IAENG International Journal of Computer Science, 39:3, IJCS 39 3 05

An EmbeddedControl Software
Development Environment
with Simulink Models and UML Models

Tatsuya Kamiyama, Masayoshi Tamura, Takahiro Soeda, Myungryun Yoo, and Takanori Yokoyama

Abstract—The paper presents an embedded control software A controller model is designed with block diagrams and
development environment with Simulink models and UML verified by simulation, and source code can be generated
models. The embedded control software development Processfrom the controller model by a code generator such as

consists of the control logic design phase, the software design

phase, and the prograngming pghage. MATLAB/Simulink isg Embedc!e_d Coder[1]. Howeverl, such CAD/CAE FOOIS arg
W|de|y used to build a controller model in the control |Ogic not SUﬁ|C|ent fOI’ SOftWare deSIgn. Sang|0Vann|-V|ncente”|
design phase. On the other hand, UML is widely used in and Di Natale pointed out the shortcomings of the tools:
the software design phase. To shift from the control logic |ack of separation between the functional and architecture
design phase to the software design phase smoothly, we havgnaqe| |ack of support for defining the task and resource
developed a model transformation tool to transform a Simulink . . .
model to a UML model. The UML model generated by the model, Iac_k of modeling for analysis and _bgckannotatu_)n
transformation tool consists of classes that encapsulate data and Of scheduling-related delays and lack of sufficient semantics
calculation methods of the data. To improve the reusability of preservation[2]. CAD/CAE tools such as MATLAB/Simulink
the classes, the Simulink model should be well-layered. We haveshould be used for just control logic design, not for software
also developed a layering support tool for efficient layering of design. Software modeling languages such as UML should

the Simulink model. Code generation tools are used to generate b d f ft desi Th bility of th
source programs from Simulink models and UML models in P& US€d Tor soitware design. 1he reusability of the source

the programming phase. We have deve|oped a code Compositioncode generated direCtly from a controller model is not gOOd
tool to integrate the code generated from UML models and the because we have to write glue code to integrate the code

code generated from Simulink models. We have applied those modules generated independently. We also have to add the
tools to a number of Simulink models and found it useful for .,4a for synchronization, mutual exclusion, or inter-task
embedded control software design. _ communication to execute the generated code correctly in
Index Terms—embedded software, model-based design, softthe preemptive multi-task environment. A method to generate
ware tools, control systems, real-time systems. more reusable code is required.
A control system consists of various software modules.
|. INTRODUCTION Simulink models are suitable to represent control logics such
as feedback control and feedforward control. On the other
HE embedded control software development proceggng yUML is suitable for some software modules such as
can be divided into the control logic design phaseyjication modules with procedural algorithms, input and
the software design phase, and the programming phaggynyt modules, and network communication modules. To
In the control logic design phase, control engineers dggegrate those models, Simulink models should be trans-
sign control Iog|c,_ just considering functlon_al propertle_s. Bormed to UML models before the integration because UML
the software design phase, software engineers design {1§ jitaple for software design. UML provides a number of
software structure and behavior to implement the contri, g of diagrams, which are useful for not only functional
logic, considering not only functional properties but alsqegign hut also nonfunctional design. The source code should
nonfunctional properties. Recently, code generation tools gjg generated after the nonfunctional design.
used to generate source programs in the programming phasgyamos-Hernandez et al. have presented a tool that trans-

Model-based design has become popular in embeddgfs 5 Simulink model to a UML model[3][4]. The
control software design, especially in the automotive contrgl generates classes corresponding to each blocks of the

domain. In model-based design, a CAD/CAE tool suc§jmylink model. A dependency is generated corresponding
as MATLAB/Simulink[1] is used to design control l0giC.15 3 jine that connects blocks. Mer-Glaser et al. have

Manuscript received July 6, 2012. This work is supported in part bpresent_ed a methOd to trqnsform a Simulink model to a UML
KAKENHI (20500037, 24500046). model, in which each object of the generated UML model

T. Kamiyama was with Graduate School of Engineering, Tokyo City U”icorresponds each element of the Simulink model[5][6].
versity. He is now with A&D Company, Limited, 1-243, Asahi, Kitamoto- lacks. i d i . d bi .
shi, Saitama-ken 364-8585 Japan, 1-28-1, Tamazutsumi, Setagaya-ku, TJRY@CKS, lineés and junctions are represented as objects in

158-8557 Japan. the UML model. Spstedt et al. have presented a tool that

M. Tamura is with Graduate School of Engineering, Tokyo City Unitransforms a Simulink model to a UML model[?]. The tool
versity, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557 Japan (e-mai?

g1181524@tcu.acp). generates composite structure diagrams as structural models
T. Soeda was with Graduate School of Engineering, Tokyo City Univeand activity diagrams as behavior models. However, classes
sity, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557 Japan. of UML models generated by those tools may not be reusable

M. Yoo and T. Yokoyama are with Department of Computer SCieanj,e h ol . | fth iginal
Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-85 cause each class represents just an element of the origina

Japan (e-mail{yoo, yokoyama@cs.tcu.ac.jp). Simulink models. To improve the reusability of the software,

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 05

?} ThrottleControl

. : S— !
Control Logic Design Controller Model
MATLAB/Simulink - ontroller Mode ngine -
(+ imulink) <1__(Simulink Model) Revolution Rggmﬁm
i Throttle
g (—o E "
: £ 2 [} > Status. Opening —’..1
- - S — Eni .
Software | _Functional Design {{..... Functional Model Sftgﬂ: Shgine Torque uint16 ~ 5
- (Transformation Tool) g (UML) Torque - .
Design = Accele[ator uint16 ThrottleOpeningCalculation
(UML Nonfunctional Desi { Opening
Editor) o(nMuon;ellmaeaVZ;'gn | N — Accelerator TorqueCalculation
Implementation Model Opening
3 p (UML)
Programming b — —— Fig. 2. Example Simulink Model
(Code Generator / - Source Program
Code Composition Tool) (C++)
i) Simulink model inputs engine revolution, engine status, and

accelerator opening, and outputs throttle opening. The model
consists of three inport blocks for engine revolution, engine
status and accelerator opening, two subsystem blocks to

a UML model should be structured based on the Objecctglculate torque and throttle opening, and an outport block
oriented concept. for throttle opening. Fig. 2 shows the higher layer model of

The goal of the research is to develop a software d@_e layered Simulink model. The details of the calculation

velopment environment, which transforms Simulink modef tordue and throttle opening are described in the lower
to reusable UML models and generates reusable Soulgye_zr r_nodels of the sqbsystem bIocks._The calculations are
code. To achieve the goal, we define rules to transformP£riodically executed in the control period. .
Simulink model to a UML model based on the design method In the. software design phase, we build a software model n
for the time-triggered object-oriented software[8][9][10]. ASML to implement the controller model. Software design can
control systems designed by the design method consig? divided into functional design and nonfunctional design.

of objects that represent reasonable physical quantities'f} funct|odne|1| deS|gn|,| Vrle transformdal S;]mL;Imk modlel m:jo Ia
the control logic, for example, input values, output value ,ML model. We call the UML model the functional mode

observed values, estimated values, and desired values. Y¢3US€ the model represents implementation-independent
have developed a model transformation tool based on tnﬁ?ntrol functionalitie;. Afunctional model may be int.egrated
defined rules[11]. The tool generates UML structural modeféth other models built in UML. In nonfunctional design, we
and behavioral models: class diagrams, object diagrams &Jyild an implementation model taking account of nonfunc-
sequence diagrams. Each class of the generated UML mo%?n,al properties.
corresponds to a reasonable physical quantity in the Simulipt 7nally, @ C++ source programs are generated from the
model. The method of the class corresponds to the subsysf@?p!ementat'on model in the programming phase.
block in the layered Simulink model. So a subsystem bloc Fig. 3 shows the toolchain for embedded control software
calculating a physical quantity can be reused as a class. &?velopment. The shadowed rectangles show the tools we
have also developed a code composition tool to integrate er developeq and the non-shadowed rectangles show ex-
code generated from UML models and the code generafSfing commercial tools.
from Simulink models.

The rest of the paper is organized as follows. Section . Functional Design
describes the control software development process wittWe transform a Simulink model into a functional model
Simulink models and UML models. Section Il describesepresented in UML with a model transformation envi-
the model transformation environment including the modebnment. Our model transformation method is based on
transformation tool and shows model transformation exanhe design method of the time-triggered object-oriented
ples. Section IV describes the code generation environmeaftware[8][9][10]. A control system designed by the design
including the code composition tool and shows code gemethod consists of objects that correspond to data in the
eration examples. Section V describes the experiments ck diagram. The design method identifies objects referring
the software development environment. Finally, Section \{b the data flow of the block diagram representing control

Fig. 1. Development Flow of Embedded Control Software

concludes the paper. logic. The important data representing reasonable physical
guantities, such as input values, output values, observed
Il. CONTROL SOFTWARE DEVELOPMENT PROCESS values, estimated values, and desired values, are candidates

for objects, because those values are rarely deleted or added
even if the detailed control logic is modified[10].

Fig. 1 shows the embedded control software developmeniThe object representing data is called the value object.
flow, which consists of the control logic design phase, thEhe value object encapsulates the data and the calculation
software design phase, and the programming phase. method of the value of the data. The value object class

In the control logic design phase, we build a Simulinkas attributevalue, methodipdatethat calculates value, and
model that represents a control system. A Simulink modeiethodget to read value. Two value objects can be linked
of a control system usually consists of a plant model amidth an association hamecbns, which means the relation
a controller model. The controller model represents controktween a producer object and a consumer object. Fig. 4
logic. Fig. 2 shows an example Simulink model, which ishows two value object classes linked with associatioms.

a throttle control part of an automotive control system. Thdethodupdateof Consumegets the value by calling method

A. Software Development Flow

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 05

Control ’ MATLAB/Simulink ‘

i
'
I
! Logic
1+ Design
'
! e ——
1 Controller Model
1 (Simulink Model)
'
Functional
Design ’ Layering Support Tool I
(Model

Transformation)

e —
Layered Controller Model
(Simulink Model)

Model Transformation TooII

v
S —
Functional Model
(UML)

i Non-

| functional ’
1 Design
| (Model
1
|
1
|
1

Model Weaver

Weaving) Implementation Model

’ Embedded Coder

Code Generator
(Rhapsody)

S—
Skeleton Code
(C++)

S—
Subsystem Code
(C++)

Code Composition Tool

e —
Source Program
(C++)

Programming

(Code
Generation)

Fig. 3. Toolchain for Embedded Control Software Development

Pattern Library
(C++)

Producer Consumer

cons

value # value
+ update() + update() —
+get() +get()

return value;

EngineRevolution -
#engineRevolution: cons ThrottleOpenig
uint16 #throttleOpening:
*get0 uint16
EngineStatus cons +update()
#engineStatus: +get()

+get()

AcceleratorOpening +update()
#acceleratorOpening: | CONS +get()

+get()

#torque:uint16

Torque J
cons cons z

ThrottleControl

L‘ +exec()

Fig. 5. Example Class Diagram of Functional Model

C. Nonfunctional Design

An embedded control system is a hard real-time sys-
tem with timing constraints. We design the task structure,
scheduling policy, task priorities to meet timing constraints
in nonfunctional design. We may also add mechanisms
such as synchronization, mutual exclusion, and inter-task
communication to the model so that the software correctly
executes in the preemptive multi-task environment. Aspect-
oriented programming[12] has been applied to separate
non-functional properties from functional properties. Model
level aspects for non-functional requirements have also been
presented[13][14].

Our nonfunctional design is based on the aspect-oriented
design method we have already presented[15][16]. We have
also presented aspect patterns for nonfunctional properties of
embedded control software and developed a model weaver
to weave the aspect patterns into the functional model.
For example, mechanisms for triggering methods (time-
triggered or event-triggered[17]), synchronization, and inter-
task communications are defined as aspect patterns. As
shown in Fig. 3, we select aspect patterns and weave them
into the functional model with the model weaver to get the
implementation model.

We consider the case in which the calculation of the values
of EngineRevolutionEngineStatus, anAcceleratorOpening
is executed by one periodic task and the calculation of the

Fig. 4. Two value object classes linked with producer-consumer associativalues of TargetTorqueand ThrottleOpeningis executed by

another periodic task. If the priority of the former task is
higher than the priority of the latter task, the latter task

get of Producerand calculates its own value and stores theay be preempted by the former task. So a mechanism of

calculated value in attributealue.

mutual exclusion or inter-task communication is needed for

Fig. 5 shows the class diagram of the functional moddhta integrity. Here, we use buffering mechanism, which is

corresponding to the Simulink model shown by Fig. 2. Thene of wait-free inter-task communications.
class diagram shown by Fig. 5 consists of six value objectFig. 6 shows the class diagram of the structural aspect
classes:EngineRevolutionEngineStatusAcceleratorOpen- pattern of buffering, which connects a producer object and
ing, Torque, ThrottleOpening and ThrottleControl Related a consumer object. Claf®roducerBufferhas attributebuf
value object classes are linked witlons associations. For to store the value, methodpdateto get the value from
example, methodipdate of classTorque gets the value of Producer and store the value imuf, and methodget for
EngineStatusand the value ofAcceleratorOpeningcalcu- Consumerto get the value stored ibuf. The class diagram
lates its own value, and stores the calculated value in attribatithe aspect pattern is enclosed by a package with stereotype
torque. ThrottleControlis a whole object, which corresponds<<aspect>>, which represents that the enclosed diagram is
to the whole Simulink model shown by Fig. 2. Methodan aspect. The behavioral aspect pattern of buffering is also
execof ThrottleContro] which is periodically executed in defined with a sequence diagram.
the control period, calls methagpbdateof classTorqueand The binding expression is written under<aspect>>.
methodupdateof classThrottleOpening Crosscutting elements of the aspect pattern are represented
The transformation from a Simulink model to a UMLas variables (variable elements), which are to be bound
model is performed with the model transformation envirorwith the actual elements of the base model. In this case,
ment shown in Fig. 3. The details of the environment aferoducer,ConsumerRelation, andController are variables.
described in Section lll The binding expression means that varia®teduceris to be

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 05

ThrottleOpening.h

<<aspect>>

(Producer, Consumer, Relation, Controller) 1 ThrottleOpeni
(EngineStatus, Torque&&ThrottleOpening, cons, ThrottleControl) crass : e e ning A
public:
ThrottleOpening(. . .),

ProducerBuffer void update() ;

% #buf:uint16 short get() ;
buffers Relation

+update() protected:
+get() short throttleOpening;

Controll EngineRevolution* itsEngineRevolution;
ontrofler EngineStatus* itsEngineStatus;

Torque* itsTorque;

Y

Fig. 6. Aspect Pattern of Buffering
ThrottleOpening.cpp

#include "ThrottleOpening.h"

EngineRevolution
#engineRevolution: i
9 uint16 cons ThrottleOpenig void ThrottleOpening::update() {
[Fget0 | #throﬁleope_nitq%: throttleOpening =
uin
EngineStatus EngineStatisBuffer cons Tupdate) R)
FengineStatus: #bur-unt16 +get) . . (*itsEngineRevolution) .get() . .
int16 . . (*itsEngineStatus) .get ..
Tgel'(% buffers updateq Torque :*'t . g: ; t(; get ()
+get() CONS Mitorque-uint16 . itsTorque) .ge -
AcceleratorOpening Tupdate) cons S
Opening: cons +get() }
- uint16 ThrottleControl
¥
9et0 LQ short ThrottleOpening::get() {
* +exec() return throttleOpening;

}

Fig. 7. Example Class Diagram of Implementation Model
Fig. 8. Example Source Program of Value Object Class

ThrottleControl.h

bound withEngineStatusvariableConsumeiis to be bound class ThrottleControl {
with TargetTorqueand ThrottleOpening variableRelationis B hiottlecontrol(. . .)
to be bound witttons, and variabl€ontroller is to be bound void exec();
. . protected:
with ThrottleControl We put the class diagram shown by EnginestatusBuffer* itsEngineStatusBuffer;
Fig. 5 and the aspect shown by Fig. 6 into the input of the T el comanine 1 taThrott1eopening;
model weaver, and we get the woven class diagram shown bi
by Flg 7. ThrottleControl.cpp

#include "ThrottleControl.h"

void ThrottleOpening::exec() {

. (*itsEngineStatus) .update() ;

D. Programming (*itsTorque) .update() ;
(*itsThrottleOpening) .update() ;

}

Source programs can be generated from an implementation
model. Fig. 8 shows the generated source program of clellzss o E oS b ¢ Whole Obiect CI
ThrottleOpeningshown in Fig. 7. The code of Fig. 8 is sim- 9. % Example Souree Frogram of Whole Lbject t1ass
plified for explanation purposes. FilEhrottleOpening.hs a
header file that defines member functions (methods) and data i
members (attributes) of clasbhrottleOpening The value '
of throttle opening is stored data membhérottleOpening A. Layering Support Tool
The pointers to related object&ngineRevolutionEngineS-
tatus (EngineStatusBuffdn the implementation model), andhi

.Torq“e_ are stored n data membeisEngineRevolutian consists of subsystem blocks, inport blocks, and outport
itsEngineStatus, anisTorque. blocks. As described in Section II-B, a value object corre-
The code of the member functions are defined in filg,ongs to a data in the higher layer model and methpthte
ThrottleOpening.cpp Method update gets the values of of the value object corresponds to the subsystem block that
EngineRevolutionEngineStatugEngineStatusBuffem the cajcylates the value of the data. To make a class reusable, the
implementation model), andorque by calling their get - simulink model should be well-layered before transformation
functions, calculates its own value, and stores the calculatgglthat subsystem blocks calculating the important data such
value in attributethrottleOpening as reasonable physical quantities are presented at the higher
Fig. 9 shows the generated source program of clagger.
ThrottleControl Member functionexec calls update func- We have developed a layering support tool to select
tions of classEngineStatusBuffer, clastorque and class jmportant data in a Simulink model and layer the Simulink
ThrottleOpening model[11]. Fig. 10 illustrates the layering work with the tool.
The generated source programs can be used to build’fee layering support tool analyzes an input Simulink model,
embedded control system without glue code. The souraad shows all data of the Simulink model on the window
file of each class can be also reused for another systeshthe tool. Each data of the Simulink model is shown by a
The source programs are generated by the code generatimm of the table on the window. ColumBystemmeans the
environment shown in Fig. 3. The details of the environmestibsystem or the whole model in which the data is presented,
are described in Section IV. columnSrc Blockmeans the source block of the data, column

M ODEL TRANSFORMATION ENVIRONMENT

The target of the transformation to a UML model is the
gher layer model of the layered Simulink model, which

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 05

Controller1
Sum1 mdl File XMI File
@O S o]
Int DataA I ——»(__) 4
Out1
In2 .
.+ Subsystemt >._ input output
n3 e L :
Gaint Gain2 Sum2 l Model Transformation Tool T
Simulink Structural Behavioral XMI File
i DataA Model [> Mmodel [> Model [> Generation
Analysis Generation Generation
In2 * T T
Window of Layering Support Tool v v
/| system | SrcBlock | DstBlock |Data Name|UpperLayer Simulink Structural Behavioral
! Model Model Model
; Ddata Dty Dty
Controller1 Sum1 Subsystem1 ata ata
Layering Controllert Gain1 | Subsystem1
Sn_erpclth Controller! | Subsystemi| Outt DataA Vv . .
°° Fig. 11. Model Transformation Tool
\ Subsystem1 Gain1 Sum1 DataB
\|| Subsystem1| sum1 DataA
'.I ubsystem um ata :ThrottleControl ‘ ‘ ‘Torque ‘ ‘:ThronleOpenig‘ :EngineRevolution| | :EngineStatus | |:AcceleratorOpening|
exec() 1 1 1 1 1 1
Controller1] update() ! ! 1 I I
> L e o :
CO—m - [[I
T DataB N ‘ get) : o
In2 DataA [[[g
e]
in2 _-*" Subsystem2 ! r»ms Outt H H H J?
- B er=rra P - ! ! !
- / S T 1 1 1 1
In3 [~. 1| update() 1 1 1
- [~. T > get() 1 1 1
sumi Gaint Sum2 H P . H
1 1 get() 1 1
1 » 1
Tni DataB In1 DataA I P [1 I
IS | : |
In2 i 1 1 1
Gain2 o> H H H
1 1 1 1
<--------e m-------- - T 1 1 1
1 1 1 1 1
1 1 1 1

Fig. 10. Layering of Simulink Model
Fig. 12. Example Sequence Diagram of Functional Model

Dst Blockmeans the destination block of the data, &ata

Namemeans the name of the data if the data has a naiThen the tool analyzes the mdl file and extracts Simulink

For example, the third row of the table in Fig. 10 shows tl model data needed for transformation. The tool generates

data fromSum1to Subsystemtvith no name inControllerl structural model data referring to the Simulink model data.

(the whole model). The tool also generates behavioral model data referring to
We can select the data to be presented in the higher le the Simulink model data and the structural model data.

by checking columnUpper Layer. In this case, the datiFinally, the tool translates the structural model data and the

namedDatal from Subsystemo Outl in Controllerl and pehavioral model data into XMl files. XMl is a standard file

the data fromGainlto Sumlin Subsystemare checked. If format of UML[19].

the checked data has no name, we have to attach the nan Fig. 5 shows the generated class diagram from the

the data. In this example, narbataBis attached to the data Simulink model shown by Fig. 2. Fig. 12 shows the gen-

from Gainlto Sumlin Subsysteml. Then, the tool generat erated sequence diagram from the Simulink model shown

a layered Simulink model in which the just the checked dz by Fig. 2. The sequence diagram shows that metixet

are presented in the higher layer. In this example, there of object ThrottleControl calls methodupdate of object

two subsystem blocks in the higher layer of the genera Torqueand methodipdateof objectThrottleOpeningequen-

Simulink model. One subsystem block outpldataB and tially. Method updateof object Torquecalls methodgyet of

another subsystem block outpudaitaA. EngineStatusand AcceleratorOpeningo get those values.
Method execof ThrottleControlis executed periodically in
B. Model Transformation Tool the control period.

We have developed a model transformation tool to trai
form a layered Simulink model to a UML model. We deve]
oped the first version of the tool to generate class diagra A- Code Generation from models
and object diagrams as the UML structural model[18]. A We use Rational Rhapsody Developer[20] to generate C++
class diagram is generally used to represent the structureskéleton code from a UML model. Another code generator
object-oriented software. An object diagram is also usefohn be used if it generates skeleton code from a UML
for the embedded control system, in which most objects amodel. The skeleton code generated from a UML model
statically created at the initialization process, not dynamicalfloes not contain the code for calculation. So we extract the
created. Then we have extended the model transformatwode for calculation from the control logic code generated
tool to generate sequence diagrams as the UML behavidogl Embedded Coder and embed the extracted code in the
model[11]. A Sequence diagram is used to represent intskeleton code of the value object.
actions between objects in time sequence. Fig. 13 shows the skeleton code of cldgsottleOpening.

Fig. 11 shows the internal processing flow of the moddlhe code of Fig. 13 is simplified for explanation purposes.
transformation tool. The tool inputs an mdl file, whichFile ThrottleOpening.hs a header file that defines member
is a file to store the information on a Simulink modelfunctions and data members of claBlsrottleOpening The

IV. CoODE GENERATION ENVIRONMENT

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 05

ThritleOpening.h ThrottleControl | |:EngineStatusBuffer | | :Torque | |-ThrottleOpenig [} ‘EngineStatus [Opening|
class ThrottleOpening { exec) | | | | |]
update() ! ! ! !
public: get()
DI [Lo i

ThrottleOpening(. . .),
void update() ; H
short get(); E
protected: [I]_‘T
short throttleOpening; '
EngineRevolution* itsEngineRevolution; H
EngineStatus* itsEngineStatus; Crommmmoneses H

1

'

'

[A

Torque* itsTorque;
Y

ThrttleOpening.cpp

#include "ThrottleOpening.h" L

e Y]

void ThrottleOpening::update() {

Fig. 15. Example Sequence Diagram of Implementation Model
}

short ThrottleOpening::get() { Buffer.h

template<class P, typename V>

} class Buffer {

V buf;
P* itsProducer;

. public:

Fig. 13. Example Code Generated from UML Model Buffer (P* p) : itsProducer(p) {}
void update() ;

ThritleOpeningCalculation.h } ,V get0;

typedef struct { Buffer.cpp

} Externalinputs_ThrottleOpeningCalculation; #include “Buffer.h"

typedef struct { template<class T, typename V>
void Buffer<T, V>::update() {
buf = (*itsProducer) .get();

} ExternalOutputs ThrottleOpeningCalculation;

struct Parameters ThrottleOpeningCalculation { }

} template<class T, typename V>

V Buffer<T, V>::get() {
return buf;

}

.......... EngineStatusBuffer.h

#include "Buffer.h"
#include "EngineStatus.h"

template class SimpleBuffer<EngineStatus, short>;

typedef sSimpleBuffer<EngineStatus, short> EngineStatusBuffer;

ExternalInputs_ThrottleOpeningCalculation ThrottleOpeningCalculation U; - .
ExternalOutputs_ThrottleOpeningCalculation ThrottleOpeningCalculation Y; Flg 16 Example COde Of Pattern lerary

Static void ThrottleOpeningCalculation_step ()
{
ThrottleOpeningCalculation_Y.ThrottleOpening =

...... The code for calculation is embedded in member function

| Imrottleoeningoaceuiation U BngineRevolution . . . updateby the code composition tool. The details of the code
. ThrottleOp: i Caclculati U. E i Stat ... 1+ 1 1 1
| Throttlcomeningcaclculation 0. Torane ot composition tool are described in Section IV-B.

AAAAAA The source program of a whole object class can be gener-
---------- ated just by a UML tool with code generation functions such
as Rational Rhapsody Developer because the code of method
Fig. 14. Example Code Generated from Simulink Model execcan be generated from a sequence diagram executing
the method. The model transformation tool generates the
sequence diagram of the whole object. The sequence diagram
skeletons of functiompdateand functionget are defined in may be modified by the model weaver in nonfunctional
file ThrottleOpening.cpp design. For example, we get the sequence diagram of the
Fig. 14 shows the generated subsystem code from timplementation model shown by Fig. 15 by weaving the
lower layer Simulink model of subsystem blockhrot- behavioral aspect pattern of buffering into the sequence
tleOpeningCalculationin Fig. 2. The code of Fig. 14 is diagram of the functional model shown by Fig. 12[16]. The
simplified for explanation purposes. The data types useddource program of clasghrottleControlshown by Fig. 9 can
the generated code are defined in fllerottleOpeningCal- be generated from the class diagram shown by Fig. 7 and the
culation.h. The values of the parameters are defined in fdequence diagram shown by Fig. 15.
ThrottleOpeningCalculatiordata.cpp. FileThrottleOpening- The source programs of classes corresponding to aspect
Calculation.cppcontains functionThrottleOpeningCalcula- patterns are provided by the pattern library. Fig. 16 shows
tion_stepthat calculateghe output value of the subsystenthe source program for the buffering pattern. A class for
block. buffering is defined as class templaBaffer A concrete
We have developed a code composition tool, which irtlass for buffering the value dEngineStatuds defined as
tegrates the skeleton code and the control logic code aedhplate clas€ngineStatusBuffemwhich is generated from
generates complete source programs of value object classtass templat@uffer.

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 05

Simulink model Class diagram TABLE |
DataB DataA MODELSUSED IN EXPERIMENTS
In1 DataB}’ DataB DataA| # DataB # DataA
cons
Subsystem2 Subsystem1 :;thoa‘eo :”;"a'e‘) Target System Number ofBlocks
Subsystem\ Inport \ Outport
(a) (b) © —
Term of) Fuel Injections 15 4 1
subsystem | Subsystem1_Y.DataA Subsystem1_U.DataB Subsystem1_P.Block_Kind - - -
code Hybrid Electric Vehicle 30 6 5
@ @ @ Stepping MotorControl 8 1 4
Term of f
update DataA ‘ ‘ DataB.get() ‘ ‘ Value of the parameter Englne Spee(ﬁontrOI 5 2 1
method

Fig. 17. Rewriting Rules for Code Composition

B. Code Composition Tool

We have developed a code composition tool to generate
complete C++ source files of a value object class. The code|**
composition tool inputs the C++ files of the skeleton code
generated by Rational Rhapsody Developer and the C++ files
of the subsystem code generated by Embedded Coder. Thel
the code composition tool extracts the code for calculation
of the subsystem, rewrites the code to fit the class structure,
and embeds the rewritten code in the skeleton of function
update. Finally, the code composition tool outputs complete
C++ files of the class.

Fig. 17 shows rules to rewrite the code. Column (a)
shows the rule to replace the outport block name of g, 1g.
subsystem blockSubsystemly.DataAin this case) with the
attribute name of the corresponding class (DafaAthis : - =
case). Column (b) shows the rule to replace the inport block . e —————
name of a subsystem bloclSibsysteml).DataB in this
case) with the correspondirggt method call DataB.get()in
this case). Column (c) shows the rule to replace a parameter:
name with its value.

For example, the code composition tool inputs the skeleton
code shown by Fig. 13 and the subsystem code shown by s
Fig. 14 and outputs the source program shown by Fig. 8. The
code in functionThrottleOpeningCalculatiorstepof Fig. 14
is rewritten and embedded in member functiopdate of
classThrottleOpeningof Fig. 8.

"‘ﬂ

-

.

x‘“

V. EXPERIMENTS

We have applied the model transformation environment to
a number of Simulink models: a fuel injections system, @g. 19. Class Diagram of Hybrid Electric Vehicle System
hybrid electric vehicle system, a stepping motor control sys-
tem, and a engine speed control system, which are provided
by the MathWorks, Inc.[1]. The class diagram consists of thirty-seven classes. Fig. 20

At first, we made the original Simulink models layeredghows the generated sequence diagram.
with the layering support tool. Table | shows the number of The original Simulink models used in the experiments
blocks of the layered Simulink models used in the expeniepresent just control logics. They are built by control en-
ments. ColumrSubsystenshows the number of subsystengineers without considering implementation. After layering
blocks, the colummnport shows the number of inport blocks,the original models, the transformation tool successfully
and the colummutportshows the number of outport blocks transforms the layered Simulink models to class diagrams,
Then we transformed the layered Simulink models to clasbject diagrams, and sequence diagrams. So we think the
diagrams, object diagrams, and sequence diagrams usingtthasformation tool can be applied to embedded control
model transformation tool. software design.

We show the case of a hybrid electric vehicle system. TheWe have also applied the code generation environment to
example hybrid electric vehicle is a series-parallel hybridhe Simulink models and UML models shown above and
electric vehicle that consists of a gasoline engine and aunccessfully get the C++ source programs of the classes.
electric motor. Fig. 18 shows the higher layer of the layerdelg. 21 shows example C++ source programs of value object
Simulink model of the hybrid electric vehicle system. Fig. 18lasses, in which the code generated by Embedded Coder is
shows the generated class diagram and the object diagrambedded irupdatemethods of the classes.

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 05

[4] Ramos-Hernandez, D. N., Fleming, P. J. and Bass, J. M., A Novel
Object-Oriented Environment for Distributed Process Control Systems,
Control Engineering Practiceyol.13, Issue 2, 2005, pp.213-230.

[5] Kuhl, M., Spitzer, B. and Nller-Glaser, K. D., Universal Object-
Oriented Modeling for Rapid Prototyping of Embedded Electronic
Systems,Proceedings of the 12th IEEE International Workshop on
Rapid System Prototyping001, pp.149-154.

] Mduller-Glaser, K. D., Frick, G., Sax E. andiKl, M., Multiparadigm
Modeling in Embedded Systems DesidBEE Transactions on Con-
trol Systems Technologypl.12, No.2, 2004, pp.279-292.

[7] Sjostedt, C.-J., Shi, J.,6Fngren, M., Servat, D., Chen, D., Ahlsten,
V. and Ldnn, H., Mapping Simulink to UML in the design of em-
bedded systems: Investigating scenarios and structural and behavioral
mapping,OMER 4 Post Workshop Proceedin@§08.

[8] Yokoyama, T., Naya, H., Narisawa, F., Kuragaki, S., Nagaura, W.,
Imai, T. and Suzuki, S., A Development Method of Time-Triggered

= I i | Object-Oriented Software for Embedded Control Systé3gstems and

=, = p Computers in Japanyol.34, No.2, 2003, pp.338—349.

= [9] Yokoyama, T., An Aspect-Oriented Development Method for Em-

))))) bedded Control Systems with Time-Triggered and Event-Triggered

Fig. 20. Sequence Diagram of Hybrid Electric Vehicle System ProcessingProceedings of the 11th IEEE Real-Time and Embedded

Technology and Application Symposiuad05, pp.302-311.

1 [10] Yoshimura, K., Miyazaki, T., Yokoyama, T., Irie, T. and Fujimoto,

1 S., A Development Method for Object-Oriented Automotive Control
Software Embedded with Automatically Generated Program from
Controller Models,2004 SAE World Congresgp04-01-0709, 2004.

[11] Tamura, M., Kamiyama, T., Soeda, T., Yoo M. and Yokoyama, T., A
Model Transformation Environment for Embedded Control Software
Design with Simulink Models and UML Modeld,ecture Notes in
Engineering and Computer Science: Proceedings of The International
MultiConference of Engineers and Computer Scientists 2IMECS
2012, 14-16 March, 2012, Hong Kong, pp.795-800.

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.
Loingtier, J. M. and Irwin, J., Aspect-Oriented ProgrammiRmceed-
ings of 11th European Conference on Object-Oriented Programming,
1997, pp.220-242.

[13] Wehrmeister, M. A,, Freitas, E., Pereira, C. E. and Wagner, F. R., An
Aspect-Oriented Approach for Dealing with Non-Functional Require-
ments in a Model-Driven Development of Distributed Embedded Real-
Time SystemsProceedings of 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing,

Fig. 21. C++ Source Program of Value Object Classes 2007, pp.428-432.

[14] Driver, C., Reilly, S., Linehan, E., Cahill, V. and Clarke, S., Managing
Embedded Systems with Aspect-Oriented Model-Driven Engineering,
ACM Transactions on Embedded Computing Systéfis10, No.2,
VI. CONCLUSION 2010, pp.21:1-26.

We have developed an embedded control software dev@hl Soeda, T., Yanagidate, Y. and Yokoyama T., Embedded Control
opment environment with a Simulink model Iayering support Software Design with Aspect PatterrBro_ceed!ngs of Internathnal_
. . - Conference on Advanced Software Engineering and Its Applications
tool, a Simulink to UML model transformation tool, and 2009,2009, pp.34-41.
a code composition tool. The model transformation tod16] Soeda, T. Yanagidate, Y. and Yokoyama T., Embedded Control

; ; ; Software Design with Aspect Patterdsurnal of the Chinese Institute
generates class diagrams, object diagrams and SEQUENCE ¢ 1 iineersyol.34, Isstie 2, 2011, pp.213-225.

diagram. Each class of a generated UML model correspongg Kopetz, H., Should Responsive Systems be Event-Triggered or Time-
to a data in the Simulink model and the method of the Triggered?]EICE Transaction on Information & System#l.E76-D,
No.11, 1993, pp.1325-1332.
class corresponds to the subsystem _b_IOCk that_ calculates ﬁl@? Kamiyama, T., Soeda, T., Yoo, M. and Yokoyama, T., A Simulink to
value of the data. The code composition tool integrates the" umL Transformation Tool for Embedded Control Software Design,
code generated from UML models and the code generated Proceedings of 2010 International Conference on Computer and
; : Software Modeling2010, pp.93-97.
from Simulink models, and generates the completg sour S} Object Management GrougML Metadata Interchange Specification,
programs of the classes. We have applied the environment version 2.0.1, 2005.
to a number of Simulink models and found it useful fok20] International Business Machines Corp., http://www.ibm.com/us/en/.
embedded control software development.
We are going to extend the model transformation tool to
generate a state machine diagram to make software design
more efficient and to deal with Simulink models with State-

flow charts.

D
N Xy

()]

[

LA

BRAAS-wOBETI?

AT

REFERENCES

[1] The MathWorks Inc., http://www.mathworks.com/.

[2] Sangiovanni-Vincentelli, A. and Di Natale, M., Embedded System
Design for Automotive ApplicationdEEE ComputerMol.40, No.10,
2007, pp.42-51.

[3] Ramos-Hernandez, D. N., Fleming, P. J., Bennett, S., Hope, S., Bass, J.
M. and Baxter, M.J., Process Control Systems Integration Using Object
Oriented TechnologyProceeding of Technology of Object-Oriented
Languages and Systems TOOLS 2801, pp.148-158.

(Advance online publication: 28 August 2012)

