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Abstract—In this paper, we present a new texture image 

classification algorithm in an unsupervised context, which is 
based on both Kohonen Maps and Mathematical Morphology. 
As first part of the proposed algorithm, various features 
obtained from the fractal dimension computed using differential 
box counting method, are extracted from the texture image and 
then applied and projected into a Kohonen map which is 
represented by the underlying probability density function 
(pdf). Under the assumption that each modal region of the 
underlying pdf corresponds to a one homogenous region in the 
texture image, the second part of the algorithm consists in 
partitioning the Kohonen map into connected modal regions by 
making concepts of morphological watershed transformation 
suitable for their detection. The classification process is then 
based on the so detected modal regions. 

 

 Index Terms— Clustering, Mode detection, Texture image, 
Fractal Features, Kohonen Maps, Watershed Transformation 

 

 

I. INTRODUCTION 

EXTURE  segmentation partitions a texture image into 
disjoint regions that are sets of connected pixels which 

share uniform texture  characteristics [1]. The approaches to 
image segmentation can be classified into four groups [2], 
namely, histogram-based techniques, neighbourhood-based 
segmentation, physically-based segmentation, and 
multidimensional data classification methods. In these 
approaches, most algorithms treated are based on threshold     
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selection or in parameters adjustment which may change the 
segmentation results. For the multidimensional data 
classification methods [3], many of them are based on mode 
detection where there is a one-to-one correspondence 
between the modal regions of the pdf function and the 
clusters [4]. The number of clusters and the characteristics of 
each cluster are generally a priori unknown and are a result of 
the clustering method. 

In a two dimensional space, the data can be examined 
visually as a scatter plot so that clusters can be identified 
without a formal mathematical description of similarity 
between the samples, nor a precise definition of what a 
cluster is. Clusters are then delineated in an interactive 
manner by delineating mutually exclusive regions, so that 
each of them contains a relatively dense concentration of data 
points. 

Unfortunately, this task is difficult for multivariate data. The 
analyst faces the problem of representing the data graphically 
in order to highlight the presence of clusters. Due to this 
problem, there has been a great proliferation of clustering 
techniques which produce automatically classifications from 
initially unclassified data [5]. 

However, the mapping of multivariate data onto a two-
dimensional graphic is also a very appealing technique since 
it takes full advantage of the human skill for organizing the 
data presented to the eyes of the analyst [6, 7]. The 
superiority of humans over automatic clustering procedures 
comes from their ability in recognizing cluster structures and 
curvilinear relationships between clusters, bridging clusters 
and all kinds of irrelevant details in the data points 
distribution. Hence, the mapping procedure used to transform 
the N-dimensional points representing the sample into points 
in a two dimensional space is designed to not change too 
much their relative positions. A human observer can usefully 
analyze graphic displays without conscious use of any 
procedure, model or rule. There are a number of methods 
which permit this mapping by reducing the dimension of the 
raw data while preserving relationships between data 
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elements. One of the most commonly used among them in an 
unsupervised context is the Kohonen self organizing feature 
map [8, 9, 10]. Nevertheless, this interactive classification 
manner necessitates the intervention of the analyst in the 
process. 

 Hence, this technique, when used alone, does not allow 
classifying the texture image automatically. To overcome this 
limitation, we propose a two step methodology. The Kohonen 
map obtained in the first step is the input of another 
automatic scheme that aims at partitioning the map into two-
dimensional regions corresponding to the clusters in the data 
set. To be more specific, the detected clusters are 
automatically extracted by morphological analysis [11], 
which uses the watershed transformation for delineating the 
modal regions of the underlying probability density function 
computed in the 2D space of the Kohonen map. 

Indeed, we propose in this paper a new texture image 
segmentation by a classification approach based on adaptive 
morphological tools associated with the Kohonen map in 
order to present an unsupervised clustering method that 
permit an automatic extraction of significant patterns from N-
dimensional texture observations. The goal is to avoid any 
thresholding procedure in the texture image classification 
process.  

The next section of this paper is devoted to present the data 
dimensionality reduction by the Self-organizing feature map ( 
SOM ) and it’s learning process. As first step, and in order to 
get some insight into the structure of the observations sample, 
we propose to make a projection onto a two-dimensional 
plane. As a tool of projection, the Kohonen feature map is 
used and the resulting map is represented in our application 
by the underlying probability density function (pdf) 
estimated, by a non-parametric technique in the N-
dimensional space, from the weight vectors resulting of the 
learning process [12, 18, 25]. 

In the third section, the efficiency of the proposed algorithm 
has been demonstrated using local fractal features calculated 
from the whole texture image. A morphological watershed 
transformation technique is presented and used in order to 
detect and extract the different modal regions of the pdf as 
individualized connected components. Once the modal 
regions are identified in the projection map, the observations 
belonging to them are used as prototypes of homogenous 
region in the image for the classification of the available 
observations. The observations are assigned to the clusters 
attached to their nearest neighbours among the prototypes. 
The performances of the proposed approach are then 
evaluated using a medical image. 

II. REPRESENTATION OF THE IMAGE TEXTURE INFORMATION 

ON THE KOHONEN MAP 

 

Every classification process begins with an acquisition step 
of observations which consists in determining relevant 
attributes that characterize better the objects. The sample of 
observations is constituted by fractal features of a texture 
image. 

A. Self-Organizing Feature Map (SOM) and  Learning 
Process 

 

Let’s Γ ൌ ൛ ଵܺ, ܺଶ, … , ܺ௤,… , ܺொൟ be a sample of 

ܳ	observations ܺ௤ in a N-dimensional space where ܺ௤ ൌ

ሾݔ௤,ଵ, ,௤,ଶݔ … , ,௤,௡ݔ … , ݍ ,௤,ேሿ்ݔ ൌ 1, 2, . . , ܳ. The Kohonen 

Network is made of two layers. The first one, or input layer, 
receives the ܰ attributes of the presented observation	ܺ௤. The 

output layer, or competitive layer, is composed of ܯ units 
regularly distributed on the map (cf. Figure 1). 

 

 

Fig. 1. Kohonen Network 

 

 The neural units of the first layer are connected to the units 
of the second layer. Each interconnection from an input unit ݆ 
to an output unit ݉ has a weight ௠ܹ,௝. That means that each 

output unit ݉ has a corresponding weight vector ௠ܹ ൌ
ሾ ௠ܹ,ଵ, ௠ܹ,ଶ, … , ௠ܹ,௡, … , ௠ܹ,ேሿ்	(cf. Figure 1). The neural 

units of the second layer are interconnected to elaborate the 
winning neural units by inhibiting the other units. In the self-
organizing feature map of Kohonen, the neural units are 
arranged in a lattice structure, where each unit is assigned a 
specific position and a weight vector. Furthermore, the neural 
units also organize themselves in such a way that the 
structural relationships between observations in the data 
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space are captured by the lattice structure. During the training 
process, when an input ܺ௤ is presented to the network, the 

neural unit whose weight vector is the closest to this 
observation wins the competition and is allowed to take this 
input into account in the learning process. The output of the 
winner is then equal to 1 while the outputs of all the other 
output units are set to 0, such as : 

௠ݕ ൌ ቐ
1		݂݅		݀ ቀܺ௤ሺݐሻ, ௠ܹሺݐሻቁ ൑ ݀ ቀܺ௤ሺݐሻ,ܹ௠ᇲሺݐሻቁ	݉ᇱ ് 	݉

݁ݏ݈݁																																																																																											0

(1) 

Where ݀ሺܺ௤ሺݐሻ, ܹ௠ᇲሺݐሻሻ is the Euclidean distance between 

the observation ܺ௤ሺݐሻ and the weight vector ܹ௠ᇲሺݐሻ of the 

unit ݉ᇱ in the output layer. 

 The winning neural unit and its neighbours are updated. The 
size of the neighbourhood is decreased as the training goes 
on. The weight vector of this winning unit and its neighbours 
are modified according to equations : 

mmandtrmVmiftWtW

trmVmiftWtXtmhtatWtW

mmiftWtXtatWtW

mm

mqmm

mqmm
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Where ݉∗ denotes the winning unit defined by : 

݉∗ ൌ min௠	݃ݎܣ 	ሾ݀ሺܺ௤ሺݐሻ, ௠ܹሺݐሻሿ                    (3) 

 

ܽሺݐሻ is the learning coefficient lower than 1. It is formulated 
so that it starts from high values at the beginning of the 
training process and decreases according to iterations. 
According to this coefficient variation, the learning process 
began with significant modifications of the weight vectors 
and finish by refining the analysis at the last iterations. 

The coefficient ܽሺݐሻ satisfies the constraints of stochastic 
approximations given by : 

																						∑ ܽሺݐሻ ൌ ∞			ܽ݊݀		 ∑ ܽଶሺݐሻ ൏ ∞																		ሺ4ሻ௧௧     

It can be an hyperbolic, exponential or linear function of	ݐ. 
We model it by an exponential function which decreases 
towards zero proximity when ݐ	increases such as :  

																																			ܽሺݐሻ ൌ ଵ݁ିఉమߚ ൅  ଷ                           (5)ߚ

 

Let ܶ denote the number of iterations for the learning phase 
which is adjusted experimentally by defining a number of 
learning cycle. The purpose is to allow a good adaptation of 
the weight vectors during the learning. 

By choosing the values 0.8 and 0.05 as the maximum and the 
minimum values of ܽሺݐሻ, respectively, we are sure that the 
network begins to learn with high coefficients and learns less 
during the last iterations. Finally, we select the parameters so 
that ܽሺݐሻ reaches the value 0.1 at time (2/3)*T, which permit 
a correct convergence of the weight vectors during the 
iterations. 

Thus, the coefficient ܽሺݐሻ becomes formulated as (cf. Figure 
2) : 

ܽሺݐሻ ൌ 0.75 ∗ expሺെሺ8.12ሻ ∗ ሺ10ିହሻ ∗ ሻݐ ൅ 0.05									ሺ6ሻ 

 

 

Fig. 2. Learning coefficient function 

ܸሺ݉,  ሻሻ is the neighbourhood of a neural unit ݉, with aݐሺݎ
radius ݎሺݐሻ, defined by : 

ܸ൫݉, ሻ൯ݐሺݎ ൌ ሼ݉ᇱ ∈ ሾ0,ܯሾ, 	݉ᇱ ് ݉	/			݀஺ሺܷ௠,ܷ௠ᇲሻ ൑  ሻሽݐሺݎ	
                                                                                             (7) 

Where ܷ௠ ൌ ሺݑ, ሻ் and ܷ௠ᇲݒ ൌ ሺݑᇱ,  ሻ் denote the position′ݒ
vectors on the map of the ݉	and ݉′ neural units.  

݄ሺ݉∗,  ݐ is a neighbourhood function which is used at time	ሻݐ
to alter the step size of the ݉௧௛ weight vector. It is a function 
of the Euclidean distance between its associated neural unit 
on the lattice and the winning unit ݉∗ given by : 

݄ሺ݉∗, ሻݐ ൌ exp ቆെ
݀஺ሺܷ௠,ܷ௠ᇲሻଶ

ሻଶݐሺݎ2
ቇ																																					ሺ8ሻ 

 

where ݎሺݐሻ is the radius which depends on the number ݐ of 
the iteration. It is decreased every ݊௥ܳ iterations, where ݊௥ is 
the epoch number with a constant radius and ܳ is the number 
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of observations in the sample (cf. Figure 3). Note that one 
epoch corresponds to one scan of the total data involved in 
the learning process of the network. ݎሺݐሻ is defined such as : 

ሻݐሺݎ ൌ

ە
ۖ
۔

ۖ
ۓ
ݐሺݎ െ 1ሻ െ ሺ݊௥ܳሻ݀݋݉	ݐ		݂݅	1 ൌ ሻݐሺݎ		݀݊ܽ		0 ൐ 1

ሺ݊௥ܳሻ݀݋݉	ݐ	݂݅						ߝ ൌ ሻݐሺݎ		݀݊ܽ			0 ൑ 1									ሺ9ሻ					

																																	݁ݏ݅ݓݎ݄݁ݐ݋																					ሻݐሺݎ

 

Where ݔ	݀݋݉ሺݕሻ denotes the remainder after division of ݔ 
by ݕ. 

 

 

Fig. 3. Interaction radius function 

In the learning phase, the observations are presented 
sequentially one by one to the network randomly and without 
putting them back to be sure that in each epoch, all the 
observations were “learned” by the network. We have used a 
square map with different initializations of the weight 
vectors. 

At the end of the training phase, two neural units close on the 
map have their weight vectors close in the data space. 
Moreover, the weight vectors of neighboring neural units in 
the map converge toward the same area in the data space. 

B. Application to Texture Image Classification 

 

In this application we used a texture image (cf. Figure 14 ).   

a. Fractal dimension 

The concept of fractal is used in a large number of 
applications including image analysis, classification pattern 
recognition, segmentation etc [13]. Fractal objects have 
irregular shapes and complex structures that cannot be 
represented adequately by the traditional Euclidean 
dimension. The concept of fractal dimension (FD) is used as 
an indicator of surface roughness [14]. 

Of the wide variety of methods for estimating the fractal 
dimension that have so far been proposed, the box-counting 
method [13], as it can be computed automatically and can be 
applied to patterns with or without self-similarity [15]. 

The box counting method consists in partitioning the image 
space into square boxes of equal size. The box covers the 
image space of the function or pattern of interest and the 
number of boxes that contain at least one pixel of the function 
is counted. The process is repeated with different box sizes. 
The fractal dimension is obtained from the slope of the best 
fitting straight line to the graph plotting the log of the number 
of boxes counted versus the log of the magnification index 
for every stage of partitioning as shown in figure 4. For 
example, an image measuring size ܯ ൈܯ pixels is scaled 
down to ݏ ൈ where 1 ,ݏ ൏ ݏ ൏  .is an integer ݏ and ,2/ܯ
Then, ݎ ൌ  .ܯ/ݏ

Fractal dimension ܦ is given by, ܦ ൌ ୪୭୥	ሺேೝሻ

୪୭୥	ሺଵ ௥ൗ ሻ
                   (10) 

In this paper the differential box counting method is used to 
calculate the FD and then different fractal features are 
derived from this fractal dimension. 

b. Differential Box Counting Method 

N. Sarkar and Chaudhuri had proposed the differential box 
counting (DBC) method and have compared it with other 
conventional four methods in [16] 

Consider an image of size ܯ ൈܯ pixels. Let it be scaled 
down to a size ݏ ൈ 2/ܯ where ݏ ൐ ݏ ൐ 1, where ݏ is an 
integer. Then, ݎ ൌ  Now consider the image to be in a .ܯ/ݏ
3D space with ሺݔ,  ሻ denoting the spatial co-ordinates, whileݕ
the ݖ axis denotes the gray level. The ሺݔ,  ሻ space isݕ
partitioned into grids of size ݏ ൈ  On each grid there is a .ݏ
column of boxes of sizes ݏ ൈ ݏ ൈ  Figure 4 shows the .′ݏ
schematic for computing FD using differential box counting 
method. 

If the total number of gray level is ܩ, then ሾݏ/ܩ′ሿ ൌ ሾݏ/ܯሿ. 
Numbers from 1, 2, .. are assigned to the boxes starting from 
the lowest gray level value. Let the minimum and the 
maximum gray level of the image in the ሺ݅, ݆ሻ௧௛ grid fall in 
box number ݇ and ݈, respectively. The contribution of ௥ܰ in 
ሺ݅, ݆ሻ௧௛ grid is given by : 

																																															݊௥ሺ݅, ݆ሻ ൌ ݈ െ ݇ ൅ 1                  (11) 

Due to the differential nature in computing ݊௥, this method is 
called differential box counting method. The contributions 
from all grids are found by : 

																																															 ௥ܰ ൌ ∑ ݊௥ሺ݅, ݆ሻ௜,௝                        (12) 
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Fig. 4. Plot of )log( rN versus )/1log( r  

௥ܰ is computed for different values of ݏ i.e. different values 
of  ݎ. Using equation (10), the fractal dimension can be 
estimated, from the least square linear fit of log	ሺ ௥ܰሻ along 
log	ሺ1/ݎሻ. The slope of the best fitting curve will give the 
fractal dimension. Figure 4 shows the plot of 	log	ሺ ௥ܰሻ versus 
log	ሺ1/ݎሻ from which the FD is computed. A random 
placement of boxes is applied in order to reduce quantization 
effects. 

c. Fractal features  

In this paper the differential box counting method is used to 
calculate the FD and then different fractal features are 
derived from this fractal dimension which constituted the 
sample of observations used in the proposed approach. 

Five features derived from [14, 17] based on fractal 
dimension are the FD of original image ሺ ଵ݂ሻ,	high gray 
valued image ሺ ଶ݂ሻ, low gray valued image ሺ ଷ݂ሻ, horizontally 
smoothed image ሺ ସ݂ሻ and vertically smoothed image ሺ ହ݂ሻ. 

 

III. CLUSTERING ALGORITHM 

A. Principle of the Algorithm 

 

In cluster analysis, the existing mode detection approaches 
are conditioned by the adjustment of some parameters, which 
becomes crucial for large dimensionality data sets. 

The detection of modal regions can be greatly facilitated by 
mapping data as a first step of the understanding process. The 
proposed algorithm is based on both neural network and 
mathematical morphology concepts.  

Data projection mapping is done using a Kohonen maps (cf. § 
II.) represented by the underlying pdf. Modal regions of this 
pdf are then easily obtained by making concepts of 
morphological watershed transformations suitable for their 
detection. The weight vectors existing in the so-detected 

modal regions are taken as prototypes for image 
classification. 

B. Clustering Algorithm 

 

This algorithm is illustrated using a texture image. The 
proposed clustering algorithm consists in three basic steps : 

Step 1. The Kohonen map representation 

This first step of the process concerns the self-organizing and 
the learning of the network which permit to built the 
Kohonen map (cf. § II.). At the end of the learning phase, the 
determined weight vectors are used to estimate the 
underlying probability density function (pdf) in the 
multidimensional data space. For this purpose, we use the 
non-parametric Parzen estimate defined by  [18] : 

ሺ̂݌ ௠ܹሻ ൌ
1
ܳ
.෍

1
ܸሾܦሺ ௠ܹሻሿ

. ߮ ቆ ௠ܹ െ ܺ௤
݄ொ

ቇ

ொ

௤ୀଵ

																					ሺ13ሻ 

With ߮ሺܺሻ ൌ
ଵ

√ଶగ
. exp	ሺെ

ଵ

ଶ
்ܺ. ܺሻ                                  (14) 

ሺܦ ௠ܹሻ is the domain estimation. When it corresponds to an 
hypersphere with radius ݄ொ, and centered at the point defined 

by ௠ܹ. Its volume ܸሾܦሺ ௠ܹሻሿ is given by : 

ܸሾܦሺ ௠ܹሻሿ ൌ
ே/ଶߨ

ሺߩ
ܰ
2 ൅ 1ሻ

. ݄ொ
ே																																																				ሺ15ሻ 

With ߩ ቀ
ே

ଶ
൅ 1ቁ ൌ

ሺேାଵሻ!√గ

ଶ
ሺಿశభሻቀ

ಿశభ
మ ቁ!

                                            (16) 

and ݄ொ ൌ ݄଴ඥܳ                                                                  (17) 

The parameter ݄଴ has a great effect on the quality of the 
estimation. If it is large, the small maxima of the pdf cannot 
be detected. Inversely, if ݄଴ is too small, we obtain an 
estimation with many non significant maxima. However, it 
can be expected that when true clusters exist, stable 
connected subsets corresponding to these clusters will appear 
for a wide range of values of ݄଴. Based on this assumption, 
the adjustment of ݄଴ is governed by the concept of cluster 
stability [19]. 

The visualization of the pdf permits to display the Kohonen 
map as a digital image where each unit of the map is 
represented by a gray value pixel which corresponds to the 
pdf value. The visualization of the pdf estimated with 
݄଴ ൌ 0.02 is displayed in figure 5. We can observe that the 
map is constituted by four regions where the pdf presents 
high values, separated by valleys where the pdf presents low 
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values. We consider that a region is a set of connected pixels 
in the map with relatively high values of the pdf (cf. Figure 
6). 

  

           

                                                                          Fig. 6. Graph of the pdf      

 

This data projection method provides a planar display of the 
high dimensional data set. So, it can be assumed that clusters 
on the Kohonen map are images of clusters in the raw 
multidimensional data space, and we can usually analyze 
graphic displays without conscious use of any analytical 
model of clusters, or any mathematical decision rule. 
However this technique, used alone, doesn’t allow an 
automatic data classification. To automate this process, and 
to give a powerful tool to detect, to extract and to determine 
the number of clusters from the Kohonen map, we propose to 
apply the watershed morphological transformation. The 
following step concerns the problem of modal regions in the 
Kohonen map.  

Step.2 Modal regions extraction 

The technique proposed here is designed to detect modal 
regions of the pdf resulting from the projection process on the 
Kohonen map, by means of a watershed transformation 
which constitutes one of the most powerful tools for contour 
detection and image segmentation provided by Mathematical 
Morphology [20]. The proposed algorithm for modal regions 
detection which is based on this transformation consists in 
two basic phases. 

Phase 1 : Preprocessing and watershed determination  

Prior to mode detection, some kind of pre-processing is 
needed to smooth the density function by filtering out its 
small non significant variations (cf. Figure 6). Among several 
methods for filtering the pdf, the raw estimate is smoothed by 
a numerical morphological opening. This transformation is a 
combination of the two basic numerical morphological 

transformations, which are the numerical dilatation and 
erosion [21, 22, 26]. 

With the flat 3 ൈ 3 structuring element ܪ within the square 
grid (cf. Figure 8), numerical dilatation and erosion of ̂݌(X) 
representing the pdf function are denoted as : 

௣ොሺܺሻߜ ൌ ሺ̂݌ ⊕ ሻሺܺሻܪ ൌ ;ሺܻሻ̂݌ሼ݌ݑݏ ܻ ∈  ௑ሽ                    (18)ܪ

௣ොሺܺሻߝ ൌ ሺܪ߆̂݌ሻሺܺሻ ൌ ݂݅݊ሼ̂݌ሺܻሻ; ܻ ∈  ௑ሽ                        (19)ܪ

 ௑ denotes the structuring element shifted to the currentܪ
point ܺ in the map. The value of the dilated (resp. eroded) 
pdf at point X is then equal to the supremum (resp. infimum) 
value of the 3ଶ	estimates of the pdf at points lying in the 3ଶ-
neighborhood of ܺ. Thus, dilation enhances the modal 
regions and increases the density function in the valleys. On 
the other hand, erosion reduces the modal regions of the 
density function and enlarges the valleys between them. 
Hence, an erosion followed by a dilation, so-called opening 
operation, tends to smooth the function by filling up small 
holes and removing insignificant peaks in the function, while 
preserving the global shape of the function (cf. figure 7). Let 
݃ሺܺሻ denote this filtered function. 

 

Fig. 7. Opening Smoothing 

After this preprocessing, the procedure consists in the 
localization of the modal regions of the underlying pdf by 
means of the watershed algorithm based on homotopic 
thinning of the function [23]. 

This watershed approach allows determining the so-called 
catchment basins corresponding to the regional minima of the 
additive inverse of the pdf, which are the regional maxima of 
the pdf. 

 

Fig. 5. Representation of the 
Kohonen Map 
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As we use watershed approach, which is well suited for 
determining the catchment basins corresponding to the 
regional minima of a function, we introduce the additive 
inverse )(Xf  of the function )(Xg  such as : )()( XgXf  (20) 

Thanks to this simple transformation, the maxima of )(Xg  

become the minima of the additive inverse )(Xf .  

The watershed of a function can be constructed through 
consecutive homotopic thinning of this function. The 
homotopic thinning is a transformation commonly used in 
mathematical morphology for image skeletonization. It uses a 
structuring element that preserves connectivity such the one 

shown in the figure 9, denoted ),( )1(
0

)1(
1

)1( LLL   in the Golay 

alphabet, in the form of a single 33  matrix [24]. A value of 

one specifies an element that belongs to the part )1(
1L  of )1(L , 

while a value zero belongs to the part )1(
0L . An asterisk * in 

the matrix denotes an element which is not used in the 
process. The analytical definition of the numerical thinning of 

)(Xf  by the composite structuring element )1(L , denoted 

))(( )1( XLf   is given by : 
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
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otherwiseXf
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0

)1(
1

)1(
1

)1(        (21) 

Thinning transformation are generally used sequentially. Let 

 )8()2()1( ,...,,, LLLL   the family of the eight homotopic 

structuring elements constructed from )1(L  such that )1( iL  is 

the configuration deduced from )(iL  by rotation of 4/ . 

Sequential thinning of the function )(Xf  by this family of 

structuring elements is then obtained as a sequence of eight 
elementary thinning such as : 

LXf )(  )8()2()1( ...))))(((( LLLXf                                 (22) 

Hence, the sequential thinning converges in a number of 
iterations that depends on the structure of the function. It is 
stopped when the idempotence is reached so that two 
consecutive iterations yield the same result. The final thinned 
function may present non-significant broken divide lines that 
do not correspond to the expected closed watershed lines. 
Fortunately, it is possible to "smooth" these lines by means of 
a sequential pruning operation. When this sequential pruning 
operation is iterated until the result does not change, spurious 
lines are shortened from their free ends, and only what is 
known to be an acceptable approximation of the true 
watershed lines remains.  

 

             

    Fig. 8. Configuration of H                     Fig. 9. Configuration of 
)1(L  

As the composition of two idempotent mappings is not 
necessarily idempotent, the whole process is then iterated 
until idempotence. Let ݓሺݔሻ be the density function resulting 
from this idempotent process whose additive inverse is 
presented in figure 10. 

 

 

Fig. 10. Modal regions of )(Xp


with the watershed algorithm 

Phase 2 : Modal region extraction 

Figure 10 shows that the level of the top of each modal 
region is constant and two neighbouring modal regions have 
lower levels than that of the divide separating them. In these 
conditions, it is evident that performing dilation with the 
same structuring element as the one used for the opening 
operation will modify the value of the additive inverse of the 
thinned function only at points belonging to the divides 
separating these modal regions. Hence, the divide set and the 
modal regions set can be easily extracted from the additive 
inverse of the thinned function by taking the point-to-point 
difference between the dilated version and the additive 
inverse of the thinned function itself (cf. Figure 11). 
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Fig. 11. Modal regions extraction 

 

 

Fig. 12. Graph of the Modal regions extracted 

 

Step.3 Classification Strategy 

Under the assumption that the detected modal regions 
correspond to homogenous regions in the image and a one 

class can be represented on the Kohonen map by one or more 
homogeneous regions in the image, the points constitute 
modal regions are considered as prototypes of classes present 
in the image (cf. Figure 12) and are the basis of the 
assignment of any pixel of the image to one of the classes, 
through the Euclidean distance on the map (cf. Figure 14). 

IV. CONCLUSION 

In this work, we proposed an algorithm to unsupervised 
classification of textured image, based on the combination of 
an algorithm of Mathematical Morphology in a Kohonen 
map. In this algorithm, we represent at first the Kohonen map 
by the pdf underlying the sample of observations. 

Modal regions of the pdf are then extracted into connected 
components by the watershed method which corresponds to a 
homogeneous region in the image. Finally, in classification 
phase, the weights vectors corresponding to the extracted 
modal regions are taken as prototypes of classes present in 
the image, and are used for the assignment of each pixel in 
the image to one of the classes identified. This approach 
shows that in an unsupervised context, the tools of 
mathematical morphology associated with the Kohonen map 
allows a good automatic classification of the textured image 
without using any thresholding procedure. 

We must indicate at the end the help that gives the Kohonen 
learning to the watershed transformation, by giving in 
advance a separated regions even in case of overlapping 
between the clusters. The advantage of a watershed process is 
a local analysis given in the map which detects with fineness 
all the modes representing homogeneous regions in the 
texture image. 

 As perspective, we search to apply our approach on 3D 
image.

 

 

  

       Fig. 13. Original Image                      Fig. 14. Classified image 
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