] ∨ ¬x[s, t]),

ψ1 =
∧

1 ≤ i ≤ v,
1 ≤ j[1] < j[2] ≤ k

(¬y[i, j[1]] ∨ ¬y[i, j[2]]),

ψ2 =
∧

1 ≤ j ≤ k

∨
1 ≤ i ≤ v

y[i, j],

ψ3 =
∧

1 ≤ i[1] < i[2] ≤ v,
1 ≤ j ≤ k

(¬y[i[1], j] ∨ ¬y[i[2], j]),

ψ4 =
∧

1 ≤ i ≤ v,
1 ≤ j ≤ k,
1 ≤ s ≤ v,
1 ≤ t ≤ k,
s > i,
t < j

(¬y[i, j] ∨ ¬y[s, t]),

ρ1 =
∧

1 ≤ i[1] ≤ u,
1 ≤ i[2] ≤ v,
1 ≤ j ≤ k,
S1[i[1]] 6= S2[i[2]]

(¬x[i[1], j] ∨ ¬y[i[2], j]),

ρ2 =
∧

1 ≤ i[1] < i[2] ≤ u,
1 ≤ i[3] < i[4] ≤ v,
1 ≤ j[1] < j[2] ≤ k,
(i[1], i[2]) ∈ P1,
(i[3], i[4]) /∈ P2

(¬x[i[1], j[1]]∨

¬x[i[2], j[2]] ∨ ¬y[i[3], j[1]] ∨ ¬y[i[4], j[2]]),

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_01

(Advance online publication: 28 August 2012)

__

ρ3 =
∧

1 ≤ i[1] < i[2] ≤ u,
1 ≤ i[3] < i[4] ≤ v,
1 ≤ j[1] < j[2] ≤ k,
(i[1], i[2]) /∈ P1,
(i[3], i[4]) ∈ P2

(¬x[i[1], j[1]]∨

¬x[i[2], j[2]] ∨ ¬y[i[3], j[1]] ∨ ¬y[i[4], j[2]]),

η1 =
∧

1 ≤ i[1] ≤ u,
1 ≤ j ≤ k,
i[1] = ac+ b,
1 ≤ b ≤ c

(¬x[i[1], j]∨

(
∨

ac+ 1 ≤ i[2] ≤ a(c+ 1)

y[i[2], j])),

η2 =
∧

1 ≤ i[2] ≤ v,
1 ≤ j ≤ k,
i[2] = ac+ b,
1 ≤ b ≤ c

(¬y[i[2], j]∨

(
∨

ac+ 1 ≤ i[1] ≤ a(c+ 1)

x[i[1], j])),

ξ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4∧

ρ1 ∧ ρ2 ∧ ρ3 ∧ η1 ∧ η2.

Theorem 2. Given an alphabet Σ, annotated sequences S1

and S2, S1, S2 ∈ Σ∗, with arc sets P1 and P2 respectively,
where S1 and S2 are divided into fragments of lengths exactly
c. The last fragment can have a length less than c. There is a
common subsequence T of S1 and S2 that is arc-preserving,
|T | + 1 > k, and the allowed matches are those between
fragments at the same location if and only if ξ is satisfiable.

Proof. Suppose that ξ = 1. Since ϕ1 = 1, it is easy to see
that, for all i, there is no more than one value of j such that
x[i, j] = 1. Similarly, from ϕ3 = 1 we obtain that, for all j,
there is no more than one value of i such that x[i, j] = 1.
In view of ϕ2 = 1, it is clear that, for all j, there is at
least one value of i such that x[i, j] = 1. Therefore, for all
j, there is only one value of i such that x[i, j] = 1. Thus,
we can consider values of x[i, j] as a choice of elements of
S1. In particular, we can suppose that if x[i, j] = 1, then
S1[i] → T [j]. Similarly, in view of ψ1 = ψ2 = ψ3 = 1, we
can consider values of y[i, j] as a choice of elements of S2.
Note that at this time we are talking only about the existence
of the mapping but not on its properties.

From ϕ4 = ψ4 = 1 we obtain that the choice defined by
x[i, j] and y[i, j] is the order-preserving. In view of ρ1 = 1,
S1 and S2 are mapped into the same subsequence T . Since
ρ2 = ρ3 = 1, it is easy to check that T is arc-preserving. In
view of η1 = η2 = 1, it is clear that the allowed matches are
those between fragments at the same location.

Now suppose that for annotated sequences S1 and S2

there is a common subsequence T of S1 and S2 that is

arc-preserving, |T | + 1 > k, and the allowed matches are
those between fragments at the same location. Without loss
of generality, we can assume that |T | = k. Let x[i, j] = 1
if and only if S1[i] → T [j]. Let y[i, j] = 1 if and only if
S2[i]→ T [j]. It can be verified directly that in case of such
values of variables ξ = 1.

Clearly, ξ is a CNF. So, ξ gives us an explicit reduction
from c-fragment LAPCS (unlimited, unlimited) to SAT.

Note that

α ⇔ (α ∨ β1 ∨ β2) ∧
(α ∨ ¬β1 ∨ β2) ∧
(α ∨ β1 ∨ ¬β2) ∧
(α ∨ ¬β1 ∨ ¬β2), (1)

∨lj=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧
(∧l−4i=1(¬βi ∨ αi+2 ∨ βi+1)) ∧
(¬βl−3 ∨ αl−1 ∨ αl), (2)

α1 ∨ α2 ⇔ (α1 ∨ α2 ∨ β) ∧
(α1 ∨ α2 ∨ ¬β), (3)

∨4j=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧
(¬β1 ∨ α3 ∨ α4) (4)

where l > 4. Using relations (1) – (4) we can obtain an
explicit transformation of ξ into τ such that ξ ⇔ τ and τ
is a 3-CNF. Clearly, τ gives us an explicit reduction from
c-fragment LAPCS (unlimited, unlimited) to 3SAT.

VI. A MODEL OF STATE EVOLUTIONS CAUSED BY
ACTIONS

Reasoning about actions is a vital aspect for intelligent
robots. It represents a major research domain in artificial
intelligence. We can mention planning problems [21], [25],
[28], [30], pattern recognition [31]–[33], pattern matching
[23], [27], [34]–[38], localization problems [22], [26], [30],
[39], mapping problems [24], [40], [41], self-awareness [42]–
[45], etc. Reasoning about actions relies on the ability of
relating cause and effect. In particular, we can consider state
evolutions caused by actions (e.g. [46], [47]).

A state is a complete description of a situation the system
can be in. Actions cause state transitions, making the system
evolve from the current state to the next one. In principle we
could represent the behavior of a system (i.e. all its possible
evolutions) as a transition graph, where:
• Each node represents a state, and is labeled with the

properties that characterize the state.
• Each arc represents a state transition, and is labeled by

the action that causes the transition.
Note that complete knowledge of the behavior of the

system is required to build its transition graph. Even if we
had access to complete knowledge of the behavior of the
system and can build its transition graph, we would still not
succeed in creating a good model.

For a movement system with many degrees of freedom,
there is an exponential explosion in the number of actions
that can be taken in every state. In general one has only
partial knowledge of such behavior. Even if we have a
way to get the full knowledge about the robotic system,
efforts to obtain such knowledge may be too high (e.g.

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_01

(Advance online publication: 28 August 2012)

__

[48]). That is why in practice it is usually considered only a
partial transition graph. Consideration of alternative models
represents a significant interest.

Functioning of the domestic robot usually consists of
performing some repetitive sequences of actions that are
necessary for solving some tasks. Performing a sequence
of actions a robot passes through a sequence of states. We
can consider such sequence of states as a sequence S ∈ Σ∗

where Σ is the alphabet of states of the robot. Performed
by a robot general task can be divided into local tasks that
may be of interest for other general tasks. Without loss of
generality, we can assume that each local task requires the
same number of state transitions. In particular, we can use the
dummy state. Respectively, S can be divided into fragments
of lengths exactly c. Actions which are not included in the
sequence performed by the robot but can it implemented
are determine the arc annotation of S. In particular, we
have considered the working day for vacuum cleaning robot.
Selected experimental results are shown in Table II.

TABLE II
THE AVERAGE TIME (IN MINUTES) OF CLEANING FOR DIFFERENT

ENVIRONMENTS.

The size of environment (m2) 10 50 100 200

With arc annotation 9 42 79 137
Without arc annotation 9 46 98 209

Note that the case c = 1 is of special interest. In practice,
it can be used for planning of large complex problems. For
example, planning of the working day of a robot. When
comparing two such plans, we are more interested in the
study of arc structures rather than replacing letters.

Finding common subsequences of two such sequences is
of interest for several robotic problems.
• We can use common subsequences for a more reason-

able division into local tasks.
• Finding common subsequences allows to speed up train-

ing and calibration.
• We can optimize memory and simplify hardware imple-

mentation.

VII. MINING FOR INTERESTING PATTERNS

Feature selection is one of the most important problems of
image processing (see e.g. [49], [50]). Note that a common
technique used is the discovery of patterns which are fre-
quent and happen often. The model of c-fragment LAPCS
(unlimited, unlimited) can be used for mining for interesting
patterns. We can use fluents [51] to express temporal patterns.
A fluent is a proposition with temporal extent. In particular,
a fluent can be represented as a finite binary time series
x[t]. Using of fluents allows us to establish a correspondence
between sequences of images and events. Recognition system
creates a sequence

Im[t[1]], Im[t[2]], . . . , Im[t[n]], . . .

of recognized and classified images where

t[1], t[2], . . . , t[n], . . .

are time points at which images were obtained. We can
consider some event x. We can assume that x[t] is 1 if and

only if event x recognized on image Im[t]. Now we can
consider an arc-annotated sequence A = (Im, P) such that

(t[i], t[j]) ∈ P

if and only if

x[t[i− 1]] = 0,

x[t[j + 1]] = 0,

t[i] < t[j],

x[t[k]] = 1, i ≤ k ≤ j.

Note that the well-known problem of the longest common
subsequence is a classical distance measure for strings. In
particular, different versions of the longest common subse-
quence problem frequently used to mine interesting patterns
(see e.g. [52]–[54]). In this case, we can mine interesting
patterns using longest arc-preserving common subsequence
technique. The model of c-fragment LAPCS allows us to
take into account the time of the event.

Mining for interesting patterns has a number of interesting
applications in robot self-awareness (see e.g. [42]–[45]).
There are a number of different approaches to creating
artificial emotions systems and systems of emotion recog-
nition (see e.g. [55]). In particular, we need some system
of prediction of collisions to build robot with ability to
anticipate the motions (see e.g. [43], [56], [57]). We have
considered models of c-fragment LAPCS and LCS over
the set for mining for interesting patterns. We have used
same data for c-fragment LAPCS and LCS over the set. We
have mined two sets of interesting patterns. These sets were
used by recurrent neural network for prediction of collisions
of mobile robot. Selected experimental results are shown in
Table III.

TABLE III
THE QUALITY OF PREDICTION FOR c-FRAGMENT LAPCS AND LCS

OVER THE SET.

The size of training set 102 103 104 105

c-fragment LAPCS 91 % 96 % 97 % 98 %
LCS over the set 76 % 83 % 88 % 96 %

VIII. EXPERIMENTAL RESULTS

In the section V we have obtained explicit reductions from
c-fragment LAPCS (unlimited, unlimited) to some variants
of satisfiability, SAT and 3SAT. There is a well known site
on which solvers for SAT are posted [29]. In addition to the
solvers the site also represented a large set of test problems.
This set includes a randomly generated problems of 3SAT.
We have designed two generators of natural instances for c-
fragment LAPCS (unlimited, unlimited). One of these gen-
erators creates instances on the basis of biological sequences.
Since c-fragment LAPCS (unlimited, unlimited) is unnatural
for biological data, we have considered biological sequences
only for (nested, nested). Another generator creates instances
on the basis of robotic information. For a domestic robot

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_01

(Advance online publication: 28 August 2012)

__

we have considered a model of state evolutions caused by
actions. Also, we have considered a model of mining for
interesting patterns.

For robotic test we consider sequences satisfying the
following conditions. The model of state evolutions caused
by actions: 400 ≤ |S| ≤ 600; 1000 ≤ |P | ≤ 20000. The
model of mining for interesting patterns: 3000 ≤ |S| ≤
12000; 100 ≤ |P | ≤ 2000. Also, we used random test
problems from [29]. We used the algorithms fgrasp and posit
from [29]. Also we design our own genetic algorithm (OA)
for SAT which based on algorithms from [29]. We used
heterogeneous cluster based on three clusters (Cluster USU,
umt, um64) [58]. Each test was runned on a cluster of at
least 100 nodes.

Selected experimental results for 3SAT are given in Tables
IV – VII. Note that due to restrictions on computation time
(20 hours) we used savepoints.

TABLE IV
EXPERIMENTAL RESULTS FOR 3SAT (RANDOM DATA)

time fgrasp posit OA
average 6 h 5.8 h 6.3 h
max 168 h 174 h 84 h
best 19 min 26 min 3.6 min

TABLE V
EXPERIMENTAL RESULTS FOR 3SAT (BIOLOGICAL DATA)

time fgrasp posit OA
average 36 min 28 min 6.4 min
max 87 h 93 h 19 h
best 11 min 17 min 56 sec

TABLE VI
EXPERIMENTAL RESULTS FOR 3SAT (THE MODEL OF STATE

EVOLUTIONS CAUSED BY ACTIONS)

time fgrasp posit OA
average 39 min 47 min 29.2 min
max 83 h 88 h 12 h
best 16 min 23 min 19 sec

TABLE VII
EXPERIMENTAL RESULTS FOR 3SAT (THE MODEL OF MINING FOR

INTERESTING PATTERNS)

time fgrasp posit OA
average 15 min 11 min 53 sec
max 17 h 19 h 2.6 h
best 5.6 min 4.2 min 7 sec

IX. CONCLUSION

In this paper, we have considered two special cases of
the longest arc-preserving common subsequence problem,
c-fragment LAPCS (unlimited, plain), c-fragment LAPCS
(unlimited, unlimited). In particular, we have considered a
parameterized version of the 1-fragment LAPCS (unlimited,
plain) problem, parameterized by the length l of the desired
subsequence. We have shown W [1]-completeness of the
problem. Also, we have described an approach to solve c-
fragment LAPCS (unlimited, unlimited). This approach is
based on constructing logical models for the problem. We
have considered different applications of the problem and
experimental results for those applications.

REFERENCES

[1] V. Bafna, S. Muthukrishnan, and R. Ravi, “Comparing similarity
between rna strings,” in Proceedings of the 6th Annual Symposium on
Combinatorial Pattern Matching, 1995, pp. 1-16.

[2] F. Corpet and B. Michot, “Rnalign program: alignment of rna sequences
using both primary and secondary structures,” Computer Applications
in the Biosciences, vol. 10, no. 4, pp. 389-399, July 1994.

[3] P. A. Evans, Algorithms and complexity for annotated sequence analy-
sis. Ph.D. thesis, University of Victoria, 1999.

[4] P. A. Evans, “Finding common subsequences with arcs and pseudo-
knots,” in Proceedings of the 10th Annual Symposium on Combinatorial
Pattern Matching, 1999, pp. 270-280.

[5] T. Jiang, G. H. Lin, B. Ma, and K. Zhang, “The longest common
subsequence problem for arc-annotated sequences,” in Proceedings of
the 11th Annual Symposium on Combinatorial Pattern Matching, 2000,
pp. 154-165.

[6] G. Blin, M. Crochemore, and S. Vialette, “Algorithmic Aspects of
ARC-Annotated Sequences,” in Algorithms in Computational Molecular
Biology: Techniques, Approaches and Applications, 2011, pp. 171-183.

[7] J. Guo, Exact Algorithms for the Longest Common Subsequence Prob-
lem for Arc-Annotated Sequences. M.Sc. thesis, Eberhard-Karls-
Universität, 2002.

[8] T. Jiang, G. H. Lin, B. Ma, and K. Zhang, “The longest common
subsequence problem for arc-annotated sequences,” Journal of Discrete
Algorithms, vol. 2, no. 2, pp. 257-270, June 2004.

[9] G. H. Lin, Z. Z. Chen, T. Jiang, and J. J. Wen, “The longest com-
mon subsequence problem for sequences with nested arc annotations,”
Journal of Computer and System Sciences, vol. 65, no. 3, pp. 465-480,
November 2002.

[10] J. Alber, J. Gramm, J. Guo, and R. Niedermeier, “Computing of two
sequences with nested arc notations,” Theoretical Computer Science,
vol. 312, no. 2-3, pp. 337-358, January 2004.

[11] J. Gramm, J. Guo, and R. Niedermeier, “Pattern Matching fot arc-
annotated sequences,” ACM Transactions on Algorithms, vol. 2, no. 1,
pp. 44-65, January 2006.

[12] D. Marx and I. Schlotter, “Parameterized complexity of the Arc-
Preserving Subsequence problem,” in Proceedings of the 36th Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science,
2010, pp. 244-255.

[13] A. Ouangraoua, V. Guignon, S. Hamel, and C. Chauve, “A new
algorithm for aligning nested arc-annotated sequences under arbitrary
weight schemes,” Theoretical Computer Science, vol. 412, no. 8-10, pp.
753-764, March 2011.

[14] D. Gusfield, Algorithm on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press,
Cambridge, 1997.

[15] M. Li, B. Ma, and L. Wang, “Near optimal multiple alignment within
a band in polynomial time,” in Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, 2000, pp. 425-434.

[16] R. Downey and M. Fellows, “Fixed-parameter intractability,” in Pro-
ceedings of the Seventh Annual Conference on Structure in Complexity
Theory, 1992, pp. 36-49.

[17] R. Downey and M. Fellows, Parameterized complexity. Springer-
Verlag, New York, 1999.

[18] C. H. Papadimitriou, Computational complexity. Addison Wesley,
Reading, 1994.

[19] R. Downey and M. Fellows, “Fixed-parameter tractability and com-
pleteness II: On completeness for W [1],” Theoretical Computer Sci-
ence, vol. 141, no. 1-2, pp. 109-131, April 1995.

[20] J. Gu, P. Purdom, J. Franco, and B. Wah, “Algorithms for the
Satisfiability (SAT) Problem: A Survey,” in Cliques, Coloring and
Satisfiability: Second DIMACS Implementation Challenge, 1996, pp.
19-152.

[21] A. Gorbenko, M. Mornev, and V. Popov, “Planning a Typical Working
Day for Indoor Service Robots,” IAENG International Journal of
Computer Science, vol. 38, no. 3, pp. 176-182, August 2011.

[22] A. Gorbenko, M. Mornev, V. Popov, and A. Sheka, “The problem
of sensor placement for triangulation-based localisation,” International
Journal of Automation and Control, vol. 5, no. 3, pp. 245-253, August
2011.

[23] A. Gorbenko and V. Popov, “The set of parameterized k-covers
problem,” Theoretical Computer Science, vol. 423, no. 1, pp. 19-24,
March 2012.

[24] A. Gorbenko and V. Popov, “On the Problem of Placement of Visual
Landmarks,” Applied Mathematical Sciences, vol. 6, no. 14, pp. 689-
696, January 2012.

[25] A. Gorbenko and V. Popov, “Programming for Modular Reconfig-
urable Robots,” Programming and Computer Software, vol. 38, no. 1,
pp. 13-23, January 2012.

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_01

(Advance online publication: 28 August 2012)

__

[26] A. Gorbenko, V. Popov, and A. Sheka, “Localization on Discrete Grid
Graphs,” in Proceedings of the CICA 2011, 2012, pp. 971-978.

[27] A. Gorbenko and V. Popov, “The Longest Common Parameterized
Subsequence Problem,” Applied Mathematical Sciences, vol. 6, no. 58,
pp. 2851-2855, March 2012.

[28] A. Gorbenko and V. Popov, “On the Optimal Reconfiguration Plan-
ning for Modular Self-Reconfigurable DNA Nanomechanical Robots,”
Advanced Studies in Biology, vol. 4, no. 2, pp. 95-101, March 2012.

[29] SATLIB — The Satisfiability Library. [Online]. Available:
http://people.cs.ubc.ca/∼hoos/SATLIB/index-ubc.html

[30] A. Gorbenko and V. Popov, “The Binary Paint Shop Problem,” Applied
Mathematical Sciences, vol. 6, no. 95, pp. 4733-4735, October 2012.

[31] A. Gorbenko and V. Popov, “Self-Learning Algorithm for Vi-
sual Recognition and Object Categorization for Autonomous Mobile
Robots,” in Proceedings of the CICA 2011, 2012, pp. 1289-1295.

[32] A. Gorbenko and V. Popov, “On Face Detection from Compressed
Video Streams,” Applied Mathematical Sciences, vol. 6, no. 96, pp.
4763-4766, October 2012.

[33] A. Gorbenko and V. Popov, “Usage of the Laplace Transform as a
Basic Algorithm of Railroad Tracks Recognition,” International Journal
of Mathematical Analysis, vol. 6, no. 48, pp. 2413-2417, October 2012.

[34] V. Popov, “The approximate period problem for DNA alphabet,”
Theoretical Computer Science, vol. 304, no. 1-3, pp. 443-447, July
2003.

[35] V. Popov, “The Approximate Period Problem,” IAENG International
Journal of Computer Science, vol. 36, no. 4, IJCS 36 4 03, November
2009.

[36] V. Popov, “Multiple genome rearrangement by swaps and by element
duplications,” Theoretical Computer Science, vol. 385, no. 1-3, pp. 115-
126, October 2007.

[37] A. Gorbenko and V. Popov, “The Longest Common Subsequence
Problem,” Advanced Studies in Biology, vol. 4, no. 8, pp. 373-380,
June 2012.

[38] A. Gorbenko and V. Popov, “Element Duplication Centre Problem and
Railroad Tracks Recognition,” Advanced Studies in Biology, vol. 4, no.
8, pp. 381-384, June 2012.

[39] A. Gorbenko, M. Mornev, V. Popov, and A. Sheka, “The Problem of
Sensor Placement,” Advanced Studies in Theoretical Physics, vol. 6, no.
20, pp. 965-967, July 2012.

[40] A. Gorbenko and V. Popov, “The Problem of Selection of a Minimal
Set of Visual Landmarks,” Applied Mathematical Sciences, vol. 6, no.
95, pp. 4729-4732, October 2012.

[41] A. Gorbenko and V. Popov, “A Real-World Experiments Setup for
Investigations of the Problem of Visual Landmarks Selection for Mobile
Robots,” Applied Mathematical Sciences, vol. 6, no. 96, pp. 4767-4771,
October 2012.

[42] A. Gorbenko and V. Popov, “Robot Self-Awareness: Occam’s Razor
for Fluents,” International Journal of Mathematical Analysis, vol. 6,
no. 30, pp. 1453-1455, March 2012.

[43] A. Gorbenko and V. Popov, “The Force Law Design of Artificial
Physics Optimization for Robot Anticipation of Motion,” Advanced
Studies in Theoretical Physics, vol. 6, no. 13, pp. 625-628, March 2012.

[44] A. Gorbenko, V. Popov, and A. Sheka, “Robot Self-Awareness: Ex-
ploration of Internal States,” Applied Mathematical Sciences, vol. 6, no.
14, pp. 675-688, January 2012.

[45] A. Gorbenko, V. Popov, and A. Sheka, “Robot Self-Awareness: Tem-
poral Relation Based Data Mining,” Engineering Letters, vol. 19, no.
3, pp. 169-178, August 2011.

[46] W. Jacak, “Strategies of searching for collision-free manipulator mo-
tions: automata theory approach,” Robotica, vol. 7, no. 2, pp. 129-138,
March 1989.

[47] F. Kanehiro, M. Inaba, and H. Inoue, “StateNet: State Transition Graph
Description of Action Space that Includes Error Recovery Function,”
Journal of the Robotics Society of Japan, vol. 20, no. 8, pp. 835-843,
August 2002.

[48] A. Gorbenko, A. Lutov, M. Mornev, and V. Popov, “Algebras of
Stepping Motor Programs,” Applied Mathematical Sciences, vol. 5, no.
34, pp. 1679-1692, June 2011.

[49] Y. Lin, M. D. McCool, and A. A. Ghorbani, “Time Series Motif
Discovery and Anomaly Detection Based on Subseries Join,” IAENG In-
ternational Journal of Computer Science, vol. 37, no. 3, IJCS 37 3 08,
August 2010.

[50] P. Lin, N. Thapa, I. S. Omer, L. Liu, and J. Zhang, “Feature Selection:
A Preprocess for Data Perturbation,” IAENG International Journal of
Computer Science, vol. 38, no. 2, pp. 168-175, May 2011.

[51] T. Oates and P. R. Cohen, “Learning planning operators with con-
ditional and probabilistic effects,” in Proceedings of the AAAI Spring
Symposium on Planning with Incomplete Information for Robot Prob-
lems, 1996, pp. 86-94.

[52] W.-H. Hsu, Y.-Y. Chiang, and J.-S. Wu, “IntegratingWeighted LCS
and SVM for 3D Handwriting Recognition on Handheld Devices using
Accelerometers,” WSEAS Transactions on Computers, vol. 9, no. 3, pp.
235-251, March 2010.

[53] C. H. Park, J. W. Yoo, and A. M. Howard, “Transfer of skills between
human operators through haptic training with robot coordination,” in
Proceedings of the 2010 IEEE International Conference on Robotics
and Automation, 2010, pp. 229-235.

[54] P. Rashidi, D. J. Cook, L. B. Holder, and M. Schmitter-Edgecombe,
“Discovering Activities to Recognize and Track in a Smart Environ-
ment,” IEEE Transactions on Knowledge and Data Engineering, vol.
23, no. 4, pp. 527-539, April 2011.

[55] S. Sumpeno, M. Hariadi, and M. H. Purnomo, “Facial Emotional
Expressions of Life-like Character Based on Text Classifier and Fuzzy
Logic,” IAENG International Journal of Computer Science, vol. 38, no.
2, pp. 122-133, May 2011.

[56] T. Kobayashi and S. Tsuda, “Sliding Mode Control of Space Robot
for Unknown Target Capturing,” Engineering Letters, vol. 19, no. 2, pp.
105-111, May 2011.

[57] O. A. Dahunsi and J. O. Pedro, “Neural Network-Based Identification
and Approximate Predictive Control of a Servo-Hydraulic Vehicle
Suspension System,” Engineering Letters, vol. 18, no. 4, EL 18 4 05,
November 2010.

[58] Web page “Computational resources of IMM UB RAS”. (In Russian.)
[Online]. Available:
http://parallel.imm.uran.ru/mvc now/hardware/supercomp.htm

Anna Gorbenko was born on December 28, 1987.
She received her M.Sc. in Computer Science from
Department of Mathematics and Mechanics of
Ural State University in 2011. She is currently
a graduate student at Mathematics and Computer
Science Institute of Ural Federal University and
a researcher at Department of Intelligent Sys-
tems and Robotics of Mathematics and Computer
Science Institute of Ural Federal University. She
has (co-)authored 2 books and 18 papers. She
has received Microsoft Best Paper Award from

international conference in 2011.

Vladimir Popov was born on December 15, 1969.
He received his Diploma in Mathematics (=M.Sci.)
from Department of Mathematics and Mechan-
ics of Ural State University in 1992. He was
awarded his Candidate of Physical and Mathe-
matical Sciences (=PhD) degree from Mathematics
and Mechanics Institute of Ural Branch of Russian
Academy of Sciences in 1996. He was awarded
his Doctor of Physical and Mathematical Sciences
degree from Mathematics and Mechanics Institute
of Ural Branch of Russian Academy of Sciences

in 2002. He is currently the chair of Department of Intelligent Systems and
Robotics of Mathematics and Computer Science Institute of Ural Federal
University and a Professor at Department of Mathematics and Mechanics
of Mathematics and Computer Science Institute of Ural Federal University.
He has (co-)authored 18 books and more than 120 papers. He has received
Microsoft Best Paper Award from international conference in 2011. In 2008
his paper won the Russian competitive selection of survey and analytical
papers.

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_01

(Advance online publication: 28 August 2012)

__

