
An EmbeddedControl Software
Development Environment

with Simulink Models and UML Models
Tatsuya Kamiyama, Masayoshi Tamura, Takahiro Soeda, Myungryun Yoo, and Takanori Yokoyama

Abstract—The paper presents an embedded control software
development environment with Simulink models and UML
models. The embedded control software development process
consists of the control logic design phase, the software design
phase, and the programming phase. MATLAB/Simulink is
widely used to build a controller model in the control logic
design phase. On the other hand, UML is widely used in
the software design phase. To shift from the control logic
design phase to the software design phase smoothly, we have
developed a model transformation tool to transform a Simulink
model to a UML model. The UML model generated by the
transformation tool consists of classes that encapsulate data and
calculation methods of the data. To improve the reusability of
the classes, the Simulink model should be well-layered. We have
also developed a layering support tool for efficient layering of
the Simulink model. Code generation tools are used to generate
source programs from Simulink models and UML models in
the programming phase. We have developed a code composition
tool to integrate the code generated from UML models and the
code generated from Simulink models. We have applied those
tools to a number of Simulink models and found it useful for
embedded control software design.

Index Terms—embedded software, model-based design, soft-
ware tools, control systems, real-time systems.

I. I NTRODUCTION

T HE embedded control software development process
can be divided into the control logic design phase,

the software design phase, and the programming phase.
In the control logic design phase, control engineers de-
sign control logic, just considering functional properties. In
the software design phase, software engineers design the
software structure and behavior to implement the control
logic, considering not only functional properties but also
nonfunctional properties. Recently, code generation tools are
used to generate source programs in the programming phase.

Model-based design has become popular in embedded
control software design, especially in the automotive control
domain. In model-based design, a CAD/CAE tool such
as MATLAB/Simulink[1] is used to design control logic.

Manuscript received July 6, 2012. This work is supported in part by
KAKENHI (20500037, 24500046).

T. Kamiyama was with Graduate School of Engineering, Tokyo City Uni-
versity. He is now with A&D Company, Limited, 1-243, Asahi, Kitamoto-
shi, Saitama-ken 364-8585 Japan, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo
158-8557 Japan.

M. Tamura is with Graduate School of Engineering, Tokyo City Uni-
versity, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557 Japan (e-mail:
g1181524@tcu.ac.jp).

T. Soeda was with Graduate School of Engineering, Tokyo City Univer-
sity, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557 Japan.

M. Yoo and T. Yokoyama are with Department of Computer Science,
Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557
Japan (e-mail:{yoo, yokoyama}@cs.tcu.ac.jp).

A controller model is designed with block diagrams and
verified by simulation, and source code can be generated
from the controller model by a code generator such as
Embedded Coder[1]. However, such CAD/CAE tools are
not sufficient for software design. Sangiovanni-Vincentelli
and Di Natale pointed out the shortcomings of the tools:
lack of separation between the functional and architecture
model, lack of support for defining the task and resource
model, lack of modeling for analysis and backannotation
of scheduling-related delays and lack of sufficient semantics
preservation[2]. CAD/CAE tools such as MATLAB/Simulink
should be used for just control logic design, not for software
design. Software modeling languages such as UML should
be used for software design. The reusability of the source
code generated directly from a controller model is not good
because we have to write glue code to integrate the code
modules generated independently. We also have to add the
code for synchronization, mutual exclusion, or inter-task
communication to execute the generated code correctly in
the preemptive multi-task environment. A method to generate
more reusable code is required.

A control system consists of various software modules.
Simulink models are suitable to represent control logics such
as feedback control and feedforward control. On the other
hand, UML is suitable for some software modules such as
application modules with procedural algorithms, input and
output modules, and network communication modules. To
integrate those models, Simulink models should be trans-
formed to UML models before the integration because UML
is suitable for software design. UML provides a number of
kinds of diagrams, which are useful for not only functional
design but also nonfunctional design. The source code should
be generated after the nonfunctional design.

Ramos-Hernandez et al. have presented a tool that trans-
forms a Simulink model to a UML model[3][4]. The
tool generates classes corresponding to each blocks of the
Simulink model. A dependency is generated corresponding
to a line that connects blocks. M̈uller-Glaser et al. have
presented a method to transform a Simulink model to a UML
model, in which each object of the generated UML model
corresponds each element of the Simulink model[5][6].
Blocks, lines and junctions are represented as objects in
the UML model. Sj̈ostedt et al. have presented a tool that
transforms a Simulink model to a UML model[7]. The tool
generates composite structure diagrams as structural models
and activity diagrams as behavior models. However, classes
of UML models generated by those tools may not be reusable
because each class represents just an element of the original
Simulink models. To improve the reusability of the software,

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_05

(Advance online publication: 28 August 2012)

__

Control Logic Design
(M A T LA B / S im u link)

S of t w a re
Design
(U M L

E d itor)

P rogra m m ing
(Cod e G enera tor /

Cod e Com p osition T ool) S ou rce P rogra m
(C+ +)

Controller M od el
(S im u link M od el)

F u nctiona l M od el
(U M L)

F u nctiona l Design
(T ra nsf orm a tion T ool)
N onf u nctiona l Design

(M od el W ea v er) I m p lem enta tion M od el
(U M L)

Fig. 1. Development Flow of Embedded Control Software

a UML model should be structured based on the object-
oriented concept.

The goal of the research is to develop a software de-
velopment environment, which transforms Simulink models
to reusable UML models and generates reusable source
code. To achieve the goal, we define rules to transform a
Simulink model to a UML model based on the design method
for the time-triggered object-oriented software[8][9][10]. A
control systems designed by the design method consists
of objects that represent reasonable physical quantities in
the control logic, for example, input values, output values,
observed values, estimated values, and desired values. We
have developed a model transformation tool based on the
defined rules[11]. The tool generates UML structural models
and behavioral models: class diagrams, object diagrams and
sequence diagrams. Each class of the generated UML model
corresponds to a reasonable physical quantity in the Simulink
model. The method of the class corresponds to the subsystem
block in the layered Simulink model. So a subsystem block
calculating a physical quantity can be reused as a class. We
have also developed a code composition tool to integrate the
code generated from UML models and the code generated
from Simulink models.

The rest of the paper is organized as follows. Section II
describes the control software development process with
Simulink models and UML models. Section III describes
the model transformation environment including the model
transformation tool and shows model transformation exam-
ples. Section IV describes the code generation environment
including the code composition tool and shows code gen-
eration examples. Section V describes the experiments of
the software development environment. Finally, Section VI
concludes the paper.

II. CONTROL SOFTWARE DEVELOPMENT PROCESS

A. Software Development Flow

Fig. 1 shows the embedded control software development
flow, which consists of the control logic design phase, the
software design phase, and the programming phase.

In the control logic design phase, we build a Simulink
model that represents a control system. A Simulink model
of a control system usually consists of a plant model and
a controller model. The controller model represents control
logic. Fig. 2 shows an example Simulink model, which is
a throttle control part of an automotive control system. The

Engine
R ev o l u t i o n

T o r q u e
u int 16

1

Engine
S t a t u s

2

A c c el er a t o r
O p ening

3

T h r o t t l e
O p ening 1

u int 16
O u t 1

T o r q u eC a l c u l a t i o n
T h r o t t l eO p eningC a l c u l a t i o n

ThrottleControl

Engine
S t a t u s
A c c el er a t o r
O p ening

Engine
R ev o l u t io n

T o r q u e

Engine
S t a t u s

Fig. 2. Example Simulink Model

Simulink model inputs engine revolution, engine status, and
accelerator opening, and outputs throttle opening. The model
consists of three inport blocks for engine revolution, engine
status and accelerator opening, two subsystem blocks to
calculate torque and throttle opening, and an outport block
for throttle opening. Fig. 2 shows the higher layer model of
the layered Simulink model. The details of the calculation
of torque and throttle opening are described in the lower
layer models of the subsystem blocks. The calculations are
periodically executed in the control period.

In the software design phase, we build a software model in
UML to implement the controller model. Software design can
be divided into functional design and nonfunctional design.
In functional design, we transform a Simulink model into a
UML model. We call the UML model the functional model
because the model represents implementation-independent
control functionalities. A functional model may be integrated
with other models built in UML. In nonfunctional design, we
build an implementation model taking account of nonfunc-
tional properties.

Finally, a C++ source programs are generated from the
implementation model in the programming phase.

Fig. 3 shows the toolchain for embedded control software
development. The shadowed rectangles show the tools we
have developed and the non-shadowed rectangles show ex-
isting commercial tools.

B. Functional Design

We transform a Simulink model into a functional model
represented in UML with a model transformation envi-
ronment. Our model transformation method is based on
the design method of the time-triggered object-oriented
software[8][9][10]. A control system designed by the design
method consists of objects that correspond to data in the
block diagram. The design method identifies objects referring
to the data flow of the block diagram representing control
logic. The important data representing reasonable physical
quantities, such as input values, output values, observed
values, estimated values, and desired values, are candidates
for objects, because those values are rarely deleted or added
even if the detailed control logic is modified[10].

The object representing data is called the value object.
The value object encapsulates the data and the calculation
method of the value of the data. The value object class
has attributevalue, methodupdatethat calculates value, and
methodget to read value. Two value objects can be linked
with an association namedcons, which means the relation
between a producer object and a consumer object. Fig. 4
shows two value object classes linked with associationcons.
Methodupdateof Consumergets the value by calling method

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_05

(Advance online publication: 28 August 2012)

__

MATLAB/Simulink

So ur c e P r o g r a m
(C + +)

C o nt r o ll e r Mo d e l
(Simulink Mo d e l)

F unc t i o na l Mo d e l
(U ML)

Mo d e l Tr a ns f o r ma t i o n To o l

Mo d e l W e a v e r

I mp l e me nt a t i o n Mo d e l
(U ML)

La y e r ing Sup p o r t To o l

La y e r e d C o nt r o ll e r Mo d e l
(Simulink Mo d e l)

C o d e G e ne r a t o r
(R h a p s o d y)

Ske l e t o n C o d e
(C + +)

E mb e d d e d C o d e r

Sub s y s t e m C o d e
(C + +)

As p e c t P a t t e r n
(U ML)

P a t t e r n Lib r a r y
(C + +)

C o d e C o mp o s i t i o n To o l

(C o d e
G e ne r a t i o n)

F unc t i o na l
D e s ig n

N o n-
f unc t i o na l
D e s ig n

(Mo d e l
Tr a ns f o r ma t i o n)

C o nt r o l
Lo g ic
D e s ig n

(Mo d e l
W e a v ing)

P r o g r a mming

Fig. 3. Toolchain for Embedded Control Software Development

Producer

+ up da t e()
+ g et ()

v a l ue

.
… = p roducer. g et () ;
.
v a l = ;

ret urn v a l ue;

C on s um er

+ up da t e()
+ g et ()

con s
v a l ue

Fig. 4. Two value object classes linked with producer-consumer association

get of Producerand calculates its own value and stores the
calculated value in attributevalue.

Fig. 5 shows the class diagram of the functional model
corresponding to the Simulink model shown by Fig. 2. The
class diagram shown by Fig. 5 consists of six value object
classes:EngineRevolution, EngineStatus,AcceleratorOpen-
ing, Torque,ThrottleOpening, and ThrottleControl. Related
value object classes are linked withcons associations. For
example, methodupdateof classTorque gets the value of
EngineStatusand the value ofAcceleratorOpening, calcu-
lates its own value, and stores the calculated value in attribute
torque.ThrottleControlis a whole object, which corresponds
to the whole Simulink model shown by Fig. 2. Method
execof ThrottleControl, which is periodically executed in
the control period, calls methodupdateof classTorqueand
methodupdateof classThrottleOpening.

The transformation from a Simulink model to a UML
model is performed with the model transformation environ-
ment shown in Fig. 3. The details of the environment are
described in Section III

ThrottleOpenig

+update()
+g et()

c ons #th r o ttl eO pen i n g :
ui n t1 6

Torq u e

+update()
+g et()c ons

#to r q ue:ui n t1 6c ons

c ons

c ons
ThrottleC ontrol

+ex ec ()

A c c elera torOpening

E ngineS ta t u s

E ngineR ev olu tion
#en g i n eR ev o l uti o n :

ui n t1 6
+g et()

#en g i n eS tatus :
ui n t1 6

+g et()

#ac c el er ato r O pen i n g :
ui n t1 6+g et()

Fig. 5. Example Class Diagram of Functional Model

C. Nonfunctional Design

An embedded control system is a hard real-time sys-
tem with timing constraints. We design the task structure,
scheduling policy, task priorities to meet timing constraints
in nonfunctional design. We may also add mechanisms
such as synchronization, mutual exclusion, and inter-task
communication to the model so that the software correctly
executes in the preemptive multi-task environment. Aspect-
oriented programming[12] has been applied to separate
non-functional properties from functional properties. Model
level aspects for non-functional requirements have also been
presented[13][14].

Our nonfunctional design is based on the aspect-oriented
design method we have already presented[15][16]. We have
also presented aspect patterns for nonfunctional properties of
embedded control software and developed a model weaver
to weave the aspect patterns into the functional model.
For example, mechanisms for triggering methods (time-
triggered or event-triggered[17]), synchronization, and inter-
task communications are defined as aspect patterns. As
shown in Fig. 3, we select aspect patterns and weave them
into the functional model with the model weaver to get the
implementation model.

We consider the case in which the calculation of the values
of EngineRevolution, EngineStatus, andAcceleratorOpening
is executed by one periodic task and the calculation of the
values ofTargetTorqueand ThrottleOpeningis executed by
another periodic task. If the priority of the former task is
higher than the priority of the latter task, the latter task
may be preempted by the former task. So a mechanism of
mutual exclusion or inter-task communication is needed for
data integrity. Here, we use buffering mechanism, which is
one of wait-free inter-task communications.

Fig. 6 shows the class diagram of the structural aspect
pattern of buffering, which connects a producer object and
a consumer object. ClassProducerBufferhas attributebuf
to store the value, methodupdate to get the value from
Producer and store the value inbuf, and methodget for
Consumerto get the value stored inbuf. The class diagram
of the aspect pattern is enclosed by a package with stereotype
<<aspect>>, which represents that the enclosed diagram is
an aspect. The behavioral aspect pattern of buffering is also
defined with a sequence diagram.

The binding expression is written under<<aspect>>.
Crosscutting elements of the aspect pattern are represented
as variables (variable elements), which are to be bound
with the actual elements of the base model. In this case,
Producer,Consumer,Relation, andController are variables.
The binding expression means that variableProduceris to be

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_05

(Advance online publication: 28 August 2012)

__

Producer
ProducerB uf f er

+update()
+g et()

b uf : ui n t1 6
b uf f ers

< < a s p ect > >
(Producer, C on s um er, R el a t i on , C on t rol l er)
(E n g i n eS t a t us , T orq ue& & T h rot t l eO p en i n g , con s , T h rot t l eC on t rol)

C on s um erR el a t i on

C on t rol l er

Fig. 6. Aspect Pattern of Buffering

ThrottleOpenig

+update()
+g et()

c ons
#th r o ttl eO pen i n g :

ui n t1 6

Torq u e

+update()
+g et()c ons

#to r q ue:ui n t1 6
A c c elera torOpening

c ons

E ngineS ta t u s c ons

E ngineR ev olu tion

c ons

ThrottleC ontrol

+ex ec ()

E ngineS ta tis B u f f er

+update()
+g et()

#b uf :ui n t1 6b u f f ers

#en g i n eR ev o l uti o n :
ui n t1 6+g et()

#en g i n eS tatus :
ui n t1 6+g et()

#ac c el er ato r O pen i n g :
ui n t1 6+g et()

Fig. 7. Example Class Diagram of Implementation Model

bound withEngineStatus, variableConsumeris to be bound
with TargetTorqueandThrottleOpening, variableRelationis
to be bound withcons, and variableController is to be bound
with ThrottleControl. We put the class diagram shown by
Fig. 5 and the aspect shown by Fig. 6 into the input of the
model weaver, and we get the woven class diagram shown
by Fig. 7.

D. Programming

Source programs can be generated from an implementation
model. Fig. 8 shows the generated source program of class
ThrottleOpeningshown in Fig. 7. The code of Fig. 8 is sim-
plified for explanation purposes. FileThrottleOpening.his a
header file that defines member functions (methods) and data
members (attributes) of classThrottleOpening. The value
of throttle opening is stored data memberthrottleOpening.
The pointers to related objects,EngineRevolution, EngineS-
tatus(EngineStatusBufferin the implementation model), and
Torque are stored in data membersitsEngineRevolution,
itsEngineStatus, anditsTorque.

The code of the member functions are defined in file
ThrottleOpening.cpp. Method update gets the values of
EngineRevolution, EngineStatus(EngineStatusBufferin the
implementation model), andTorque by calling their get
functions, calculates its own value, and stores the calculated
value in attributethrottleOpening.

Fig. 9 shows the generated source program of class
ThrottleControl. Member functionexec calls update func-
tions of classEngineStatusBuffer, classTorque, and class
ThrottleOpening.

The generated source programs can be used to build a
embedded control system without glue code. The source
file of each class can be also reused for another system.
The source programs are generated by the code generation
environment shown in Fig. 3. The details of the environment
are described in Section IV.

ThrottleOpening.h
class T h r o t t le O p e n i n g {
p u b li c:
T h r o t t le O p e n i n g (. . .) ;
v o i d u p d at e () ;
sh o r t g e t () ;
p r o t e ct e d :
sh o r t t h r o t t le O p e n i n g ;
E n g i n e R e v o lu t i o n * i t sE n g i n e R e v o lu t i o n ;
E n g i n e S t at u s* i t sE n g i n e S t at u s;
T o r q u e * i t sT o r q u e ;

};

ThrottleOpening.c pp
i n clu d e "T h r o t t le O p e n i n g . h "

v o i d T h r o t t le O p e n i n g : : u p d at e () {
t h r o t t le O p e n i n g =
.
. . (* i t sE n g i n e R e v o lu t i o n) . g e t () . .
. . (* i t sE n g i n e S t at u s) . g e t () . .
. . (* i t sT o r q u e) . g e t () . .
.

}

sh o r t T h r o t t le O p e n i n g : : g e t () {
r e t u r n t h r o t t le O p e n i n g ;
}

Fig. 8. Example Source Program of Value Object Class

ThrottleControl.h
class T h r o t t le C o n t r o l {
p u b li c:
T h r o t t le C o n t r o l(. . .) ;
v o i d e x e c() ;
p r o t e ct e d :
E n g i n e S t at u sB u f f e r * i t sE n g i n e S t at u sB u f f e r ;
T o r q u e * i t sT o r q u e ;
T h r o t t le O p e n i n g * i t sT h r o t t le O p e n i n g ;

};

ThrottleControl.c p p
i n clu d e "T h r o t t le C o n t r o l. h "

v o i d T h r o t t le O p e n i n g : : e x e c() {
(* i t sE n g i n e S t at u s) . u p d at e () ;
(* i t sT o r q u e) . u p d at e () ;
(* i t sT h r o t t le O p e n i n g) . u p d at e () ;
}

Fig. 9. Example Source Program of Whole Object Class

III. M ODEL TRANSFORMATION ENVIRONMENT

A. Layering Support Tool

The target of the transformation to a UML model is the
higher layer model of the layered Simulink model, which
consists of subsystem blocks, inport blocks, and outport
blocks. As described in Section II-B, a value object corre-
sponds to a data in the higher layer model and methodupdate
of the value object corresponds to the subsystem block that
calculates the value of the data. To make a class reusable, the
Simulink model should be well-layered before transformation
so that subsystem blocks calculating the important data such
as reasonable physical quantities are presented at the higher
layer.

We have developed a layering support tool to select
important data in a Simulink model and layer the Simulink
model[11]. Fig. 10 illustrates the layering work with the tool.
The layering support tool analyzes an input Simulink model,
and shows all data of the Simulink model on the window
of the tool. Each data of the Simulink model is shown by a
row of the table on the window. ColumnSystemmeans the
subsystem or the whole model in which the data is presented,
columnSrc Blockmeans the source block of the data, column

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_05

(Advance online publication: 28 August 2012)

__

DataA

DataA

G ai n 1

. . .

S r c B l o c k U p p e r L ay e r
Window of Layering Support Tool

S u m 1

DataB

S u b s y s t e m 2
S u b s y s t e m 1

Ds t B l o c k Data N am e

S u b s y s t e m 1
S u b s y s t e m 1

I n 1

I n 2

I n 3

S u m 1

G ai n 1

S u b s y s t e m 1

G ai n 2

O u t 1

S u m 2

DataAO u t 1
. . .

I n 1

I n 2

I n 3

O u t 1

S u m 1

G ai n 2

G ai n 1 S u m 2

Layering
Support
Tool

S y s t e m

S u b s y s t e m 1

C o n tr o l l e r 1
C o n tr o l l e r 1

C o n tr o l l e r 1

.

C o n tr o l l e r 1

.

S u b s y s t e m 1

S u b s y s t e m 1

G ai n 1
S u m 1

S u m 1
DataA

DataB

C o n tr o l l e r 1

. . .

. . .

. . .

I n 1

I n 2

DataA

DataADataBI n 1

I n 2

I n 1

I n 3

In1

In2
In3

D a t a B

Fig. 10. Layering of Simulink Model

Dst Blockmeans the destination block of the data, andData
Namemeans the name of the data if the data has a name.
For example, the third row of the table in Fig. 10 shows the
data fromSum1to Subsystem1with no name inController1
(the whole model).

We can select the data to be presented in the higher layer
by checking columnUpper Layer. In this case, the data
namedData1 from Subsystem1to Out1 in Controller1 and
the data fromGain1 to Sum1in Subsystem1are checked. If
the checked data has no name, we have to attach the name to
the data. In this example, nameDataB is attached to the data
from Gain1 to Sum1in Subsystem1. Then, the tool generates
a layered Simulink model in which the just the checked data
are presented in the higher layer. In this example, there are
two subsystem blocks in the higher layer of the generated
Simulink model. One subsystem block outputsDataB and
another subsystem block outputsDataA.

B. Model Transformation Tool

We have developed a model transformation tool to trans-
form a layered Simulink model to a UML model. We devel-
oped the first version of the tool to generate class diagrams
and object diagrams as the UML structural model[18]. A
class diagram is generally used to represent the structure of
object-oriented software. An object diagram is also useful
for the embedded control system, in which most objects are
statically created at the initialization process, not dynamically
created. Then we have extended the model transformation
tool to generate sequence diagrams as the UML behavioral
model[11]. A Sequence diagram is used to represent inter-
actions between objects in time sequence.

Fig. 11 shows the internal processing flow of the model
transformation tool. The tool inputs an mdl file, which
is a file to store the information on a Simulink model.

mdl F i l e X M I F i l e

Model Transformation Tool

i n p u t o u t p u t

S i mu l i n k
M o de l
A n a l y s i s

X M I F i l e
G e n e r a t i o n

S t r u c t u r a l
M mo de l

G e n e r a t i o n

S i mu l i n k
M o de l
D da t a

S t r u c t u r a l
M o de l
D a t a

B e h a v i o r a l
M o de l
D a t a

B e h a v i o r a l
M o de l

G e n e r a t i o n

Fig. 11. Model Transformation Tool

:T h r o t t l e O p e n i g:T o r q u e :A c c e l e r a t o r O p e n i n g:E n g i n e S t a t u s:E n g i n e R e v o l u t i o n:T h r o t t l e C o n t r o l

u p d a t e ()
g e t ()

g e t ()

g e t ()

g e t ()

g e t ()

u p d a t e ()

e x e c ()

Fig. 12. Example Sequence Diagram of Functional Model

Then the tool analyzes the mdl file and extracts Simulink
model data needed for transformation. The tool generates
structural model data referring to the Simulink model data.
The tool also generates behavioral model data referring to
the Simulink model data and the structural model data.
Finally, the tool translates the structural model data and the
behavioral model data into XMI files. XMI is a standard file
format of UML[19].

Fig. 5 shows the generated class diagram from the
Simulink model shown by Fig. 2. Fig. 12 shows the gen-
erated sequence diagram from the Simulink model shown
by Fig. 2. The sequence diagram shows that methodexec
of object ThrottleControl calls methodupdate of object
Torqueand methodupdateof objectThrottleOpeningsequen-
tially. Method updateof objectTorquecalls methodsget of
EngineStatusand AcceleratorOpeningto get those values.
Method execof ThrottleControl is executed periodically in
the control period.

IV. CODE GENERATION ENVIRONMENT

A. Code Generation from models

We use Rational Rhapsody Developer[20] to generate C++
skeleton code from a UML model. Another code generator
can be used if it generates skeleton code from a UML
model. The skeleton code generated from a UML model
does not contain the code for calculation. So we extract the
code for calculation from the control logic code generated
by Embedded Coder and embed the extracted code in the
skeleton code of the value object.

Fig. 13 shows the skeleton code of classThrottleOpening.
The code of Fig. 13 is simplified for explanation purposes.
File ThrottleOpening.his a header file that defines member
functions and data members of classThrottleOpening. The

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_05

(Advance online publication: 28 August 2012)

__

ThrttleOpening.h
class T h r o t t le O p e n i n g {
p u b li c:
T h r o t t le O p e n i n g (. . .) ;
v o i d u p d at e () ;
sh o r t g e t () ;
p r o t e ct e d :
sh o r t t h r o t t le O p e n i n g ;
E n g i n e R e v o lu t i o n * i t sE n g i n e R e v o lu t i o n ;
E n g i n e S t at u s* i t sE n g i n e S t at u s;
T o r q u e * i t sT o r q u e ;

};

ThrttleOpening.c pp
i n clu d e "T h r o t t le O p e n i n g . h "

v o i d T h r o t t le O p e n i n g : : u p d at e () {

}

sh o r t T h r o t t le O p e n i n g : : g e t () {

}

Fig. 13. Example Code Generated from UML Model

ThrttleOpeningCalculation.h
.
t y p e d e f s t r u c t {
.

} E x t e r n a l i n p u t s _ T h r o t t l e O p e n i n g C a l c u l a t i o n ;

t y p e d e f s t r u c t {
.

} E x t e r n a l O u t p u t s _ T h r o t t l e O p e n i n g C a l c u l a t i o n ;

s t r u c t P a r a m e t e r s _ T h r o t t l e O p e n i n g C a l c u l a t i o n {
.

}
.

ThrttleOpeningCalculation.cpp
.
E x t e r n a l I n p u t s _ T h r o t t l e O p e n i n g C a l c u l a t i o n T h r o t t l e O p e n i n g C a l c u l a t i o n _ U ;
E x t e r n a l O u t p u t s _ T h r o t t l e O p e n i n g C a l c u l a t i o n T h r o t t l e O p e n i n g C a l c u l a t i o n _ Y ;

S t a t i c v o i d T h r o t t l e O p e n i n g C a l c u l a t i o n _ s t e p ()
{
T h r o t t l e O p e n i n g C a l c u l a t i o n _ Y .T h r o t t l e O p e n i n g =
.
. . T h r o t t l e O p e n i n g C a l c u l a t i o n _ P
. . T h r o t t l e O p e n i n g C a c l c u l a t i o n _ U .E n g i n e R e v o l u t i o n . . .
. . T h r o t t l e O p e n i n g C a c l c u l a t i o n _ U .E n g i n e S t a t u s . . .
. . T h r o t t l e O p e n i n g C a c l c u l a t i o n _ U .T o r q u e . . .
.

}
.

ThrttleOpeningCalculation_ d ata.cpp
.
P a r a m e t e r s _ T h r o t t l e O p e n i n g C a l c u l a t i o n T h r o t t l e O p e n i n g C a l c u l a t i o n _ P = {
.
.

}
.

Fig. 14. Example Code Generated from Simulink Model

skeletons of functionupdateand functionget are defined in
file ThrottleOpening.cpp.

Fig. 14 shows the generated subsystem code from the
lower layer Simulink model of subsystem blockThrot-
tleOpeningCalculationin Fig. 2. The code of Fig. 14 is
simplified for explanation purposes. The data types used in
the generated code are defined in fileThrottleOpeningCal-
culation.h. The values of the parameters are defined in file
ThrottleOpeningCalculationdata.cpp. FileThrottleOpening-
Calculation.cppcontains functionThrottleOpeningCalcula-
tion step that calculatesthe output value of the subsystem
block.

We have developed a code composition tool, which in-
tegrates the skeleton code and the control logic code and
generates complete source programs of value object classes.

:E n g i n e S t a t u s B u f f e r :T h r o t t l e O p e n i g:T o r q u e :A c c e l e r a t o r O p e n i n g:E n g i n e S t a t u s:E n g i n e R e v o l u t i o n:T h r o t t l e C o n t r o l

u p d a t e ()
g e t ()

g e t ()

g e t ()
g e t ()

g e t ()

g e t ()u p d a t e ()

u p d a t e ()

e x e c ()

Fig. 15. Example Sequence Diagram of Implementation Model

EngineStatusBuffer.h
#include "B uf f er . h "
#include "E ng ineS t a t us . h "

t em p la t e cla s s S im p leB uf f er <E ng ineS t a t us , s h o r t > ;

t y p edef S im p leB uf f er <E ng ineS t a t us , s h o r t > E ng ineS t a t us B uf f er ;

Buffer.h
t em p la t e<cla s s P , t y p ena m e V >
cla s s B uf f er {
V b uf ;
P * it s P r o ducer ;
p ub lic:
B uf f er (P * p) : it s P r o ducer (p) { }
v o id up da t e() ;
V g et () ;
};

Buffer.c p p
#include “B uf f er . h "

t em p la t e<cla s s T , t y p ena m e V >
v o id B uf f er <T , V > : : up da t e() {
b uf = (* it s P r o ducer) . g et () ;
}

t em p la t e<cla s s T , t y p ena m e V >
V B uf f er <T , V > : : g et () {
r et ur n b uf ;
}

Fig. 16. Example Code of Pattern Library

The code for calculation is embedded in member function
updateby the code composition tool. The details of the code
composition tool are described in Section IV-B.

The source program of a whole object class can be gener-
ated just by a UML tool with code generation functions such
as Rational Rhapsody Developer because the code of method
execcan be generated from a sequence diagram executing
the method. The model transformation tool generates the
sequence diagram of the whole object. The sequence diagram
may be modified by the model weaver in nonfunctional
design. For example, we get the sequence diagram of the
implementation model shown by Fig. 15 by weaving the
behavioral aspect pattern of buffering into the sequence
diagram of the functional model shown by Fig. 12[16]. The
source program of classThrottleControlshown by Fig. 9 can
be generated from the class diagram shown by Fig. 7 and the
sequence diagram shown by Fig. 15.

The source programs of classes corresponding to aspect
patterns are provided by the pattern library. Fig. 16 shows
the source program for the buffering pattern. A class for
buffering is defined as class templateBuffer. A concrete
class for buffering the value ofEngineStatusis defined as
template classEngineStatusBuffer, which is generated from
class templateBuffer.

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_05

(Advance online publication: 28 August 2012)

__

Term of
s u b s y s t em

c od e

D a t a AD a t a B
D a t a B
+ u p d a t e()
+ g et ()

D a t a A
+ update()
+ g et ()

(b)(a)

Term of
u p d a t e
met h od

c on s

S u b s y s t em1 _Y . D a t a A

D a t a A

C l a s s d i a g r a m

S u b s y s t em1 _U . D a t a B

D a t a B . g et ()

S u b s y s t em1 _P . Block_ K i n d

V a l u e of t h e p a r a m e t e r

(c)

S u b s y s t em1

D a t a ADataB

S u b s y s t em2

D a t a BI n 1

S i mu l i n k mod el

Fig. 17. Rewriting Rules for Code Composition

B. Code Composition Tool

We have developed a code composition tool to generate
complete C++ source files of a value object class. The code
composition tool inputs the C++ files of the skeleton code
generated by Rational Rhapsody Developer and the C++ files
of the subsystem code generated by Embedded Coder. Then
the code composition tool extracts the code for calculation
of the subsystem, rewrites the code to fit the class structure,
and embeds the rewritten code in the skeleton of function
update. Finally, the code composition tool outputs complete
C++ files of the class.

Fig. 17 shows rules to rewrite the code. Column (a)
shows the rule to replace the outport block name of a
subsystem block (Subsystem1Y.DataAin this case) with the
attribute name of the corresponding class (DataAin this
case). Column (b) shows the rule to replace the inport block
name of a subsystem block (Subsystem1U.DataB in this
case) with the correspondinggetmethod call (DataB.get()in
this case). Column (c) shows the rule to replace a parameter
name with its value.

For example, the code composition tool inputs the skeleton
code shown by Fig. 13 and the subsystem code shown by
Fig. 14 and outputs the source program shown by Fig. 8. The
code in functionThrottleOpeningCalculationstepof Fig. 14
is rewritten and embedded in member functionupdate of
classThrottleOpeningof Fig. 8.

V. EXPERIMENTS

We have applied the model transformation environment to
a number of Simulink models: a fuel injections system, a
hybrid electric vehicle system, a stepping motor control sys-
tem, and a engine speed control system, which are provided
by the MathWorks, Inc.[1].

At first, we made the original Simulink models layered
with the layering support tool. Table I shows the number of
blocks of the layered Simulink models used in the experi-
ments. ColumnSubsystemshows the number of subsystem
blocks, the columnInport shows the number of inport blocks,
and the columnOutportshows the number of outport blocks.
Then we transformed the layered Simulink models to class
diagrams, object diagrams, and sequence diagrams using the
model transformation tool.

We show the case of a hybrid electric vehicle system. The
example hybrid electric vehicle is a series-parallel hybrid
electric vehicle that consists of a gasoline engine and an
electric motor. Fig. 18 shows the higher layer of the layered
Simulink model of the hybrid electric vehicle system. Fig. 19
shows the generated class diagram and the object diagram.

TABLE I
MODELS USED IN EXPERIMENTS

Target System Number ofBlocks

Subsystem Inport Outport

Fuel Injections 15 4 1

Hybrid ElectricVehicle 30 6 5

Stepping MotorControl 8 1 4

Engine SpeedControl 5 2 1

Fig. 18. Simulink Model of Hybrid Electric Vehicle System

Fig. 19. Class Diagram of Hybrid Electric Vehicle System

The class diagram consists of thirty-seven classes. Fig. 20
shows the generated sequence diagram.

The original Simulink models used in the experiments
represent just control logics. They are built by control en-
gineers without considering implementation. After layering
the original models, the transformation tool successfully
transforms the layered Simulink models to class diagrams,
object diagrams, and sequence diagrams. So we think the
transformation tool can be applied to embedded control
software design.

We have also applied the code generation environment to
the Simulink models and UML models shown above and
successfully get the C++ source programs of the classes.
Fig. 21 shows example C++ source programs of value object
classes, in which the code generated by Embedded Coder is
embedded inupdatemethods of the classes.

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_05

(Advance online publication: 28 August 2012)

__

Fig. 20. Sequence Diagram of Hybrid Electric Vehicle System

Fig. 21. C++ Source Program of Value Object Classes

VI. CONCLUSION

We have developed an embedded control software devel-
opment environment with a Simulink model layering support
tool, a Simulink to UML model transformation tool, and
a code composition tool. The model transformation tool
generates class diagrams, object diagrams and sequence
diagram. Each class of a generated UML model corresponds
to a data in the Simulink model and the method of the
class corresponds to the subsystem block that calculates the
value of the data. The code composition tool integrates the
code generated from UML models and the code generated
from Simulink models, and generates the complete source
programs of the classes. We have applied the environment
to a number of Simulink models and found it useful for
embedded control software development.

We are going to extend the model transformation tool to
generate a state machine diagram to make software design
more efficient and to deal with Simulink models with State-
flow charts.

REFERENCES

[1] The MathWorks Inc., http://www.mathworks.com/.
[2] Sangiovanni-Vincentelli, A. and Di Natale, M., Embedded System

Design for Automotive Applications,IEEE Computer,Vol.40, No.10,
2007, pp.42–51.

[3] Ramos-Hernandez, D. N., Fleming, P. J., Bennett, S., Hope, S., Bass, J.
M. and Baxter, M.J., Process Control Systems Integration Using Object
Oriented Technology,Proceeding of Technology of Object-Oriented
Languages and Systems TOOLS 38,2001, pp.148–158.

[4] Ramos-Hernandez, D. N., Fleming, P. J. and Bass, J. M., A Novel
Object-Oriented Environment for Distributed Process Control Systems,
Control Engineering Practice,vol.13, Issue 2, 2005, pp.213–230.

[5] Kühl, M., Spitzer, B. and M̈uller-Glaser, K. D., Universal Object-
Oriented Modeling for Rapid Prototyping of Embedded Electronic
Systems,Proceedings of the 12th IEEE International Workshop on
Rapid System Prototyping,2001, pp.149–154.

[6] Müller-Glaser, K. D., Frick, G., Sax E. and Kühl, M., Multiparadigm
Modeling in Embedded Systems Design,IEEE Transactions on Con-
trol Systems Technology,Vol.12, No.2, 2004, pp.279–292.

[7] Sjöstedt, C.-J., Shi, J., T̈orngren, M., Servat, D., Chen, D., Ahlsten,
V. and Lönn, H., Mapping Simulink to UML in the design of em-
bedded systems: Investigating scenarios and structural and behavioral
mapping,OMER 4 Post Workshop Proceedings,2008.

[8] Yokoyama, T., Naya, H., Narisawa, F., Kuragaki, S., Nagaura, W.,
Imai, T. and Suzuki, S., A Development Method of Time-Triggered
Object-Oriented Software for Embedded Control Systems,Systems and
Computers in Japan,Vol.34, No.2, 2003, pp.338–349.

[9] Yokoyama, T., An Aspect-Oriented Development Method for Em-
bedded Control Systems with Time-Triggered and Event-Triggered
Processing,Proceedings of the 11th IEEE Real-Time and Embedded
Technology and Application Symposium,2005, pp.302–311.

[10] Yoshimura, K., Miyazaki, T., Yokoyama, T., Irie, T. and Fujimoto,
S., A Development Method for Object-Oriented Automotive Control
Software Embedded with Automatically Generated Program from
Controller Models,2004 SAE World Congress,2004-01-0709, 2004.

[11] Tamura, M., Kamiyama, T., Soeda, T., Yoo M. and Yokoyama, T., A
Model Transformation Environment for Embedded Control Software
Design with Simulink Models and UML Models,Lecture Notes in
Engineering and Computer Science: Proceedings of The International
MultiConference of Engineers and Computer Scientists 2012,IMECS
2012, 14-16 March, 2012, Hong Kong, pp.795–800.

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.
Loingtier, J. M. and Irwin, J., Aspect-Oriented Programming,Proceed-
ings of 11th European Conference on Object-Oriented Programming,
1997, pp.220–242.

[13] Wehrmeister, M. A., Freitas, E., Pereira, C. E. and Wagner, F. R., An
Aspect-Oriented Approach for Dealing with Non-Functional Require-
ments in a Model-Driven Development of Distributed Embedded Real-
Time Systems,Proceedings of 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing,
2007, pp.428–432.

[14] Driver, C., Reilly, S., Linehan, E., Cahill, V. and Clarke, S., Managing
Embedded Systems with Aspect-Oriented Model-Driven Engineering,
ACM Transactions on Embedded Computing Systems,Vol.10, No.2,
2010, pp.21:1–26.

[15] Soeda, T., Yanagidate, Y. and Yokoyama T., Embedded Control
Software Design with Aspect Patterns,Proceedings of International
Conference on Advanced Software Engineering and Its Applications
2009,2009, pp.34–41.

[16] Soeda, T., Yanagidate, Y. and Yokoyama T., Embedded Control
Software Design with Aspect Patterns,Journal of the Chinese Institute
of Engineers,vol.34, Issue 2, 2011, pp.213–225.

[17] Kopetz, H., Should Responsive Systems be Event-Triggered or Time-
Triggered?,IEICE Transaction on Information & Systems,Vol.E76-D,
No.11, 1993, pp.1325–1332.

[18] Kamiyama, T., Soeda, T., Yoo, M. and Yokoyama, T., A Simulink to
UML Transformation Tool for Embedded Control Software Design,
Proceedings of 2010 International Conference on Computer and
Software Modeling,2010, pp.93–97.

[19] Object Management Group,XML Metadata Interchange Specification,
Version 2.0.1, 2005.

[20] International Business Machines Corp., http://www.ibm.com/us/en/.

IAENG International Journal of Computer Science, 39:3, IJCS_39_3_05

(Advance online publication: 28 August 2012)

__

