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Abstract—In this paper we constructively prove the Fan-
Glicksberg fixed point theorem for sequentially locally non-
constant multi-functions (multi-valued functions or correspon-
dences) with uniformly closed graph in a locally convex space,
and apply it to the proof of the existence of a social equilib-
rium in an abstract economy where each payoff function has
sequentially locally at most one maximum.
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I. INTRODUCTION

It is well known that Brouwer’s fixed point theorem can
not be constructively proved.

[6] provided a constructive proof of Brouwer’s
fixed point theorem. But it is not constructive from
the view point of constructive mathematics à la
Bishop. It is sufficient to say that one dimensional
case of Brouwer’s fixed point theorem, that is,
the intermediate value theorem is non-constructive
(See [4] or [12]).

Thus, Kakutani’s fixed point theorem and the Fan-Glicksberg
fixed point theorem in a locally convex space for multi-
functions (multi-valued functions or correspondences) also
can not be constructively proved. On the other hand,
Sperner’s lemma which is used to prove Brouwer’s theorem,
however, can be constructively proved. Some authors have
presented a constructive (or an approximate) version of
Brouwer’s fixed point theorem using Sperner’s lemma (See
[12] and [13]). Also Dalen in [12] states a conjecture that
a function f from a simplex to itself, with property that
each open set contains a point x such that x is not equal
to f(x) (x ̸= f(x)) and on the boundaries of the simplex
x ̸= f(x), has an exact fixed point. Recently Berger and
Ishihara[2] showed that the following theorem is equivalent
to Brouwer’s fan theorem, and so it is non-constructive.

Each uniformly continuous function from a com-
pact metric space into itself with at most one fixed
point and approximate fixed points has a fixed
point.
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By reference to the notion of sequentially at most one
maximum in Berger, Bridges and Schuster[1] we require a
more general and somewhat stronger condition of sequential
local non-constancy to functions, and in [7], [9] and [11] we
showed the following result.

If each uniformly continuous function from a com-
pact metric space into itself is sequentially locally
non-constant, then it has a fixed point,

without the fan theorem. It is a partial answer to Dalen’s
conjecture.

In this paper we extend the sequential local non-constancy
to multi-functions in a locally convex space, and construc-
tively prove the Fan-Glicksberg fixed point theorem for
sequentially locally non-constant multi-functions with uni-
formly closed graph. The uniformly closed graph property
of multi-functions is a stronger version of the closed graph
property. Also we apply this theorem to prove the existence
of a social equilibrium in an abstract economy where each
payoff function has sequentially locally at most one max-
imum. In a previous paper [8] we constructively proved
the approximate version of the Fan-Glicksberg fixed point
theorem for multi-functions with uniformly closed graph in
a locally convex space. In this paper we use this result and
prove the exact version of the Fan-Glicksberg fixed point
theorem for sequentially locally non-constant multi-functions
with uniformly closed graph. We follow the Bishop style
constructive mathematics according to [3], [4] and [5].

II. THE FAN-GLICKSBERG FIXED POINT THEOREM

In constructive mathematics a nonempty set is called an
inhabited set. A set S is inhabited if there exists an element
of S.

Note that in order to show that S is inhabited, we
cannot just prove that it is impossible for S to be
empty: we must actually construct an element of
S (see page 12 of [5]).

Also in constructive mathematics compactness of a set
means total boundedness with completeness. A set S is
finitely enumerable if there exist a natural number N
and a mapping of the set {1, 2, . . . , N} onto S. An ε-
approximation to S, a set in a metric space, is a subset
of S such that for each x ∈ S there exists y in that ε-
approximation with |x−y| < ε(|x−y| is the distance between
x and y). S is totally bounded if for each ε > 0 there exists a
finitely enumerable ε-approximation to S. Completeness of
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a set, of course, means that every Cauchy sequence in the
set converges.

We consider an n-dimensional simplex ∆ as a compact
metric space. According to Corollary 2.2.12 of [5], we have
the following result.

Lemma 1: For each ε > 0 there exist totally bounded sets
H1,H2, . . . , Hn, each of diameter less than or equal to ε,
such that ∆ = ∪n

i=1Hi.
The notion that a function f from ∆ to itself has at most

one fixed point by [2] is defined as follows.
Definition 1 (At most one fixed point): For all x, y ∈ ∆,

if x ̸= y, then f(x) ̸= x or f(y) ̸= y.
By reference to the notion that a function has sequentially

at most one maximum in [1], we define the property of
sequential local non-constancy as follows.

Definition 2 (Sequential local non-constancy of functions):
There exists ε̄ > 0 with the following property. For each
ε > 0 less than or equal to ε̄ there exist totally bounded
sets H1,H2, . . . ,Hm, each of diameter less than or equal
to ε, such that ∆ = ∪m

i=1Hi, and if for all sequences
(xn)n≥1, (yn)n≥1 in each Hi, |f(xn) − xn| −→ 0 and
|f(yn)− yn| −→ 0, then |xn − yn| −→ 0.

Let Φ be a compact and convex valued multi-function from
∆ to the collection of its inhabited subsets. Since ∆ and Φ(x)
for x ∈ ∆ are compact, Φ(x) is located (see Proposition 2.2.9
in [5]), that is, |Φ(x)−y| = infz∈Φ(x) |z−y| for y ∈ ∆ exists.

The definition of sequential local non-constancy for multi-
functions is as follows.

Definition 3: (Sequential local non-constancy of multi-
functions): There exists ε̄ > 0 with the following property.
For each ε > 0 less than or equal to ε̄ there exist totally
bounded sets H1, H2, . . . ,Hn, each of diameter less than or
equal to ε, such that ∆ = ∪m

i=1Hi, and if for all sequences
(xn)n≥1, (yn)n≥1 in each Hi |Φ(xn) − xn| −→ 0 and
|Φ(yn)− yn| −→ 0, then |xn − yn| −→ 0.

Now we consider a locally convex space. A locally convex
space consists of a vector space E and a family (pi)i∈I of
semi-norms on X , where I is an index set, for example, the
set of positive integers. X is a subset of E. For each finitely
enumerable subset F of I we define a basic neighborhood
of a set S as follows.

V (S, F, ε) = {y ∈ X|
∑
i∈F

pi(y − z) < ε for some z ∈ S}.

The closure of V (S, F, ε) is denoted by V (S, F, ε), and it is
represented as follows.

V (S, F, ε) = {y ∈ X|
∑
i∈F

pi(y − z) ≤ ε for some z ∈ S}.

We call it a closed basic neighborhood of S. Compactness of
a set in constructive mathematics means total boundedness
with completeness also in a locally convex space. According
to [5] we define total boundedness of a set in a locally convex
space as follows.

Definition 4: (Total boundedness of a set in a locally
convex space): Let X be a subset of E, F be a finitely
enumerable subset of I , and ε > 0. By an ε-approximation
to X relative to F we mean a subset T of X such that for
each x ∈ X there exists y ∈ T with

∑
i∈F pi(x− y) < ε.

X is totally bounded relative to F if for each ε > 0 there
exists a finitely enumerable ε-approximation to X relative to

F . It is totally bounded if it is totally bounded relative to
each finitely enumerable subset of I .

Let X be a compact subset of a locally convex space E
and Φ be a compact and convex valued multi-function from
X to the collection of its inhabited subsets.

An approximate fixed point of a multi-function Φ is
defined as follows.

Definition 5: (Approximate fixed point of a multi-
function): For each ε > 0 x∗ is an approximate fixed point of
a multi-function Φ from X to the collection of its inhabited
subsets if ∑

i∈F

pi(x
∗ − Φ(x∗)) < ε,

for each finitely enumerable F ⊂ I , where pi(x∗−Φ(x∗)) =
infy∈Φ(x∗) pi(x

∗ − y). This infimum exists because a totally
bounded set in a locally convex space is located (Proposition
5.4.4 in [5]).

On the other hand, a fixed point of Φ is defined as follows.
Definition 6 (Fixed point of a multi-function): x∗ is a

fixed point of Φ if∑
i∈F

pi(x
∗ − Φ(x∗)) = 0,

for each finitely enumerable F ⊂ I .
A graph of a multi-function Φ from X to the collection

of its inhabited subsets is

G(Φ) = ∪x∈X{x} × Φ(x).

If G(Φ) is a closed set, we say that Φ has a closed graph. It
implies the following fact.

For sequences (xn)n≥1 and (yn)n≥1 such that
yn ∈ Φ(xn), If xn −→ x, then for some y ∈ Φ(x)
we have yn −→ y.

On the other hand, if the following condition is satisfied,
we say that Φ has a uniformly closed graph.

For sequences (xn)n≥1, (yn)n≥1, (x′n)n≥1,
(y′n)n≥1 such that yn ∈ Φ(xn), y′n ∈ Φ(x′n), if∑

i∈F pi(xn−x′n) −→ 0, then for any yn and some
y′n, we have

∑
i∈F pi(yn− y′n) −→ 0, and for any

y′n and some yn, we have
∑

i∈F pi(yn−y′n) −→ 0
for each finitely enumerable F ⊂ I .
Let y ∈ Φ(x), (x′n)n≥1 = {x, x, . . . } and
(y′n)n≥1 = {y, y, . . . } be sequences with con-
stant points x and y. If

∑
i∈F pi(xn − x′n) =∑

i∈F pi(xn−x) −→ 0, then
∑

i∈F pi(yn−y′n) =∑
i∈F pi(yn − y) −→ 0 for each finitely enumer-

able F ⊂ I , that is, if xn −→ x, then yn −→ y,
and so uniformly closed graph property implies
closed graph property.

In this definition∑
i∈F pi(xn−x′n) −→ 0 means that for any δ > 0

there exists n0 such that when n ≥ n0 we have∑
i∈F pi(xn−x′n) < δ, and

∑
i∈F pi(yn−y′n) −→

0 means that for any ε > 0 there exists n′0 such
that when n ≥ n′0, we have

∑
i∈F pi(yn−y′n) < ε.

If X is totally bounded relative to each finitely enu-
merable subset of I , there exists a finitely enumerable τ -
approximation {x0, x1, . . . , xm} to X relative to each finitely
enumerable F ⊂ I , that is, for each x ∈ X we have
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∑
i∈F pi(x − xi) < τ for at least one xi, i = 0, 1, . . . ,m

for each F . Let

Φτ (x) = V (Φ(x), F, τ),

where V (Φ(x), F, τ) is a closed basic neighborhood of Φ(x).
If Φ has a uniformly closed graph, Φτ also has a uniformly
closed graph. Now let

XV =

{
n∑

i=0

αixi|xi ∈ X,

n∑
i=0

αi = 1, αi ≥ 0

}
. (1)

This is the convex-hull of {x0, x1, . . . , xm}. If X is convex
and compact, we have XV ⊂ X and for x ∈ X ,

Φ(x) ⊂ X ⊂ V (XV , F, τ).

Thus,
Φ(x) ∩ V (XV , F, τ) ̸= ∅,

and so
Φτ (x) ∩XV ̸= ∅.

Let
ΦXV (x) = Φτ (x) ∩XV for x ∈ XV .

Then, it is a compact and convex valued multi-function
with uniformly closed graph from XV to the collection
of its inhabited subsets. If the dimension of XV is n,
XV is homeomorphic to an n-dimensional simplex ∆ =
{(α0, α1, . . . , αn)|

∑n
i=0 αi = 1}. Therefore, a multi-

function with uniformly closed graph from ∆ to the col-
lection of its inhabited subsets corresponds one to one to a
multi-function with uniformly closed graph from XV to the
collection of its inhabited subsets.

The definition of sequential local non-constancy of multi-
functions from XV to the collection of its inhabited subsets
is as follows.

Definition 7: (Sequential local non-constancy of multi-
functions in a locally convex space): There exists ε̄ > 0 with
the following property. For each ε > 0 less than or equal to
ε̄ there exist totally bounded sets H1,H2, . . . , Hn, each of
diameter less than or equal to ε, such that XV = ∪m

i=1Hi,
and if for all sequences (xn)n≥1, (yn)n≥1 in each Hi∑

i∈F pi(Φ(xn)−xn) −→ 0 and
∑

i∈F pi(Φ(yn)−yn) −→
0, then

∑
i∈F pi(xn−yn) −→ 0 for each finitely enumerable

F ⊂ I .
Now we show the following lemma.
Lemma 2: Let Φ be a multi-function with uniformly

closed graph from a compact and convex set X to the
collection of its inhabited subsets in a locally convex space,
and assume that infx∈Hj

∑
i∈F pi(Φ(x) − x) = 0 in some

Hj such that ∪m
j=1Hj = X . If the following condition holds:

For each ε > 0 there exists η > 0 such that
if x, y ∈ Hi,

∑
i∈F pi(Φ(x) − x) < η and∑

i∈F pi(Φ(y)−y) < η, then
∑

i∈F pi(x−y) ≤ ε.

Then, there exists a point z ∈ X such that Φ(z) = z, that
is, a fixed point of Φ.

Proof: Choose a sequence (xn)n≥1 in Hi such that∑
i∈F pi(Φ(xn) − xn) −→ 0. Compute N such that∑
i∈F pi(Φ(xn) − xn) < η for all n ≥ N . Then, for

m,n ≥ N we have
∑

i∈F pi(xm − xn) ≤ ε. Since ε > 0 is
arbitrary, (xn)n≥1 is a Cauchy sequence in S, and converges

to a limit z ∈ Hi. The uniformly closed graph property of ϕ
yields

∑
i∈F pi(Φ(z)− z) = 0, that is, Φ(z) = z.

Next we show the following theorem.
Theorem 1: (The Fan-Glicksberg fixed point theorem for

sequentially locally non-constant multi-functions): Let X be
a compact (totally bounded and complete) and convex subset
of a locally convex space E, and Φ be a convex and compact
valued, sequentially locally non-constant multi-function with
uniformly closed graph from X to the collection of inhabited
subsets of X . Then, Φ has a fixed point.

Proof:

1) According to [8] ΦXV has an approximate fixed point,
that is, for any η > 0 there exists x∗ such that∑

i∈F

pi(x
∗ − ΦXV

(x∗)) < η,

for each finitely enumerable F ⊂ I . Then,∑
i∈F

pi(x
∗ − Φ(x∗)) < η + τ

for τ > 0. Let ε = η + τ . We have∑
i∈F

pi(x
∗ − Φ(x∗)) < ε.

Since η and τ are arbitrary, and so ε is arbitrary, we
obtain

inf
x∈Hj

∑
i∈F

pi(x
∗ − Φ(x∗)) = 0

for some Hj such that X = ∪m
j=1Hj .

2) Choose a sequence (zn)n≥1 in some Hi such that∑
i∈F pi(Φ(zn) − zn) −→ 0. In view of Lemma 2 it

is enough to prove that the following condition holds
for each finitely enumerable F ⊂ I .

For each ε > 0 there exists η > 0 such that
if x, y ∈ Hi,

∑
i∈F pi(Φ(x) − x) < η and∑

i∈F pi(Φ(y)− y) < η, then
∑

i∈F pi(x− y) ≤
ε.

Assume that the set

K = {(x, y) ∈ Hi ×Hi :
∑
i∈F

pi((x− y) ≥ ε}

is nonempty and compact (Theorem 2.2.13 of [5]).
Since the mapping (x, y) −→ max(

∑
i∈F pi(Φ(x) −

x),
∑

i∈F pi(Φ(y) − y)) is uniformly continuous, we
can construct an increasing binary sequence (λn)n≥1

such that

λn = 0

⇒ inf
(x,y)∈K

max(
∑
i∈F

pi(Φ(x)− x),
∑
i∈F

pi(Φ(y)− y))

< 2−n,

λn = 1

⇒ inf
(x,y)∈K

max(
∑
i∈F

pi(Φ(x)− x),
∑
i∈F

pi(Φ(y)− y))

> 2−n−1.

It suffices to find n such that λn = 1. In that case, if∑
i∈F pi(Φ(x) − x) < 2−n−1,

∑
i∈F pi(Φ(y) − y) <

2−n−1, we have (x, y) /∈ K and
∑

i∈F pi(x− y) ≤ ε.
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Assume λ1 = 0. If λn = 0, choose (xn, yn) ∈ K such
that max(

∑
i∈F pi(Φ(xn) − xn),

∑
i∈F pi(Φ(yn) −

yn)) < 2−n, and if λn = 1, set xn = yn = zn. Then,∑
i∈F pi(Φ(xn) − xn) −→ 0 and

∑
i∈F pi(Φ(yn) −

yn) −→ 0, so
∑

i∈F pi(xn − yn) −→ 0. Computing
N such that

∑
i∈F pi(xN − yN ) < ε, we must have

λN = 1. We have completed the proof.

III. SOCIAL EQUILIBRIUM IN AN ABSTRACT ECONOMY

In this section using the Fan-Glicksberg fixed point theo-
rem for sequentially locally non-constant multi-functions we
prove the existence of a social equilibrium in an abstract
economy. It is a generalization of Nash equilibrium in a
strategic game

First we present a constructive version of the Maximum
Theorem. We define continuity of multi-functions as follows.

Definition 8 (Continuity of multi-functions): Let X , Y be
locally convex spaces. A multi-function Φ from X to the
collection of subsets of Y is continuous if it satisfies the
following conditions.

1) It has a uniformly closed graph.
2) For a sequence (xn)n≥1 and y ∈ Y such that xn −→ x

and y ∈ Φ(x) there exist a sequence (yn)n≥1 such that
yn ∈ Φ(xn) and yn −→ y.

Let X , Y be locally convex spaces, f be a uniformly
continuous function from X × Y to the set of real numbers
R, and let Φ be a compact valued continuous multi-function
from X to the set of inhabited subsets of Y . Consider a
maximization problem.

maximize f(x, y) subject to y ∈ Φ(x).

In constructive mathematics we can not generally prove the
existence of the maximum of f even if Φ(x) is compact and
f is uniformly continuous, but we can prove the existence of
the supremum (see Proposition 5.4.3 in [5]). It is represented
as

sup
y∈Φ(x)

f(x, y). (2)

We will show that we can find the maximum of a real
valued function in a locally convex space if it has sequentially
locally at most one maximum. The definition of the notion
of sequentially locally at most one maximum is as follows.

Definition 9: (Sequentially locally at most one maximum):
Let M = sup fy∈Φ(x)f(x, y). There exists ε̄ > 0 with the
following property. For each ε > 0 less than or equal to
ε̄ there exist totally bounded sets H1,H2, . . . , Hm, each of
diameter less than or equal to ε, such that Φ(x) = ∪m

i=1Hi,
and if for all sequences (yn)n≥1, (y′n)n≥1 in each Hi,
|f(x, yn) − M | −→ 0 and |f(x, y′n) − M | −→ 0, then∑

i∈F pi(yn − y′n) −→ 0.
Now we show the following lemma, which is based on

Lemma 2 of [1].
Lemma 3: Let f(x, y) be a uniformly continuous function

from a compact set Φ(x) to R. Let supy∈Φ(x) f(x, y) =M .
then, supy∈Hi

f(x, y) = M for some Hj ⊂ Φ(x) such that
Φ(x) = ∪m

j=1Hj . If the following condition holds:
For each δ > 0 there exists ε > 0 such that if
y, y′ ∈ Hi, f(x, y) ≥M−ε and f(x, y′) ≥M−ε,
then

∑
i∈F pi(y − y′) ≤ δ.

Then, there exists a point z ∈ Hi such that f(x, z) = M ,
that is, f(x, y) has the maximum in Φ(x).

Proof: Choose a sequence (yn)n≥1 in Hi such that
f(x, yn) −→ M . Compute N such that f(x, yn) ≥ M − ε
for all n ≥ N . Then, for m,n ≥ N we have

∑
i∈F pi(ym −

yn) ≤ δ. Since δ > 0 is arbitrary, (yn)n≥1 is a Cauchy
sequence in Hi, and converges to a limit z ∈ Hi. The
continuity of f(x, y) yields f(x, z) =M .

Next we show the following lemma, which is based on
Proposition 3 of [1].

Lemma 4: Each uniformly continuous function f(x, y)
from Φ(x) to R, which has sequentially locally at most one
maximum, has the maximum.

Proof: Choose a sequence (zn)n≥1 in Hi such that
f(x, zn) −→M . In view of Lemma 3 it is enough to prove
that the following condition holds.

For each δ > 0 there exists ε > 0 such that if
y, y′ ∈ Hi, f(x, y) ≥M−ε and f(x, y′) ≥M−ε,
then

∑
i∈F pi(y − y′) ≤ δ.

Assume that the set

K = {(y, y′) ∈ Hi ×Hi :
∑
i∈F

pi(y − y′) ≥ δ}

is nonempty and compact (for a metric space see Theorem
2.2.13 of [5]. It similarly holds for a locally convex space).
Since the mapping (y, y′) −→ min(f(x, y), f(x, y′)) is
uniformly continuous, we can construct an increasing binary
sequence (λn)n≥1 such that

λn = 0 ⇒ sup
(y,y′)∈K

min(f(x, y), f(x, y′)) > M − 2−n,

λn = 1 ⇒ sup
(y,y′)∈K

min(f(x, y), f(x, y′)) < M − 2−n−1.

It suffices to find n such that λn = 1. In that case,
if f(x, y) > M − 2−n−1, f(x, y′) > M − 2−n−1, we
have (y, y′) /∈ K and

∑
i∈F pi(y − y′) ≤ δ. Assume

λ1 = 0. If λn = 0, choose (yn, y
′
n) ∈ K such that

min(f(x, yn), f(x, y
′
n)) > M − 2−n, and if λn = 1, set

yn = y′n = zn. Then, f(x, yn) −→M and f(x, y′n) −→M ,
so

∑
i∈F pi(yn − y′n) −→ 0. Computing N such that∑

i∈F pi(yN − y′N ) < δ, we must have λN = 1. We have
completed the proof.

This lemma means that f(x, y) has the maximum in Φ(x),
that is, maxy∈Φ(x) f(x, y) exists. We define

ψ(x) = max
x∈X,y∈Φ(x)

f(x, y).

It is a function from X to R, and define

Ψ(x) = {y ∈ Φ(x)|f(x, y) = ψ(x)}.

It is a multi-function from X to the set of inhabited subsets
of Y .

Now we show the following theorem which is the maxi-
mum theorem for functions with sequentially locally at most
one maximum. It is based on [10].

Theorem 2: Let X , Y be locally convex spaces, let f be
a uniformly continuous function with sequentially locally at
most one maximum from X × Y to R, and let Φ be a
compact valued continuous multi-function from X to the set
of inhabited subsets of Y . Then,

1) ψ defined above is uniformly continuous in X , and
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2) Ψ defined above has a uniformly closed graph.

Proof: Consider sequences (xn)n≥1 in X and (yn)n≥1

in Y such that yn ∈ Ψ(xn), xn −→ x and yn −→ y.
yn ∈ Ψ(xn) means yn ∈ Φ(xn) and f(xn, yn) = ψ(xn).
Since F is a continuous multi-function, we have y ∈ Φ(x),
and for every y′ ∈ Φ(x) there exist sequences (xn)n≥1 and
(y′n)n≥1 such that y′n ∈ Ψ(xn), xn −→ x and y′n −→ y′.
Assume f(x, y′) > f(x, y). Then, f(xn, y′n) > f(xn, yn)
for sufficiently large n, But it contradicts yn ∈ Ψ(xn), and
so f(x, y) = ψ(x) and y ∈ Ψ(x). Since Φ has a uniformly
closed graph, Ψ also has a uniformly closed graph.

Since ψ(xn) = f(xn, yn) −→ f(x, y) = ψ(x), ψ is
uniformly continuous because f is uniformly continuous.

An abstract economy is described as follows. There are
n players. n is a finite positive integer. Let Xi be the set
of strategies of player i, and denote his each strategy by
xi. Xi is a finite or infinite set. The set of strategies of all
players is denoted by X =

∏n
i=1X

i, and a combination of
strategies of all players, which is called a profile, is denoted
by x. The set of available strategies of each player is not
fixed, but depends on strategies chosen by players other than
him. Define a multi-function Φi : X → Xi. Φi(x) ⊂ Xi

denotes a set of available strategies for player i when a
profile of strategies of all players is x. It is a continuous
multi-function in the sense defined above, and we assume
that Φi(x) is a compact and convex set in a locally convex
space. We denote a set of available strategies for players
other than i at a profile x by Φ−i(x). The payoff of player
i is represented by a function ui. ui depends on strategies
chosen by all players including player i himself, and it is
uniformly continuous, quasi-concave and has sequentially
locally at most one maximum.

Quasi-concavity of payoff functions in our constructive
situation is defined as follows:

Let xi ∈ Xi be a strategy of player i and x−i be a
profile of strategies of players other than i. If, for
each pair xi, xi

′ ∈ Xi and δ > 0, ui satisfies the
condition

ui(λxi + (1− λ)xi
′
, x−i)

> min
xi∈Φi(x),x−i∈Φ−i(x)

(ui(xi, x−i), ui(xi
′
, x−i))

− δ,

then it is quasi-concave.

A Nash equilibrium of the abstract economy is called a
social equilibrium. It is defined as a profile of strategies of
players which maximize the payoff of each player under the
constraint expressed by Φi(x).

Theorem 3: Under these assumptions there exists a social
equilibrium of the abstract economy.

Proof: Define a function ψi by

ψi(x) = max
xi∈Φi(x),x−i∈Φ−i(x)

ui(x), i = 1, 2, . . . , n,

and define a multi-function Ψ = (Ψ1,Ψ2, . . . ,Ψn) by

Ψi(x) ={xi ∈ Φi(x)|ui(xi, x−i) = ψi(x)},
i = 1, 2, . . . , n,

where x = (x1, x2, . . . , xn). It is the set of best response
strategies of player i. By Theorem 2 ψi is uniformly continu-
ous, and Ψi has a uniformly closed graph. Since ui(x) is uni-
formly continuous, Ψi(x) is totally bounded (Theorem 5.4.6
of [5]). Let us check convexity of Ψi(x). Let xi, xi

′ ∈ Φi(x)
and for 0 ≤ λ ≤ 1 define xiλ = λxi+(1−λ)xi′ . Since Φi(x)
is convex, xiλ ∈ Φi(x). Quasi-concavity of ui(x) implies
that for each xi, xi

′ ∈ Ψi(x) and δ > 0 we have

ui(λxi+(1− λ)xi
′
, x−i)

> min
xi∈Φi(x)

(ui(xi, x−i), ui(xi
′
, x−i))− δ.

Since δ is arbitrary, we have

ui(λxi+(1−λ)xi
′
, x−i) ≥ min

xi∈Φi(x)
(ui(xi, x−i), ui(xi

′
, x−i))

Thus, xiλ is a best response strategy of player i, and Ψi(x)
is convex.

Finally we check that Ψ is sequentially locally
non-constant. Let (xn)n≥1, (x′n)n≥1 be sequences in
Hj such that

∑
i∈F pi(Ψ

i(xn) − xn) −→ 0 and∑
i∈F pi(Ψ

i(x′n) − x′n) −→ 0, where ∪m
j=1Hj = Φ(x) =

(Φ1(x),Φ2(x), . . . ,Φn(x)) and Hj , j = 1, . . . ,m, are totally
bounded sets whose diameters are smaller than ε for some
ε > 0. Since ui is uniformly continuous, |ui(xn)−M | −→ 0
where M is maxui in a domain including xn for all n, and
similarly |ui(x′n) − M ′| −→ 0 where M ′ is maxui in a
domain including xn for all n′. Since ui has sequentially
locally at most one maximum, M = M ′ with sufficiently
small ε. Thus, we have |ui(x′n)−M | −→ 0. Then,∑

i∈F

pi(xn − x′n) −→ 0.

Therefore, Ψ is uniformly sequentially non-constant, and so
by the Fan-Glicksberg fixed point theorem for sequentially
locally non-constant multi-functions there exists x∗ such that
x∗ ∈ Ψ(x∗).

At x∗ all players maximize their payoffs under the con-
straints expressed by Φ(x∗), and so x∗ is a social equilibrium
in an abstract economy.
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