
Assessing the Performance of SDM-based Robot

Navigation with Different Image Processing

Techniques

Mateus Mendes∗†, A. Paulo Coimbra∗, and Manuel M. Crisóstomo∗

Abstract— Vision is one of the preferred sources

of perceptions to implement intelligent robot naviga-

tion: it is biologically inspired, requires inexpensive

hardware and a single image does contain huge

amounts of information. However, problems such as

illumination changes, scenario changes and electric

noise in the image sensors pose challenges which are

difficult to overcome. In previous work the authors

developed algorithms to navigate a robot based on

sequences of visual memories stored into a Sparse

Distributed Memory—a kind of associative mem-

ory suitable to work with high-dimensional binary

vectors, which also exhibits behaviours in many

aspects similar to those of the human brain. This

paper analyses the impact of using different image

processing techniques to minimise the impact of noise

in the images used: histogram equalisation, contrast

normalisation and smoothing using a Gaussian filter.

The results show that equalisation and smoothing

have a positive effect on the performance of the

system.

Index Terms—Robot Navigation, View-based Navi-

gation, Image Processing, SDM, Sparse Distributed

Memory

1 Introduction

The area of robot navigation has been subject to intense
research in the last decades. Many different approaches
have been tried to localise and navigate robots in a safe
and robust way. Some of those approaches can only be
used in structured environments, for they are based on
the recognition of artificial landmarks, beacons or similar
strategies that improve the accuracy of the system but
require conditions specially arranged for the robot [1].
More generic strategies that work in unstructured envi-
ronments include mapping and localisation using laser
range finders, sonars or cameras.

Vision-based approaches are biologically inspired, since

∗ISR - Institute of Systems and Robotics, Dept. of Electrical and
Computer Engineering, University of Coimbra, Portugal. E-mail:
acoimbra@deec.uc.pt, mcris@isr.uc.pt. †ESTGOH, Polytechnic In-
stitute of Coimbra, Portugal. E-mail: mmendes@estgoh.ipc.pt.

humans use mostly vision for localisation, and vision
alone is responsible for about 80% of the sensory input of
an average person [2]. To guide a robot based on visual
information, the sensors required are inexpensive, but the
processing power needed is huge. Every single image is
usually described by hundreds or thousands of pixels, and
every path that the robot learns is described by tens, hun-
dreds or thousands of images. That makes the technique
less appealing, because real-time operation may be com-
promised for large databases, or requires massive parallel
processing. The use of cognitive information, in which
the raw images are replaced by formal descriptions of the
contents of the images, may solve part of the problem,
but even so the initial problem of processing thousands
or millions of pixels to extract the relevant information
still remains.

There are two popular approaches for vision-based navi-
gation: one that uses plain images [3], the other that uses
omnidirectional images [4]. Omnidirectional images offer
a 360° view, which is richer than a plain front or rear view.
However, that richness comes at the cost of even addi-
tional processing power requirements. Some authors have
also proposed techniques to speed up processing and/or
reduce memory needs. Matsumoto [5] used images as
small as 32×32 pixels. Ishiguro replaced the images by
their Fourier transforms [6]. Winters compressed the im-
ages using Principal Component Analysis [7].

The images alone are a means for instantaneous local-
isation. View-based navigation is almost always based
on the same idea: during a supervised learning stage the
robot learns a sequence of views that, if followed with
minimum drift, will lead it to a target location. By fol-
lowing the sequence of commands, possibly correcting the
small drifts that may occur, the robot is later able to fol-
low the learnt path autonomously [5]. To a great extent,
this view-sequence based approach is similar to the way
the human brain works [8, 9].

In previous work the authors presented a system to navi-
gate a robot using images stored into a Sparse Distributed
Memory (SDM) [10]. The SDM is a kind of associa-
tive memory based on the properties of high-dimensional
boolean spaces, and thus suitable to work with large bi-

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_03

(Advance online publication: 21 November 2012)



nary vectors such as raw images [8]. The present pa-
per describes experiments using different image process-
ing techniques, in order to make the system more robust
to image noise and changes in dynamic environments. It
is a revised and extended version of [11].

Section 2 explains navigation based on view sequences.
Section 3 briefly describes the SDM. In Section 4 the
experimental platform is presented. Section 5 describes
the image processing techniques used. Section 6 shows
and discusses the results obtained, and Section 7 draws
some conclusions and opens perspectives of future work.

2 Navigation using view sequences

The approach followed to navigate the robot is based on
using visual memories stored into a SDM, as described
in [10]. It requires a supervised learning stage, in which
the robot is manually guided. While being guided, the
robot memorises a sequence of views automatically. It
stores a sequence of views for each path. Images that are
very similar to previously stored images are discarded,
because they would, with high probability, not add any
relevant information to the known information.

While running autonomously, the robot performs auto-
matic image-based localisation and obstacle detection.
Localisation is estimated based on the similarity of two
views: one stored during the supervised learning stage
and another grabbed in real-time. To minimise possible
drifts to the left or to the right, the robot tries to find
matching areas between those two images and calculates
the horizontal distance between them in order to infer
how far it is from the correct path. The technique is
described in more detail in [10].

3 Sparse Distributed Memory

The Sparse Distributed Memory is an associative mem-
ory model proposed by Kanerva in the 1980s [8]. It is
suitable to work with high-dimensional binary vectors.
Kanerva shows that the SDM exhibits the properties of
large boolean spaces, which are, to a great extent, sim-
ilar to that of the human cerebellum. The SDM natu-
rally implements behaviours such as tolerance to noise,
operation with incomplete data, parallel processing and
knowing that one knows.

In the proposed approach, an image is regarded as a high-
dimensional vector, and the SDM is used simultaneously
as a sophisticated storage and retrieval mechanism and a
pattern recognition tool. For space constraints the orig-
inal SDM model is not described in the present paper.
A description can be found, for example, in [12]. In
the present work, a model that we call “auto-associative
arithmetic” is used, as exemplified in Figure 1. It is a
very simplified version, optimised to process large arrays
of integers in real time, at the cost of loosing some charac-

Figure 1: Simplified auto-associative arithmetic SDM,
used in real-time for robot navigation.

teristics of the original model. The main modules of the
SDM are an array of addresses and an array of data vec-
tors. It is even acceptable an auto-associative version, in
which the same array is used simultaneously as addresses
and data, as long as datum ζ is only stored at location
ζ. The auto-associative memory needs about one half of
the storage space.

Every input address will activate all the memory ad-
dresses that are within a predefined activation ra-
dius. Different methods can be used for computing the
distance—the present implementation uses the sum of the
absolute differences. In Figure 1 the example address
vector < 90, 95 > will activate address < 100, 106 > (dis-
tance 21) and address < 110, 90 > (distance 25).

Reading from the memory is done by averaging the in-
teger values columnwise. Learning is achieved updating
each byte value using the equation:

hk
t = hk

t−1
+ α · (xk

− hk
t−1

), α ∈ R ∧ 0 ≤ α ≤ 1 (1)

In the equation, hk
t is the kth number of the memory

location, at time t, xk is the corresponding number in
the input vector x and α is the learning rate. In the
present implementation α was set to 1, enforcing one-
shot learning.

The memory locations are managed using the Ran-
domised Reallocation (RR) algorithm [13]. Using the RR,
the system starts with an empty memory and allocates
new locations when there is a new datum which cannot
be stored into enough existing locations. The new loca-
tions are placed randomly in the neighbourhood of the
new datum address.

4 Experimental platform

The robot used is a Surveyor1 SRV-1 (Figure 2). Among
other features, it has a built in digital video camera and a
802.15.4 radio communication module. It is controlled in
real time from a laptop. The overall software architecture
is as shown in Figure 3. It contains three basic modules:
i) the SDM, where the information is stored; ii) the Focus
(following Kanerva’s terminology), where the navigation

1http://www.surveyor.com.

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_03

(Advance online publication: 21 November 2012)



Figure 2: Robot used.

Figure 3: Architecture of the implemented software.

algorithms are run; and iii) an operational layer, respon-
sible for interfacing the hardware and some tasks such as
motor control, collision avoidance and image processing.

For vision-based navigation, the vectors stored in the
SDM consist of arrays of bytes, as summarised in Equa-
tion 2:

xi =< imi, seq id, i, timestamp,motion > (2)

In vector xi, imi is the image i, in PGM (Portable Grey
Map) format and 80×64 resolution. In PGM images, ev-
ery pixel is represented by an 8-bit integer: 0 is black,
255 is white. seq id is an auto-incremented, 4-byte inte-
ger, unique for each sequence. It is used to identify which
sequence the vector belongs to. i is an auto-incremented,
4-byte integer, unique for every vector in the sequence,
used to quickly identify every image in the sequence.
timestamp is a 4-byte integer, storing Unix timestamp. It
is not being used so far for navigation purposes. motion
is a single character, identifying the type of movement
the robot performed after the image was grabbed. The
image alone uses 5120 bytes. The overhead information
comprises 13 additional bytes. Hence, the input vector
contains 5133 bytes.

5 Image processing techniques

Three different image processing techniques have been
tried: contrast normalisation, equalisation and smooth-
ing.

5.1 Image problems

Even using the best or most expensive cameras, images
always suffer from huge amounts of noise and benefit from
some image processing. The typical problems which may
be minimised by fast algorithms running in real-time are
caused by electric noise in the camera sensors, illumina-
tion changes and scenario changes.

Digital images are always grabbed by sensors which con-
tain arrays of sensitive cells which in turn capture the
value of each single pixel. Small numeric variations due
to electrical noise, temperature, camera heading or other
factors in a single sensor cell are normal, considering the
sensitivity and size of each cell. As the final image is
composed of thousands or millions of pixels, the sum of
the differences of pixel values between two consecutive
images of exactly the same scene can be huge. Apply-
ing a Gaussian filter to the image is usually very effective
minimising this type of noise.

Illumination changes are another type of noise that is
very common and hard to solve. Images captured un-
der sun light are easily affected, for the sun rays change
direction and intensity along the day. But even indoors
illumination levels change very often, due to causes such
as broken, degrading or changed light bulbs, change of re-
flectiveness of the materials and similar problems. Tech-
niques of contrast stretching and histogram equalisation
are popular ones to minimise the problem of illumination
differences.

5.2 Contrast enhancement

The quality of images as grabbed directly from the cam-
era depends a lot on ambient illumination. Dim light
produces dark images with little contrast, while good illu-
mination provides images with better contrast. The prac-
tical consequence of those dynamic environmental condi-
tions is that a robot which has been in one place and
captured images of it, will not recognise the same place
if it goes there again and the illumination is significantly
different. Under dim light the pixel values will tend to-
wards 0, the black pixel. Under strong light the values
will move towards the other end of the interval: 255, the
white pixel. The difference between two such images may
eventually lead the system to consider them as two dif-
ferent pictures, even if they correspond to the same view.
The problem may be minimised using techniques to ad-
just the distribution of the pixel values, enhancing the
contrast of the images.

Figure 4 shows an image captured under dim light, and
the corresponding frequency distribution of the pixel val-
ues and cumulative histograms. As shown, the image is
very dark—it is rich in brightness intensities below 150
and contains almost no values above that level. The grey
levels with higher frequencies are in general below 50.

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_03

(Advance online publication: 21 November 2012)



The cumulative histogram is a curve which rises very fast
until 100 and a horizontal line above 150. Besides the vi-
sual discomfort of working with such images (which is
only relevant during the supervised learning stage), deal-
ing with them in the robot memory can also be difficult,
as stated above. Computing the distance between two
images of the same place, one with the histogram tend-
ing to the left and the other with the histogram tending to
the right, can possibly result in a huge difference, mean-
ing that the images may not be considered the same by
the robot.

5.2.1 Contrast stretching

Contrast stretching (also called contrast normalisation)
is a method that consists in applying a linear function
to the image, in order to improve its contrast. The in-
tensities of an image with poor contrast, such as the test
image shown in Figure 4(a), do not extend through the
full range of available pixel values. In the case of the test
image they all actually fall in the range [7, 178]. Ap-
plying a linear transform to the image it is possible to
stretch the intensity levels so that they occupy all the
range [0, 255], resulting in an image with improved con-
trast. Mathematically, the technique is simply a function
that maps one interval into another interval:

f : [a, b] −→ [c, d] (3)

In 3, a and b are the minimum and maximum intensity
levels found in the image, and c and d are the minimum
and maximum intensity levels that can be used. The
value of each pixel Pin is then reassigned into Pout, ac-
cording to Equation 4:

Pout = c+ (Pin − a)

(

d− c

b− a

)

(4)

Figure 5 shows the result of applying the contrast-
stretching transform to the image. The result is not im-
pressive. Both ends of the the histogram were slightly
stretched, so that it occupies all the range [0, 255]. There
is at least one pixel with intensity 0, and there is also at
least one pixel with intensity 255, but the general distri-
bution of the pixel intensities is very similar to what can
be observed in the original image.

5.2.2 Histogram equalisation

Histogram equalisation is a technique to manipulate im-
ages based on the analysis of the corresponding his-
tograms. The method consists in taking the original cu-
mulative histogram of the original image, normalise it to-
wards 255 (or the maximum intensity value that can be
found in the image), and then use it as a mapping func-
tion to the original image, thus achieving a uniform his-

togram after the transform. The uniform histogram ob-
tained will correspond to a brightness distribution where
all the values should be equally probable. Due to the
discrete nature of the digital images, the result is usually
just an approximation. Nonetheless, the technique re-
sults in a significant improvement of the original images,
as shown in Figure 6.

The procedure is formalised as follows. First, let’s con-
sider an image x, of L different grey levels and n pixels.
Let ni be the number of occurrences of grey level i in the
image. The probability of occurrence of a pixel of level i
in the image is given by equation:

px(i) = p(x = i) =
ni

n
, i ∈ 0, ..., L (5)

Probability px(i) is, indeed, the same as the grey level’s
frequency value in the histogram, once it is normalised
into the interval [0, 1]. The cumulative probability dis-
tribution function of p also coincides with the image’s
normalised cumulative histogram:

c(i) =
i

∑

j=0

px(j), i ∈ 0, ..., L (6)

Value c(i) is a transformation that for each pixel value x
will produce a corresponding value y, so that the cumu-
lative probability function of y will be linearised across
the value range. That is, if it is used the transformation
of Equation 7 to map every pixel value in the image from
x to y, the output image will exhibit a linear histogram
in the co-domain [0, 1].

yi = c(i) · xi, i ∈ 0, ..., L (7)

To get the image back into the original [0, L] interval,
it is necessary to apply a linear transform to stretch the
co-domain:

y′i = yi · L (8)

For real time processing, it is possible to merge equations
6, 7 and 8 together. That way it is possible to skip the
prior normalisation of the cumulative histogram into the
interval [0, 1] and perform all the operations with a single
loop to process all the image (providing the cumulative
histogram has already been computed) [14], as shown in
Algorithm 1.

Algorithm 1: Histogram equalisation

begin

alpha←− L/numPixels;
for each pixel do

y ←− C(x) ∗ alpha;
end

end

In Algorithm 1, numPixels is the total number of pixels
in the image, and C(x) the cumulative frequency of grey
level x.

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_03

(Advance online publication: 21 November 2012)



(a) Original image, as captured under
dim light.

0

1

2

3

4

5

6

7

0 50 100 150 200 250

F
r
e
q
u
e
n
c
y
 
(
x
1
0
0
)

Grey level

(b) Histogram.

0

5

10

15

20

25

0 50 100 150 200 250

C
u
m
u
l
a
t
i
v
e
 
f
r
e
q
u
e
n
c
y
 
(
x
1
0
0
0
)

Grey level

(c) Cumulative histogram.

Figure 4: Image captured under dim light, and corresponding frequency and cumulative histograms.

0

2

4

6

8

10

12

14

0 50 100 150 200 250

F
r
e
q
u
e
n
c
y
 
(
x
1
0
0
)

Grey level

(a) Histogram.

0

10

20

30

40

50

0 50 100 150 200 250

C
u
m
u
l
a
t
i
v
e
 
f
r
e
q
u
e
n
c
y
 
(
x
1
0
0
0
)

Grey level

(b) Cumulative histogram.

Figure 5: Frequency and cumulative histograms of the image after contrast stretching.

0

2

4

6

8

10

12

14

0 50 100 150 200 250

F
r
e
q
u
e
n
c
y
 
(
x
1
0
0
)

Grey level

(a) Histogram.

0

10

20

30

40

50

0 50 100 150 200 250

C
u
m
u
l
a
t
i
v
e
 
f
r
e
q
u
e
n
c
y
 
(
x
1
0
0
0
)

Grey level

(b) Cumulative histogram.

Figure 6: Frequency and cumulative histograms of the
image after histogram equalisation.

(a) Original. (b) Normalised.

(c) Equalised. (d) Smoothed.

Figure 7: Comparison of the original, normalised,
equalised and smoothed images.

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_03

(Advance online publication: 21 November 2012)



5.3 Smoothing

Gaussian filters are often used in image processing as a
way to reduce noise levels. The final image is blurred, and
the contours are smoother than they were in the original
image. The process consists of running through the image
a filter in which each pixel is replaced by a weighted aver-
age of the neighbouring pixels, where the nearest neigh-
bours contribute more than the farthest neighbours, ac-
cording to the Gaussian function. For an image, a two
dimensions Gaussian must be applied, as shown in Equa-
tion 9.

G(x, y) =
1

2πσ2
e−

x
2+y

2

2σ2 (9)

In the formula, σ is the standard deviation of the Gaus-
sian distribution. A large σ will give more importance to
farther pixels, while a small σ gives more importance to
the nearest pixels. In practise, pixels outside the radius
3σ are usually ignored, for their contribution to the final
value is negligible.

In the present work, the Gaussian filter was applied using
OpenCV library2. The standard deviation was computed
automatically, but only the contributions of the immedi-
ate neighbours were used.

Figure 7 shows the original image, a contrast stretched
image, an equalised image and a smoothed image. Ob-
viously, the same image can be subject to different pro-
cessing methods. For example, it makes sense to smooth
an image and then equalise. It makes no sense to
equalise and contrast stretch, since both methods intend
to achieve the same goal, and contrast stretch will have
no effect on an equalised image.

6 Experiments and results

To assess the performance of the system, the concept of
“Momentary Localisation Error” (MLE) was defined. A
MLE is counted when the robot, in the autonomous run
mode, retrieves image imj−i after retrieving image imj,
for i, j > 0. When that happens, it means that one of the
predictions was wrong, because the robot is not expected
to get back in the sequence. Most MLEs are not fatal: a
wrong prediction may still lead to a correct robot move;
a wrong move may not lead the robot to get lost; and the
effect of a wrong move may be neutralised right away by
the drift correction algorithm. Nonetheless, most MLEs
may cause delays to the robot, if they make it perform a
wrong move.

6.1 Experiments

The experiments performed consisted in teaching the
robot a path described by about 100 images. Later, the
robot was made to follow the same path again, under

2http://opencv.willowgarage.com/wiki/ (last checked
2012.02.27).

different illumination levels and applying different image
processing techniques.

Table 1 summarises the results of one experiment, in
which the robot was following a path described by 120
images in a test bed. The path was taught with ambi-
ent illumination of about 300 Lux. The first column of
the table states the approximate illumination level dur-
ing the autonomous runs. Columns 2–4 identify which
processing methods were applied. Column 5 shows the
number of MLEs that have been counted for each exper-
iment. It should be noted that the step of the robot dur-
ing the autonomous run is about 1/4 of the learning step
size, hence 12 MLEs actually represent prediction errors
in about 2.5% of the predictions. Column 6 is the av-
erage of the best similarity measures, measured between
the robot’s current view and the pool of images in the
SDM. Column 7 is the corresponding standard deviation.
Columns 8 is the average distance to the second best pre-
diction. Comparing columns 6 and 7 it is possible to have
an idea of how successful the system is in separating the
best prediction from the second best. Column 9 is the
standard deviation of the 8th column. Column 10 is the
average distance between the current image and the pool
of images in the SDM.

6.2 Discussion

As the table shows, contrast normalisation usually pro-
duces very bad results. It pulls the images apart, because
the average distance increases, but the number of MLEs
also increases. When the illumination level is reduced, us-
ing contrast stretched images the robot does not complete
the path. Equalisation has a very large impact on the av-
erage distances. That happens because the pixel values
are stretched over all the domain for histogram equalisa-
tion. But in this case the processing has a positive impact
on the number of localisation errors. And that effect is
even more pronounced when the illumination is reduced.
Using equalised images the robot is always able to com-
plete the path. Smoothing the images using the Gaussian
filter greatly reduces the average distances. That is an
expected result, since the pixel values are approximated
to the values of the neighbouring pixels. The performance
of the system is excellent with smoothing alone, except
when the illumination is very faint. In that case equali-
sation is required for the robot to successfully complete
the path.

In summary, the results show that noise reduction
through the use of a Gaussian filter and histogram equal-
isation largely contribute to robust navigation. They re-
duce the number of momentary localisation errors, thus
improving the speed and accuracy of the process, and
help the robot finish the path even under dim light.

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_03

(Advance online publication: 21 November 2012)



Table 1: Results with path described by 120 images. Suppressed lines on lower illumination levels mean the robot
did not finish the path.
Ill. Processing Prediction distances average and standard deviation
Lux Norm. Smooth Eq. MLE Best STD 2.º best STD All STD

300

12 31 666.21 8 800.13 37 165.49 10 390.48 77 590.05 8 504.28
x 7 70 529.58 9 854.34 84 783.35 15 445.20 173 977.35 6 136.90

x 8 25 263.00 7 995.92 31 248.93 9 510.58 73 569.17 7 674.41
x x 5 53 159.66 10 604.60 67 000.91 16 218.73 161 532.96 7 252.45

x 46 50 234.40 9 257.81 59 974.55 11 513.63 122 594.43 8 759.42
x x 46 39 647.00 9 530.61 49 935.3 12 098.61 115 224.81 8 927.40

200

12 33 668.63 8 770.54 38 923.05 9 030.89 75 506.68 9 253.50
x 8 72 356.83 12 726.24 86 921.15 15 093.46 167 967.36 6 615.11

x 8 27 361.70 6 881.68 32 958.81 7 816.18 72 568.28 7 958.29
x x 9 55 608.00 15 919.44 68 433.52 17 793.36 157 815.93 8 018.35

100
24 45 513.50 13 110.90 49 117.13 13 634.93 77 992.48 13 913.57

x 16 98 074.94 18 997.85 107 352.45 17 429.33 177 365.60 9 670.86
x x 14 89 827.27 17 764.19 99 179.93 15 511.93 168 941.61 7 271.88

7 Conclusions

Intelligent robot navigation based on visual memories is
a long sought goal. However, there are many problems
to be solved, such as the presence of noise in the im-
ages and illumination changes. The approach followed in
the present work relies on memories stored into a SDM.
The performance of the system is improved by process-
ing the images using a Gaussian filter and histogram
equalisation. Contrast normalisation usually produces
bad results. Future research will be done in order to
identify relevant objects or features in the images. The
vectors stored into the SDM will contain feature informa-
tion, leading the way to work at a cognitive level. That
should improve the performance of the system and pos-
sibly decrease memory storage and/or processing time
needs. Another open line of research is to improve speed
using massive parallel processing, taking advantage of the
fact that SDMs architecture is appropriate for that.

References

[1] Christopher Rasmussen and Gregory D. Hager.
Robot navigation using image sequences. In Proc.
13th National Conf. on AI, pages 938–943. AAAI
Press, 1996.

[2] Steven Johnson. Mind wide open. Scribner, New
York, 2004.

[3] Yoshio Matsumoto, Kazunori Ikeda, Masayuki In-
aba, and Hirochika Inoue. Exploration and map ac-
quisition for view-based navigation in corridor envi-
ronment. In Proceedings of the International Confer-
ence on Field and Service Robotics, pages 341–346,
1999.

[4] Yoshio Matsumoto, Masayuki Inaba, and Hirochika
Inoue. View-based navigation using an omniview se-

quence in a corridor environment. InMachine Vision
and Applications, 2003.

[5] Yoshio Matsumoto, Masayuki Inaba, and Hirochika
Inoue. View-based approach to robot navigation. In
Proc. of IEEE/RSJ IROS 2000, 2000.

[6] Hiroshi Ishiguro and Saburo Tsuji. Image-based
memory of environment. In in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, pages 634–
639, 1996.

[7] Niall Winters and José Santos-Victor. Mobile robot
navigation using omni-directional vision. In In
Proc. 3rd Irish Machine Vision and Image Process-
ing Conference (IMVIP’99), pages 151–166, 1999.

[8] Pentti Kanerva. Sparse Distributed Memory. MIT
Press, Cambridge, 1988.

[9] Jeff Hawkins and Sandra Blakeslee. On Intelligence.
Times Books, New York, 2004.

[10] Mateus Mendes, Manuel M. Crisóstomo, and
A. Paulo Coimbra. Robot navigation using a sparse
distributed memory. In Proc. of IEEE Int. Conf.
on Robotics and Automation, Pasadena, California,
USA, May 2008.

[11] Mateus Mendes, A. Paulo Coimbra, and Manuel M.
Crisóstomo. Improving sdm-based robot navigation
using image processing techniques. In Lecture Notes
in Engineering and Computer Science: Proceedings
of The World Congress on Engineering 2012, WCE
2012, pages 666–671, London, U.K., 4-6 July 2012.

[12] Mateus Mendes, Manuel M. Crisóstomo, and
A. Paulo Coimbra. Assessing a sparse distributed
memory using different encoding methods. In Proc.

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_03

(Advance online publication: 21 November 2012)



of World Congress on Engineering, WCE 2009,
pages 37–42, London, UK, July 2009.

[13] Bohdana Ratitch and Doina Precup. Sparse dis-
tributed memories for on-line value-based reinforce-
ment learning. In ECML, 2004.

[14] James Matthews. Histogram equalization. Genera-
tion 5, November 2004. www.generation5.org.

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_03

(Advance online publication: 21 November 2012)




