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Abstract—To compare binary n-tuple probabilities with no
need to compute them, we have defined a partial order relation
on the set {0, 1}n of all binary n-tuples: The so-called intrinsic
order relation. In this paper, some properties of the intrinsic
ordering are derived. These properties involve the lexicographic
(truth-table) order in {0, 1}n, the vector order defined between
the vectors of positions of 1-bits of the binary n-tuples, and
the number of 1-bits in the binary n-tuples (i.e., the Hamming
weights). These results are illustrated through simple examples
and the intrinsic order graph.

Index Terms—complex stochastic Boolean system, Hamming
weight, intrinsic order, intrinsic order graph, lexicographic
order, vector order.

I. INTRODUCTION

THIS paper analyzes the behavior of those complex
systems which depend on a large number n of random

Boolean variables: The so-called complex stochastic Boolean
systems (hereafter, CSBSs). That is, the n basic Boolean
variables of the system are stochastic (non-deterministic)
and they only take two possible values, 0 or 1. Using the
statistical terminology, a stochastic Boolean variable can be
considered as a Bernoulli variable.

Each one of the 2n outcomes for a CSBS is given by a
binary n-tuple u = (u1, . . . , un) ∈ {0, 1}n of 0s and 1s.
In the following, we assume that the n Bernoulli variables
x1, x2, . . . , xn of the CSBS are statistically independent, so
that the occurrence probability of a given binary string of
length n, u = (u1, . . . , un) ∈ {0, 1}n, is given by

Pr {u} =
n∏

i=1

pui
i (1− pi)

1−ui , (1)

that is, Pr {u} is the product of factors pi if ui = 1, 1− pi
if ui = 0.

Example 1.1: Let n = 4 and u = (1, 0, 1, 0) ∈ {0, 1}4.
Let p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.4. Then using (1),
we have

Pr {(1, 0, 1, 0)} = p1 (1− p2) p3 (1− p4) = 0.0144.

One of the main questions in the analysis of CSBSs con-
sists of determining the ordering between the current values
of the 2n associated binary n-tuple probabilities Pr {u}.
The simplest answer to this question, namely computing all
these 2n probabilities –by using (1)– and ordering them in
decreasing or increasing order of their values, is only possible
in practice for small values of n. However, for large values of
n, we need alternative procedures for comparing the binary
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string probabilities overcoming the exponential nature of this
problem. For this purpose, in [2] we have defined a partial
order relation on the set {0, 1}n of all the 2n binary n-tuples,
the so-called intrinsic order between binary n-tuples.

Using the intrinsic ordering, we can compare (order)
two given binary n-tuple probabilities Pr {u} ,Pr {v}, with
no need to compute them, simply looking at the relative
positions of the 0s and 1s in the binary n-tuples u, v to
be compared. In this way, for those pairs (u, v) of binary
n-tuples comparable by intrinsic order, the ordering between
their occurrence probabilities is always the same for all sets
of basic probabilities {pi}ni=1. On the contrary, for those pairs
(u, v) of binary n-tuples incomparable by intrinsic order, the
ordering between their occurrence probabilities depends on
the current values of the basic probabilities {pi}ni=1.

The lexicographic order on the set {0, 1}n is the usual
truth-table order between binary strings of length n. The
Hamming weight of a binary n-tuple u ∈ {0, 1}n is the sum
of all its bits, that is, the number of 1-bits in u. The vector
order is a total order relation defined between the vectors
of positions of 1-bits of the binary n-tuples with the same
Hamming weight.

The purpose of this paper is to present the relations
between the intrinsic ordering and the three above concepts
(lexicographic order, Hamming weight, and vector order).
Some of these relations, especially those dealing with the
Hamming weight, can be found in [9]. For this purpose,
this paper has been organized as follows. In Section II, we
present all the background about the intrinsic order required
to make this paper self-contained. Section III is devoted to
present the relations between the intrinsic ordering and the
lexicographic order. In Section IV, the relation between the
intrinsic ordering and the Hamming weight is presented. The
relation between the intrinsic ordering and the vector order
is analyzed in Section V. Finally, conclusions are presented
in Section VI.

II. THE INTRINSIC ORDERING

A. Intrinsic Order Relation on {0, 1}n

Throughout this paper, the decimal numbering of a binary
string u is denoted by the symbol u(10, and we use the
symbol “≡” to denote the equivalence between the binary
and decimal representations of a binary string, i.e.,

u = (u1, . . . , un) ≡ u(10 =
n∑

i=1

2n−iui,

e.g., for n = 6 we have

(1, 0, 1, 1, 0, 1) ≡ 20 + 22 + 23 + 25 = 45.

According to (1), the ordering between two given binary
string probabilities Pr (u) and Pr (v) depends, in general, on
the parameters pi, as the following simple example shows.
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Example 2.1: Let n = 3, u = (0, 1, 1) and v = (1, 0, 0).
Using (1), we get the following inequalities.
For p1 = 0.1, p2 = 0.2, p3 = 0.3 :

Pr {u} = 0.054 < Pr {v} = 0.056,

while, for p1 = 0.2, p2 = 0.3, p3 = 0.4 :

Pr {u} = 0.096 > Pr {v} = 0.084.

As mentioned in Section I, to overcome the exponential
complexity inherent to the task of computing and sorting
the 2n binary string probabilities (associated to a CSBS
with n Boolean variables), we have introduced the following
intrinsic order criterion [2], denoted from now on by the
acronym IOC.

Theorem 2.1 (The intrinsic order theorem): Let n ≥ 1.
Suppose that x1, . . . , xn are n mutually independent
Bernoulli variables whose parameters pi = Pr {xi = 1}
satisfy

0 < p1 ≤ p2 ≤ · · · ≤ pn ≤ 0.5. (2)

Then the probability of the binary n-tuple v = (v1, . . . , vn)
is intrinsically less than or equal to the probability of the
binary n-tuple u = (u1, . . . , un) (that is, for all set {pi}ni=1

satisfying (2)) if and only if the matrix

Mu
v :=

(
u1 . . . un

v1 . . . vn

)
either has no

(
1
0

)
columns, or for each

(
1
0

)
column in

Mu
v there exists (at least) one corresponding preceding

(
0
1

)
column (IOC).

Remark 2.1: In the following, we assume that the parame-
ters pi always satisfy condition (2). Note that this hypothesis
is not restrictive for practical applications because, if for
some i : pi > 0.5, then we only need to consider the variable
xi = 1 − xi, instead of xi. Next, we order the n Bernoulli
variables by increasing order of their probabilities.

Remark 2.2: The
(
0
1

)
column preceding to each

(
1
0

)
col-

umn is not required to be necessarily placed at the immedi-
ately previous position, but just at previous position.

Remark 2.3: The term corresponding, used in Theorem
2.1, has the following meaning: For each two

(
1
0

)
columns

in matrix Mu
v , there must exist (at least) two different(

0
1

)
columns preceding to each other. In other words: For

each
(
1
0

)
column in matrix Mu

v , the number of preceding(
0
1

)
columns must be strictly greater than the number of

preceding
(
1
0

)
columns.

Remark 2.4: IOC can be equivalently reformulated in the
following way, involving only the 1-bits of u and v (with
no need to use their 0-bits). Matrix Mu

v satisfies IOC if and
only if either u has no 1-bits (i.e., u is the zero n-tuple) or
for each 1-bit in u there exists (at least) one corresponding
1-bit in v placed at the same or at a previous position. In
other words, either u has no 1-bits or for each 1-bit in u, say
ui = 1, the number of 1-bits in (v1, . . . , vi) must be greater
than or equal to the number of 1-bits in (u1, . . . , ui).

The matrix condition IOC, stated by Theorem 2.1 or by
Remark 2.4, is called the intrinsic order criterion, because it
is independent of the basic probabilities pi and it intrinsically
depends on the relative positions of the 0s and 1s in the bi-
nary n-tuples u, v. Theorem 2.1 or Remark 2.4 naturally lead
to the following partial order relation on the set {0, 1}n [2].

The so-called intrinsic order will be denoted by “�”, and
we shall write v � u, or u � v, to indicate that v is
intrinsically less than or equal to u, or that u is intrinsically
greater than or equal to v.

Definition 2.1: For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set {pi}ni=1 s.t. (2)

iff Mu
v satisfies IOC.

From now on, the partially ordered set (poset, for short)
({0, 1}n ,�) will be denoted by In.

Example 2.2: For n = 3, we have

3 ≡ (0, 1, 1) � 4 ≡ (1, 0, 0)

and

4 ≡ (1, 0, 0) � 3 ≡ (0, 1, 1) ,

because the matrices(
1 0 0
0 1 1

)
and

(
0 1 1
1 0 0

)
do not satisfy IOC (Remark 2.3). Thus, (0, 1, 1) and (1, 0, 0)
are incomparable by intrinsic order, i.e., the ordering between
Pr { (0, 1, 1)} and Pr { (1, 0, 0)} depends on the parameters
{pi}3i=1, as Example 2.1 has shown.

Example 2.3: For n = 6, we have

56 ≡ (1, 1, 1, 0, 0, 0) � 5 ≡ (0, 0, 0, 1, 0, 1)

because matrix (
0 0 0 1 0 1
1 1 1 0 0 0

)
satisfies IOC (Remark 2.2).
Thus, for all {pi}6i=1 s.t. (2)

Pr {(1, 1, 1, 0, 0, 0)} ≤ Pr {(0, 0, 0, 1, 0, 1)} .

Example 2.4: For all n ≥ 1, the binary n-tuples(
0,

n

.̂ . ., 0
)
≡ 0 and

(
1,

n

.̂ . ., 1
)
≡ 2n − 1

are the maximum and minimum elements, respectively, in
the poset In. Indeed, both matrices(

0 . . . 0
u1 . . . un

)
and

(
u1 . . . un

1 . . . 1

)
satisfy the intrinsic order criterion, since obviously they have
no
(
1
0

)
columns!

Thus, for all u ∈ {0, 1}n and for all {pi}ni=1 s.t. (2)

Pr
{(

1,
n

.̂ . ., 1
)}
≤ Pr {(u1, . . . , un)} ≤ Pr

{(
0,

n

.̂ . ., 0
)}

.

Many different properties of the intrinsic order relation can
be derived from its simple matrix description IOC (see, e.g.,
[2], [3], [4], [5]).
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B. A Graph for the Intrinsic Order

Now, we present the most common graphical representa-
tion of our poset In = ({0, 1}n ,�). The usual representation
of a poset is its Hasse diagram (see [12] for more details
about these diagrams). Specifically, for our poset In, its
Hasse diagram is a directed graph (digraph, for short) whose
vertices are the 2n binary n-tuples of 0s and 1s, and whose
edges go upward from v to u whenever u covers v, denoted
by u . v. This means that u is intrinsically greater than v
with no other elements between them, i.e.,

u . v ⇔ u � v and @ w ∈ {0, 1}n s.t. u � w � v.

A simple matrix characterization of the covering relation
for the intrinsic order is given in the next theorem; see [4]
for the proof.

Theorem 2.2 (Covering relation in In): Let n ≥ 1 and let
u, v ∈ {0, 1}n. Then u B v if and only if the only columns
of matrix Mu

v different from
(
0
0

)
and

(
1
1

)
are either its last

column
(
0
1

)
or just two columns, namely one

(
1
0

)
column

immediately preceded by one
(
0
1

)
column, i.e., either

Mu
v =

(
u1 . . . un−1 0
u1 . . . un−1 1

)
(3)

or there exists i (2 ≤ i ≤ n) s.t.

Mu
v =

(
u1 . . . ui−2 0 1 ui+1 . . . un

u1 . . . ui−2 1 0 ui+1 . . . un

)
. (4)

Example 2.5: For n = 4, we have

6 . 7 since M6
7 =

(
0 1 1 0
0 1 1 1

)
has the pattern (3),

10 . 12 since M10
12 =

(
1 0 1 0
1 1 0 0

)
has the pattern (4).

The Hasse diagram of the poset In will be also called the
intrinsic order graph for n variables, denoted as well by In.

For small values of n, the intrinsic order graph In can
be directly constructed by using either Theorem 2.1 (matrix
description of the intrinsic order) or Theorem 2.2 (matrix
description of the covering relation for the intrinsic order).
For instance, for n = 1: I1 = ({0, 1} ,�), and its Hasse
diagram is shown in Fig. 1. Indeed I1 contains a downward

0
|
1

Fig. 1. The Intrinsic Order Graph for n = 1.

edge from 0 to 1 because (see Theorem 2.1) 0 � 1, since
matrix

(
0
1

)
has no

(
1
0

)
columns! Alternatively, using Theorem

2.2, we have that 0 B 1, since matrix
(
0
1

)
has the pattern (3)!

Moreover, this is in accordance with the obvious fact that

Pr {0} = 1− p1 ≥ p1 = Pr {1} ,

since p1 ≤ 1/2, due to (2)!
However, for large values of n, a more efficient method is

needed. For this purpose, in [4] the following algorithm for
iteratively building up In (for all n ≥ 2) from I1 (depicted
in Fig. 1), has been developed.

Theorem 2.3 (Building up In from I1): Let n ≥ 2. The
graph of the poset In = {0, . . . , 2n − 1} (on 2n nodes)

can be drawn simply by adding to the graph of the poset
In−1 =

{
0, . . . , 2n−1 − 1

}
(on 2n−1 nodes) its isomorphic

copy 2n−1 + In−1 =
{
2n−1, . . . , 2n − 1

}
(on 2n−1 nodes).

This addition must be performed placing the powers of 2 at
consecutive levels of the Hasse diagram of In. Finally, the
edges connecting one vertex of In−1 with the other vertex
of 2n−1 + In−1 are given by the set of 2n−2 vertex pairs{(

u(10 , 2
n−2 + u(10

) ∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}
.

In Fig. 2, we illustrate the above iterative process for the
first few values of n, denoting all the binary n-tuples by
their decimal equivalents. Basically, we first add to In−1

its isomorphic copy 2n−1 + In−1. This addition must be
performed by placing the powers of two, 2n−2 and 2n−1,
at consecutive levels in the intrinsic order graph. The reason
is simply that

2n−2 . 2n−1 since matrix M2n−2

2n−1 has the pattern (4).

Then, we connect one-to-one the nodes of “the second half
of the first half” to the nodes of “the first half of the second
half”: A nice fractal property of In!

0
|
1

0
|
1
|
2
|
3

0
|
1
|
2
| �
3 4

� |
5
|
6
|
7

0
|
1
|
2
| �
3 4

� | �
5 8
| � |
6 9
| � |
7 10

� | �
11 12

� |
13
|
14
|
15

Fig. 2. The Intrinsic Order Graphs for n = 1, 2, 3, 4.

Each pair (u, v) of vertices connected in In either by one
edge or by a longer path, descending from u to v, means that
u is intrinsically greater than v, i.e., u � v. On the contrary,
each pair (u, v) of non-connected vertices in In either by
one edge or by a longer descending path, means that u and
v are incomparable by intrinsic order, i.e., u � v and v � u.

Looking at any of the four graphs in Fig. 2, we can confirm
the fact that 0 and 2n − 1 are the maximum and minimum
elements, respectively, in the poset In (see Example 2.4).
Also, Theorems 2.1 and 2.2 are illustrated by Fig. 2.

The edgeless graph for a given graph is obtained by
removing all its edges, keeping its nodes or vertices at the
same positions [1]. In Fig. 3, the edgeless intrinsic order
graph of I5 is depicted.

For further theoretical properties and practical applications
of the intrinsic order and the intrinsic order graph, we refer
the reader to e.g., [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11].

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_06

(Advance online publication: 21 November 2012)



0
1
2
3 4

5 8
6 9 16
7 10 17

11 12 18
13 19 20
14 21 24
15 22 25

23 26
27 28

29
30
31

Fig. 3. The Edgeless Intrinsic Order Graph for n = 5.

III. INTRINSIC ORDER AND LEXICOGRAPHIC ORDER

The lexicographic order between binary n-tuples is the
usual truth-table order on {0, 1}n (denoted here by the
symbol “≤l”) beginning with the n-tuple

(
0,

n

.̂ . ., 0
)

and

finishing with the n-tuple
(
1,

n

.̂ . ., 1
)

. As is well-known,
this ordering coincides with the natural ordering between
the decimal equivalents of the rows (binary n-tuples) of the
truth-table. That is,

u ≤l v ⇔ u(10 ≤ v(10 . (5)

Example 3.1: Let n = 4, u = (1, 0, 1, 1), v = (1, 1, 0, 1).
Then

u = (1, 0, 1, 1) <l (1, 1, 0, 1) = v

since u precedes v in the truth-table, or since

u(10 = 11 < 13 = v(10 .

The lexicographic order is a necessary condition for the
intrinsic order. More precisely, we have the following corol-
lary of Theorem 2.1; see [3] for the proof.

Corollary 3.1: For all n ≥ 1 and for all u, v ∈ {0, 1}n

u � v ⇒ u ≤l v, (6)

i.e.,
u � v ⇒ u(10 ≤ v(10 . (7)

However, the necessary condition for intrinsic order stated
by Corollary 3.1 is not sufficient. That is,

u ≤l v ; u � v,

as the following simple counter-example (indeed, the sim-
plest one that one can find!) shows.

Example 3.2: For

n = 3, u = 3 ≡ (0, 1, 1) , v = 4 ≡ (1, 0, 0) ,

we have (see the digraph of I3, the third one from left to
right in Fig. 2)

u ≤l v.

However 3 � 4, since matrix

M3
4 =

(
0 1 1
1 0 0

)
does not satisfy IOC.

However, for some special binary n-tuples u ∈ {0, 1}n the
necessary condition stated by Corollary 3.1 is also sufficient.
Let us characterize in a very simple way such binary strings.
First, we must set the following notation.

Definition 3.1: For all n ≥ 1 and for any given binary n-
tuple u, Cu (Cu, respectively) is the set of binary n-tuples
v intrinsically less (greater, respectively) than or equal to v,
i.e.,

Cu = {v ∈ {0, 1}n | u � v } ,

Cu = {v ∈ {0, 1}n | u � v } .

Equivalently, according to Definition 2.1, Cu and Cu can be
defined as

Cu = {v ∈ {0, 1}n |Pr {u} ≥ Pr {v} , ∀ {pi}ni=1 s.t. (2)} ,

Cu = {v ∈ {0, 1}n |Pr {u} ≤ Pr {v} , ∀ {pi}ni=1 s.t. (2)} .

Definition 3.2: For all n ≥ 1 and for any given binary
n-tuple u, Lu (Lu, respectively) is the set of binary n-tuples
v whose decimal equivalents are greater (less, respectively)
than or equal to the decimal equivalent of u, i.e.,

Lu =
{
v ∈ {0, 1}n

∣∣ u(10 ≤ v(10
}
,

Lu =
{
v ∈ {0, 1}n

∣∣ u(10 ≥ v(10
}
.

Equivalently, according to (5), Lu and Lu can be defined as

Lu = {v ∈ {0, 1}n | u ≤l v } ,

Lu = {v ∈ {0, 1}n | u ≥l v } .

With this notation, the implications (6) or (7) can be
simply rewritten as

Cu ⊆ Lu (8)

and the question of characterizing the binary n-tuples u for
which

u � v ⇔ u(10 ≤ v(10

is equivalent to characterize the binary n-tuples u for which

Cu = Lu

The following theorem provides the answer to this ques-
tion (see [5] for the proof)

Theorem 3.1: Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n.
Then

Cu = Lu

if and only if u does not contain any 0 bit followed by two
(or more) 1 bits, placed at consecutive or non consecutive
positions, i.e., u has the general pattern

u = (1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

, 1︸︷︷︸
1

, 0, . . . , 0︸ ︷︷ ︸
r

), p+ q + r + 1 = n,

(9)
where any (but not all!) of the above four subsets of bits
grouped together can be omitted.

Example 3.3: For n = 4 and u = 10 ≡ (1, 0, 1, 0), we
have (see the digraph of I4, the right-most one in Fig. 2)

C10 = {10, 11, 12, 13, 14, 15} = L10

since u = 10 ≡ (1, 0, 1, 0) has the pattern (9).
To establish the dual result of Theorem 3.1, we need the
following definition.

Definition 3.3: Let n ≥ 1. Then
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(i) The complementary n-tuple of a given binary n-tuple
u = (u1, . . . , un) ∈ {0, 1}n is obtained by changing its 0s
by 1s and its 1s by 0s

uc = (u1, . . . , un)
c
= (1− u1, . . . , 1− un) .

Obviously, two binary n-tuples are complementary if and
only if their decimal equivalents sum up to(

1,
n

.̂ . ., 1
)
(10

= 2n − 1.

(ii) The complementary set of a given subset S ⊆ {0, 1}n of
binary n-tuples is the set of the complementary n-tuples of
all the n-tuples of S

Sc = {uc | u ∈ S } .

Now, interchanging the roles of u and v in (6), we get

v � u⇒ v ≤l u, (10)

Using the notation introduced in Definitions 3.1 and 3.2,
the implication (10) can be rewritten as the following set
inclusion, dual of the inclusion (8)

Cu ⊆ Lu. (11)

Sometimes, for some binary n-tuples u, the inclusion
(11) becomes the set identity Cu = Lu. These binary
strings u satisfying this nice property are characterized by
the following theorem, which is the dual of Theorem 3.1
because the 0s are changed by 1s and the 1s are changed
by 0s in the corresponding positional criteria. The proof is
straightforward, using Theorem 3.1 and the fact that (see [5]
for more details)

(Cu)
c
= Cuc

, (Lu)
c
= Luc .

Theorem 3.2: Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n.
Then

Cu = Lu

if and only if u does not contain any 1 bit followed by two
(or more) 0 bits, placed at consecutive or non consecutive
positions, i.e., u has the general pattern

u = (0, . . . , 0︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

, 0︸︷︷︸
1

, 1, . . . , 1︸ ︷︷ ︸
r

), p+ q + r + 1 = n,

(12)
where any (but not all!) of the above four subsets of bits
grouped together can be omitted.

Example 3.4: For n = 4 and u = 5 ≡ (0, 1, 0, 1), we have
(see the digraph of I4, the right-most one in Fig. 2)

C5 = {0, 1, 2, 3, 4, 5} = L5

since u = 5 ≡ (0, 1, 0, 1) has the pattern (12).

IV. INTRINSIC ORDER AND HAMMING WEIGHT

The Hamming weight –or simply the weight– of u is the
sum of all its n bits. In other words, the Hamming weight
of a binary n-tuple is the number of its 1-bits, and it will be
denoted by

wH (u) =
n∑

i=1

ui.

Example 4.1: For n = 7, we have

wH (1, 0, 1, 0, 1, 1, 0) = 4.

The intrinsic order respects the Hamming weight. More
precisely, we have the following corollary of Theorem 2.1
(see, e.g., [3], [9] for the proof).

Corollary 4.1: For all n ≥ 1 and for all u, v ∈ {0, 1}n

u � v ⇒ wH (u) ≤ wH (v) .

Now, we present some relations between the intrinsic
ordering and the Hamming weight. Our starting point is
Corollary 4.1. This corollary has stated that a necessary
condition for u being intrinsically greater than or equal to
v is that the weight of u must be less than or equal to the
weight of v. That is, let u be an arbitrary, but fixed, binary
n-tuple. Then

u � v ⇒ wH (u) ≤ wH (v) for all v ∈ {0, 1}n (13)

or, equivalently,

wH (u) > wH (v) ⇒ u � v.

For instance, looking at the digraph I4, the right-most one
in Fig. 2, we can confirm that

4 ≡ (0, 1, 0, 0) � 13 ≡ (1, 1, 0, 1) ,

wH (4) = 1 < 3 = wH (13)

and that

3 ≡ (0, 0, 1, 1) � 12 ≡ (1, 1, 0, 0) ,

wH (3) = 2 = wH (12) .

However, the necessary condition for intrinsic order stated
by Corollary 4.1 is not sufficient. That is,

wH (u) ≤ wH (v); u � v,

as the following simple counter-example (indeed, the sim-
plest one that one can find!) shows.

Example 4.2: For

n = 3, u = 4 ≡ (1, 0, 0) , v = 3 ≡ (0, 1, 1) ,

we have (see the digraph of I3, the third one from left to
right in Fig. 2)

wH (4) = 1 < 2 = wH (3) .

However 4 � 3, since matrix

M4
3 =

(
1 0 0
0 1 1

)
does not satisfy IOC (or, more easily, since 4 > 3; see
Corollary 3.1).

Moreover, even assuming that the two necessary condi-
tions stated by Corollaries 3.1 & 4.1 simultaneously hold,
this does not imply intrinsic order. That is,

u(10 < v(10 and wH (u) ≤ wH (v); u � v,

as the following simple counter-example (indeed, the sim-
plest one that one can find!) shows.

Example 4.3: For

n = 4, u = 6 ≡ (0, 1, 1, 0) , v = 9 ≡ (1, 0, 0, 1) ,
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we have (see the digraph of I4, the right-most one in Fig. 2)

u(10 = 6 < v(10 = 9 and wH (6) = 2 = wH (9) .

However 6 � 9, since matrix

M6
9 =

(
0 1 1 0
1 0 0 1

)
does not satisfy IOC.

Moreover, even though assuming that the Hamming weight
of u is strictly less than the Hamming weight of v, the two
necessary conditions stated by Corollaries 3.1 & 4.1 do not
imply intrinsic order. That is,

u(10 < v(10 and wH (u) < wH (v); u � v,

as the following simple counter-example (indeed, the sim-
plest one that one can find!) shows.

Example 4.4: For

n = 5, u = 12 ≡ (0, 1, 1, 0, 0) , v = 19 ≡ (1, 0, 0, 1, 1) ,

we have

u(10 = 12 < v(10 = 19 and wH (12) = 2 < 3 = wH (19) .

However 12 � 19, since matrix

M12
19 =

(
0 1 1 0 0
1 0 0 1 1

)
does not satisfy IOC.

In this context, two dual questions naturally arise. They
are posed in the two subsections of this section. First, we
need to set the following notation.

Definition 4.1: For every binary n-tuple u ∈ {0, 1}n,
Hu (Hu, respectively) is the set of all binary n-tuples v
whose Hamming weights are less (greater, respectively) than
or equal to the Hamming weight of u, i.e.,

Hu = {v ∈ {0, 1}n | wH (u) ≥ wH (v)} ,

Hu = {v ∈ {0, 1}n | wH (u) ≤ wH (v)} .

A. Greater Weight and Less Probability

Looking at the implication (13), the following question
immediately arises.

Can we characterize the binary n-tuples u for which the
necessary condition (13) is also sufficient? That is, we try
to identify those bitstrings u ∈ {0, 1}n for which the set of
binary n-tuples v with weights greater than or equal to the
one of u coincides with the set of binary n-tuples v with
occurrence probabilities less than or equal to the one of u,
i.e.,

u � v ⇔ wH (u) ≤ wH (v) , i.e., Cu = Hu.

The following theorem provides the answer to this ques-
tion, in a very simple way.

Theorem 4.1: Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n
with Hamming weight wH (u) = m (0 ≤ m ≤ n). Then

Cu = Hu

if and only if either u is the zero n-tuple (m = 0) or the m
1-bits of u (m > 0) are placed at the m right-most positions,
i.e., if and only if u has the general pattern

u =

(
0,

n−m

.̂ . . , 0, 1,
m

.̂ . ., 1

)
≡ 2m − 1, 0 ≤ m ≤ n, (14)

where any (but not both!) of the above two subsets of bits
grouped together can be omitted.

Proof: Sufficient condition. We distinguish two cases:
(i) If u is the zero n-tuple 0 ≡

(
0,

n

.̂ . ., 0
)

, then u is the
maximum element for the intrinsic order (as we have proved
in Example 2.4). Then

C0 = {v ∈ {0, 1}n | 0 � v } = {0, 1}n

= {v ∈ {0, 1}n | wH (0) = 0 ≤ wH (v)} = H0.

(ii) If u is not the zero n-tuple, then u has the pattern (14)
with m > 0. Let v ∈ Hu, i.e., let v let a binary n-tuple with
Hamming weight greater than or equal to m (the Hamming
weight of u). We distinguish two subcases:
(ii)-(a) Suppose that the weight of v is

wH (v) = m = wH (u) .

Then v has exactly m 1-bits and n − m 0-bits. Call r
the number of 1-bits of v placed among the m right-most
positions (max {0, 2m− n} ≤ r ≤ m). Obviously, v has
r 1-bits and m − r 0-bits placed among the m right-most
positions, and also it has m− r 1-bits and n−2m+ r 0-bits
placed among the n −m left-most positions. These are the
positions of the

r+(m− r)+(m− r)+(n− 2m+ r) = m+(n−m) = n

bits of the binary n-tuple v.
Hence, matrix Mu

v has exactly m − r
(
1
0

)
columns (all

placed among the m right-most positions) and exactly m−r(
0
1

)
columns (all placed among the n−m left-most positions).

Thus, Mu
v satisfies IOC and then u � v, i.e., v ∈ Cu.

So, for this case (ii)-(a), we have proved that

{v ∈ {0, 1}n | wH (v) = wH (u) = m} ⊆ Cu (15)

(ii)-(b) Suppose that the weight of v is

wH (v) = m+ p > m = wH (u) (0 < p ≤ n−m).

Then define a new binary n-tuple s as follows. First, select
any p 1-bits in v (say, for instance, vi1 = · · · = vip = 1).
Second, s is constructed by changing these p 1-bits of v by
0-bits, assigning to the remainder n − p bits of s the same
values as the ones of v. Formally, s = (s1, . . . , sn) is defined
by

si =

{
0 if i ∈ {i1, . . . , ip} ,
vi if i /∈ {i1, . . . , ip} .

On one hand, u � s since

wH (s) = wH (v)− p = m = wH (u)

and then we can apply case (ii)-(a) to s.
On the other hand, s � v since matrix Ms

v has p
(
0
1

)
columns (placed at positions i1, . . . , ip), while its n − p
reminder columns are either

(
0
0

)
or
(
1
1

)
. Hence Ms

v has no(
1
0

)
columns, so that it satisfies IOC.

Finally, from the transitive property of the intrinsic order,
we derive

u � s and s � v ⇒ u � v, i.e., v ∈ Cu.

So, for this case (ii)-(b), we have proved that

{v ∈ {0, 1}n | wH (v) > wH (u) = m} ⊆ Cu (16)
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From (15) & (16), we get

{v ∈ {0, 1}n | wH (v) ≥ wH (u) = m} ⊆ Cu,

i.e., Hu ⊆ Cu, and this set inclusion together with the
converse inclusion Cu ⊆ Hu (which is always satisfied for
every binary n-tuple u; see Corollary 4.1) leads to the set
equality Cu = Hu. This proves the sufficient condition.

Necessary condition. Conversely, suppose that not all the
m 1-bits of u are placed at the m right-most positions. In
other words, suppose that

u 6=
(
0,

n−m

.̂ . . , 0, 1,
m

.̂ . ., 1

)
.

Since, by assumption, wH (u) = m then simply using the
necessary condition we derive that(

0,
n−m

.̂ . . , 0, 1,
m

.̂ . ., 1

)
� u,

and then (
0,

n−m

.̂ . . , 0, 1,
m

.̂ . ., 1

)
∈ Hu − Cu

so that,
Hu * Cu.

This proves the necessary condition.
Corollary 4.2: Let n ≥ 1 and let

u =

(
0,

n−m

.̂ . . , 0, 1,
m

.̂ . ., 1

)
≡ 2m − 1, 0 ≤ m ≤ n,

where any (but not both!) of the above two subsets of bits
grouped together can be omitted. Then the number of binary
n-tuples intrinsically less than or equal to u is

|Cu| =
(
n

m

)
+

(
n

m+ 1

)
+ · · ·+

(
n

n

)
.

Proof: Using Theorem 4.1, we have

Cu = Hu ⇒ |Cu| = |Hu|
= |{v ∈ {0, 1}n | wH (u) = m ≤ wH (v)}|
= |{v ∈ {0, 1}n | wH (v) = m,m+ 1, . . . , n}|

=

(
n

m

)
+

(
n

m+ 1

)
+ · · ·+

(
n

n

)
,

as was to be shown.

B. Less Weight and Greater Probability

Interchanging the roles of u & v, (13) can be rewritten
as follows. Let u be an arbitrary, but fixed, binary n-tuple.
Then

v � u ⇒ wH (v) ≤ wH (u) for all v ∈ {0, 1}n . (17)

Looking at the implication (17), the following dual ques-
tion of the one posed in Section IV-A, immediately arises.

Can we characterize the binary n-tuples u for which the
necessary condition (17) is also sufficient? That is, we try
to identify those bitstrings u ∈ {0, 1}n for which the set
of binary n-tuples v with weights less than or equal to the
one of u coincides with the set of binary n-tuples v with
occurrence probabilities greater than or equal to the one of
u, i.e.,

v � u ⇔ wH (v) ≤ wH (u) , i.e., Cu = Hu.

The following theorem provides the answer to this ques-
tion, in a very simple way. For a very short proof of this
theorem, we use Definition 3.3.

Theorem 4.2: Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n
with Hamming weight wH (u) = m (0 ≤ m ≤ n). Then

Cu = Hu

if and only if either u is the zero n-tuple (m = 0) or the m
1-bits of u (m > 0) are placed at the m left-most positions,
i.e., if and only if u has the general pattern

u =

(
1,

m

.̂ . ., 1, 0,
n−m

.̂ . . , 0

)
≡ 2n−2n−m, 0 ≤ m ≤ n, (18)

where any (but not both!) of the above two subsets of bits
grouped together can be omitted.

Proof: Using Theorem 4.1 and the facts that (see, e.g.,
[5], [7])

(Cu)
c
= Cuc

, (Hu)
c
= Huc ,

we get

Cu = Hu ⇔ (Cu)
c
= (Hu)

c ⇔ Cuc

= Huc

⇔ uc has the pattern (14) ⇔ u has the pattern (18),

as was to be shown.
Corollary 4.3: Let n ≥ 1 and let

u =

(
1,

m

.̂ . ., 1, 0,
n−m

.̂ . . , 0

)
≡ 2n − 2n−m, 0 ≤ m ≤ n,

where any (but not both!) of the above two subsets of bits
grouped together can be omitted. Then the number of binary
n-tuples intrinsically greater than or equal to u is

|Cu| =
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

m

)
.

Proof: Using Corollary 4.2, we get

|Cu| = |(Cu)
c| =

∣∣∣Cuc
∣∣∣

=

(
n

n−m

)
+

(
n

n−m+ 1

)
+ · · ·+

(
n

n

)
=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

m

)
,

as was to be shown.
Example 4.5: Let n = 5.

According to Theorem 4.1, the 6 binary 5-tuples u = 2m−1
(0 ≤ m ≤ 5), for which Cu = Hu are:

(0, 0, 0, 0, 0) ≡ 0, (0, 0, 0, 0, 1) ≡ 1, (0, 0, 0, 1, 1) ≡ 3,

(0, 0, 1, 1, 1) ≡ 7, (0, 1, 1, 1, 1) ≡ 15, (1, 1, 1, 1, 1) ≡ 31.

Note that obviously {2n − 2n−m}nm=0 = {2n − 2m}nm=0.
Then, according to Theorem 4.2, the 6 binary 5-tuples
u = 25 − 2m (0 ≤ m ≤ 5), for which Cu = Hu are the
complementary ones of the above 5-tuples :

(1, 1, 1, 1, 1) ≡ 31, (1, 1, 1, 1, 0) ≡ 30, (1, 1, 1, 0, 0) ≡ 28,

(1, 1, 0, 0, 0) ≡ 24, (1, 0, 0, 0, 0) ≡ 16, (0, 0, 0, 0, 0) ≡ 0.
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V. INTRINSIC ORDER AND VECTOR ORDER

Let n ≥ 1 and let u be a nonzero binary n-tuple, with
Hamming weight wH (u) = m > 0. Then the vector of
positions of 1s of u is defined as the vector of positions
of its m 1-bits, with the convention that these positions are
arranged in increasing order from the right-most possible
position 1 to the left-most possible position n. This vector
will be denoted by

[i1, i2, . . . , im]n (1 ≤ i1 < i2 < · · · < im ≤ n) ,

so that{
i ∈ {i1, i2, . . . , im} iff un+1−i = 1,
i /∈ {i1, i2, . . . , im} iff un+1−i = 0.

(19)

We use again the symbol “≡” to denote the conversion
between the new vector notation and the binary and decimal
representations of the bitstrings, e.g.,(

5
^
0 ,

4
^
1 ,

3
^
0 ,

2
^
0 ,

1
^
1

)
≡ [i1, i2]5 = [1, 4]5 ≡ 9.

A new order relation between binary n-tuples with the
same weight m, the so-called vector order, is introduced in
the following definition.

Definition 5.1: Let n ≥ 2 and let u, v be two binary n-
tuples with the same Hamming weight

wH (u) = wH (v) = m (0 < m < n)

and with vectors of positions of 1s

u = [i1, i2, . . . , im]n , v = [j1, j2, . . . , jm]n .

Then we say that u precedes or is equal to v in the vector
order, denoted by u ≤v v, if and only if either

ip = jp (1 ≤ p ≤ m) ,

or

q = min {p ∈ {1, 2, . . . ,m} | ip 6= jp } ⇒ iq < jq.

Example 5.1: For n = 5 and m = 3, we have

[1, 2, 3]5 <v [1, 3, 5]5 <v [3, 4, 5]5 i.e.,

(0, 0, 1, 1, 1) <v (1, 0, 1, 0, 1) <v (1, 1, 1, 0, 0) , i.e.,

7 <v 21 <v<v 28.

The following theorem provides us with a simple charac-
terization of the intrinsic order between two binary n-tuples
with the same weight, using their vectors of positions of 1s,
instead of their binary representations used in Theorem 2.1
(IOC).

Theorem 5.1: Let n ≥ 2 and let u, v be two binary n-
tuples, with the same Hamming weight

wH (u) = wH (v) = m (0 < m < n)

and with vectors of positions of 1s

u = [i1, i2, . . . , im]n , v = [j1, j2, . . . , jm]n .

Then

u � v ⇔ jp ≥ ip for all p = 1, 2, . . . ,m.

Proof: Using Definition 2.1 and Remark 2.4, we have
that u � v iff matrix Mu

v satisfies IOC iff either u has

no 1-bits or for each 1-bit in u there exists (at least) one
corresponding 1-bit in v placed at the same or at a previous
position. Now, according to (19), sweeping the m 1-bits of
u from left to right, the last assertion is equivalent to saying
that

jm ≥ im, jm−1 ≥ im−1, . . . , j1 ≥ i1,

i.e., jp ≥ ip for all p = 1, 2, . . . ,m.
The following corollary establishes the relationship be-

tween the intrinsic order and the vector order.
Corollary 5.1: Let n ≥ 2 and let u, v be two binary n-

tuples, with the same Hamming weight

wH (u) = wH (v) = m (0 < m < n) .

Then
u � v ⇒ u ≤v v.

Proof: Let

u = [i1, i2, . . . , im]n , v = [j1, j2, . . . , jm]n

be the vectors of positions of 1s of u and v, respectively.
Then, using Theorem 5.1, we have

u � v ⇒ jp ≥ ip for all p = 1, 2, . . . ,m. (20)

We distinguish the following two cases.
(i) If jp = ip for all p = 1, 2, . . . ,m, then u = v, so that,
clearly, u ≤v v.
(ii) If jp 6= ip for some p = 1, 2, . . . ,m, then the least index
q for which iq 6= jq necessarily satisfies iq < jq , due to (20).
Hence, using Definition 5.1, we get u ≤v v.

The converse of Corollary 5.1 does not hold, as the
following simple counter-example (indeed, the simplest one
that one can find!) shows.

Example 5.2: For n = 4, m = 2 and for

u = (1, 0, 0, 1) ≡ [i1, i2]4 = [1, 4]4 ≡ 9,
v = (0, 1, 1, 0) ≡ [j1, j2]4 = [2, 3]4 ≡ 6,

using Definition 5.1, we have

u ≤v v since i1 = 1 < 2 = j1

and using Corollary 3.1, we have (see the digraph of I4, the
right-most one in Fig. 2)

u � v since u(10 = 9 > 6 = v(10 .

VI. CONCLUSION

In this paper, we have established three different necessary
conditions for the intrinsic order. The first one has involved
the lexicographic (truth-table) order in the set {0, 1}n of all
binary n-tuples. The second one deals with the Hamming
weight of the binary strings. The third one has been expressed
in terms of the vector order, defined between binary n-
tuples with the same weight. We have provided different
simple counter-examples for proving that the above necessary
conditions for the intrinsic ordering are not sufficient, in
general. Moreover, for the first two cases we have also
established the general patterns of the special binary n-
tuples u for which the corresponding necessary conditions
are also sufficient, i.e., they become equivalences. These
patterns have been expressed by simple positional criteria
of the 0s & 1s in the corresponding binary n-tuples.
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[2] L. González, “A New Method for Ordering Binary States Probabilities

in Reliability and Risk Analysis,” Lecture Notes in Computer Science,
vol. 2329, no. 1, pp. 137-146, 2002.
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