
Error Correction of Enumerative Induction of
Deterministic Context-free L-system Grammar

Ryohei Nakano

Abstract—This paper addresses error correction capability of
grammatical induction method called LGIC for deterministic
context-free L-systems. LGIC induces L-system grammars from
a transmuted string mY. In the method, sets of parameter
values are enumerated and those located within the tolerable
distance from mY are used to form candidates of production
rules. Each candidate of production rules is used to generate
a candidate string Z, and the similarity between Z and mY
is calculated and stored. Finally, several candidates having the
strongest similarities are selected as the final solutions. Our
experiments using strings having replacement- or insertion-
type transmutation showed that LGIC error correction strongly
depends on some system parameter and works better for
replacement-type than for insertion-type.

Index Terms—grammatical induction, L-system, error cor-
rection, plant model, transmutation

I. INTRODUCTION

L-systems were originally developed by Lindenmayer as
a mathematical theory of plant development [1]. The central
concept is rewriting, which is a powerful mechanism for
generating complex objects from a simple initial object using
production rules.

As for rewriting systems, Chomsky’s work on formal
grammars is well known. L-systems and formal grammars
are both string rewriting systems, but there is the essential
difference; that is, productions are applied in parallel in L-
systems, while applied sequentially in formal grammars.

The reverse process of rewriting is called grammatical
induction, which discovers a set of production rules given
a set of strings. Although grammatical induction of formal
grammars has been studied for decades, the induction of
context-free grammars is still an open problem. The induc-
tion of L-system grammars is also an open problem little
explored so far.

L-systems can be broadly divided using two aspects: (1)
deterministic or stochastic, and (2) context-free or context-
sensitive. McCormack [2] addressed computer graphics mod-
eling through evolution of deterministic/stochastic context-
free L-systems. Nevill-Manning [3] proposed a simple algo-
rithm called Sequitur, which uncovers structures like context-
free grammars from various sequences; however, it worked
with limited success for grammatical induction of L-system
grammar. Schlecht, et al. [4] proposed statistical structural in-
ference for microscopic 3D images through learning stochas-
tic L-system model. Damasevicius [5] addressed structural
analysis of DNA sequences through evolution of stochastic
context-free L-system grammars.

This work was supported in part by Grants-in-Aid for Scientific Research
(C) 22500212 and Chubu University Grant 24IS27A.

R. Nakano is with the Department of Computer Science, Graduate School
of Engineering, Chubu University, 1200 Matsumotocho, Kasugai 487-8501,
Japan. email: nakano@cs.chubu.ac.jp

Nakano and Yamada [6] proposed an efficient induction
method for deterministic context-free L-system, employing a
number theory-based approach. The method assumes a given
string includes no errors, making it possible to employ the
number theory. In the real world, however, any object may
have some noise, errors, or transmutation. As for transmuta-
tion, we can consider several types such as replacement-type,
insertion-type, deletion-type, or mixed-type.

Nakano and Suzumura [7] proposed an enumerative in-
duction method called LGIC for deterministic context-free
L-systems. The method has error correction capability, which
means it discovers L-system grammars from a transmuted
string mY . LGIC works as follows. First, sets of parameter
values are enumerated and those within the tolerable distance
from mY are used to form candidates of production rules.
Each candidate of production rules is used to generate a
candidate string Z, and the similarity between Z and mY is
calculated, and finally several best candidates are selected as
the final solutions.

This paper evaluates the error correction capability of
LGIC using strings having different amount of replacement-
or insertion-type transmutation. Our experiments showed
LGIC error correction strongly depends on some system
parameter and works better for replacement-type than for
insertion-type.

II. BACKGROUND

D0L-system. The simplest class of L-systems are determin-
istic context-free called D0L-systems. D0L-system is defined
as G = (V,C, ω, P), where V and C denote sets of variables
and constants, ω is an initial string called axiom, and P
is a set of production rules. A variable is a symbol that is
replaced in rewriting, and a constant is a symbol that remains
unchanged in rewriting and is used to control turtle graphics.

Notation. Shown below is the notation employed in this
paper. Here we consider the following two production rules.

rule A : A →????????
rule B : B →??????

mY : given transmuted string.
n: the number of rewritings.
Z(n): string obtained after n times rewritings.
αA, αB, αK : the numbers of variables A, B and
constant K occurring in the right side of rule A.
βA, βB, βK : the numbers of variables A, B and
constant K occurring in the right side of rule B.
yA, yB, yK : the numbers of variables A, B and
constant K occurring in mY .
z
(n)
A , z

(n)
B , z

(n)
K : the numbers of variables A, B and

constant K occurring in Z(n).

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_06

(Advance online publication: 9 February 2013)

__

Transmutation. As for string transmutation, there can be
several types: replacement-type (r-type), insertion-type (i-
type), deletion-type (d-type), or mixed-type (m-type). In this
paper, r-type and i-type transmutation are considered. In r-
type transmutation designated symbols of a string is replaced
with symbols selected randomly from the set of symbols,
while in i-type transmutation symbols randomly selected are
inserted at designated positions of a string.

As for how transmutation occurs, we consider two rates:
coverage rate Pc and occurrence rate Po. We assume trans-
mutation occurs only locally around the center of an original
string Y . The coverage rate Pc represents the proportion of
transmutation area to the whole Y . For example, Pc = 0.25
means 25 % area around the center of Y is to be transmuted.
The occurrence rate Po represents the probability of transmu-
tation in the transmutation area. Thus, overall transmutation
rate Pt can be computed as follows:

Pt = Pc × Po (1)

Valid Transmutation. Simple transmutation will generate
an invalid string, which means the string cannot be drawn
through turtle graphics. To keep the transmutation valid, the
numbers of left and right square brackets are to be monitored
throughout transmutation and controlled if necessary. Specif-
ically, in the transmutation area the number count` of left
square brackets should be larger than or equal to the number
countr of right ones. Moreover, when the transmutation
ends, we should assure count` = countr by adding the right
square brackets if necessary. By applying such controlled
transmutation, we get a valid transmuted string mY from
the original string Y .

III. L-SYSTEM GRAMMAR INDUCTION WITH ERROR
CORRECTION

The enumerative induction method called LGIC (L-system
Grammar Induction with error Correction) [7] is explained.
Here we consider the following D0L-system. Given a trans-
muted string mY , LGIC generates candidates of a set of
rewritings n and rules A and B.

n =?, axiom : A

rule A : A →????????
rule B : B →?????

Growth Equation. The above D0L-system has the following
growth of the numbers of occurrences of A and B.

(1 0) Tn = (z(n)
A z

(n)
B), T =

(
αA αB

βA βB

)
(2)

Enumeration of Variable Parameters and the Number
of Rewritings. Since mY is transmuted, we cannot rely
on a number theory-based approach [6] any more. Here we
employ an enumerative approach. To find a reasonable set
of (n, αA, αB , βA, βB), we examine all the combinations of
value ranges [0, max var] of five integer parameters, where
z
(n)
A and z

(n)
B are easily calculated using eq.(2). Then, the

following difference from mY is calculated to evaluate how
good the set is.

diff = |z(n)
A − yA| + |z(n)

B − yB | (3)

If diff is smaller than or equal to the tolerable distance, the
set (n, αA, αB, βA, βB) is selected for the later processing.

Selection of Constant Parameters. For each constant K
we repeat the following independently. Using the following
equations we calculate r

(n)
A and r

(n)
B , the numbers of A and

B rewritings occurred until n rewritings.

r
(n)
A = 1 + z

(1)
A + z

(2)
A + · · · + z

(n−1)
A (4)

r
(n)
B = z

(1)
B + z

(2)
B + · · · + z

(n−1)
B (5)

Then we have the following equation whose coefficients and
solution are non-negative integers.

z
(n)
K = r

(n)
A αK + r

(n)
B βK (6)

This can be used to narrow down the upper bounds of
constant parameters αK and βK .

αK ≤ dz(n)
K /r

(n)
A e + 1 ≡ upperA (7)

βK ≤ dz(n)
K /r

(n)
B e + 1 ≡ upperB (8)

For each set (n, αA, αB, βA, βB), we find the best pair of
(αK , βK) which minimizes |z(n)

K − yK | from all the integer
combinations of [0, upperA] × [0, upperB].

Generate-and-test of Rule Candidates. Now we have
candidates of (n, αA, αB, βA, βB , αK , βK). Since in given
string mY the right sides of rules A and B repeatedly appear
as substrings, we exhaustively extract from mY the following
two substrings:

(a) a substring having αA A’s, αB B’s, and αK K’s to form
a rule A candidate,
(b) a substring having βA A’s, βB B’s, and βK K’s to form
a rule B candidate.

For each combination of rules A and B candidates, we
rewrite n times beginning with the axiom to generate a string
Z(n). Then, we calculate the similarity between Z(n) and
mY . Finally, several pairs of candidates having the strongest
similarities are selected as solutions.

Similarity between Two Strings. As stated above, we need
the measure to evaluate the similarity between two strings.
LGIC employs the longest common subsequence (LCS) [8].
For example, an LCS of ABCDABC and BDCAB is BDAB
or BCAB. Given two strings we may have more than one
LCSs, but, of course, the length of each LCS is the same.
As the similarity between two strings S1 and S2, we use the
length of LCS of S1 and S2. Note that LCS can cope with
any type of transmutation.

LCSs and its length can be found using dynamic program-
ming [8]. The code size is very small, but the processing
time will be long if two string lengths get large. Here we
only need the length of an LCS, which makes the memory
size much smaller accelerating the processing speed.

Another reasonable measure is Levenshtein distance [9],
which is defined as the minimum number of modifications
required to transform one string into the other. We consider
these two measures will result in much the same result.

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_06

(Advance online publication: 9 February 2013)

__

Procedure of LGIC Method. LGIC goes as below. The
tolerable distance tol diff and the number of final solutions
tops are system parameters.

(step 1) Select parameter candidates.
(step 1.1) Count occurrences in mY to get yA, yB , and yK .
(step 1.2)] Select a set of parameters (n, αA, αB, βA, βB)
whose diff is smaller than or equal to tol diff .
(step 1.3) For each (n, αA, αB , βA, βB) selected above,
select the best pair (αK , βK).

(step 2) For each (n, αA, αB , βA, βB , αK , βK) generate rule
candidates.
(step 2.1) From mY get a substring having αA A’s, αB B’s,
and αK K’s to form a rule A candidates.
(step 2.2) From mY get a substring having βA A’s, βB B’s,
and βK K’s to form a rule B candidates.
(step 2.3) For each combination of rule A candidates and
rule B candidates, generate a string Z(n), and calculate the
similarity between Z(n) and mY .

(step 3) Among the candidates, select tops candidates having
the strongest similarities as the final solutions.

IV. EXPERIMENTS

Error correction capability of LGIC was evaluated using
a plant model. A plant model ex05n is a slight variation of
ex05p shown in [1]. Figure 1 shows ex05n, which was used
in our experiments. The string length of ex05n is 4,243. PC
with Xeon(R), 2.66GHz, dual was used.

(ex05p) n = 7, axiom : X

rule : X → F [+X][−X]FX

rule : F → FF

(ex05n) n = 6, axiom : X

rule : X → F [+X][−X]FX

rule : F → FF

Fig. 1. Normal plant model ex05n

As for transmutation, we considered replacement-type (r-
type) and insertion-type (i-type). For each transmutation, we
considered combinations of three coverage rates Pc = 0.25,
0.5, 0.75 and four occurrence rates Po = 0.25, 0.5, 0.75,

1.0. For each combination we transmuted ex05n five times
changing a seed for random number generator.

As for LGIC system parameters, the tolerable distance
tol diff is set to be 100 at first and then changed to 150 for
r-type, and to 200 for i-type transmutation; this is because
LGIC with 150 improved its performance only slightly for
i-type transmutation. The number of final solutions tops is
set to be 10. Moreover, the maximum of variable or constant
occurrences in a rule max var is set to be 10.

A. Error Correction for r-type Transmutation

First, we show the results of LGIC error correction for r-
type transmutation. Table I shows the success rates of LGIC
error correction with tol diff = 100 for r-type transmu-
tation. When Pt = Pc × Po ≤ 1/8 (= 0.125), LGIC with
tol diff = 100 discovered the true grammar ex05n with
probability 1 (= 5 out of 5 runs). However, when Pt exceeds
3/16 (= 0.188), the success rate rapidly dropped to around
zero. The table also shows once Pt exceeds the boundary,
LGIC cannot discover the true grammar for any higher Pt.
Moreover, when the true grammar was found, it was always
rated No.1 showing the strongest similarity. Thus, the number
of final solutions tops = 10 is reasonable.

TABLE I
SUCCESS RATES OF LGIC ERROR CORRECTION FOR R-TYPE

TRANSMUTATION (tol diff=100)

Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
Pc = 0.25 5/5 5/5 1/5 0/5
Pc = 0.50 5/5 0/5 0/5 0/5
Pc = 0.75 0/5 0/5 0/5 0/5

Figure 2 shows a plant model transmuted in r-type with
Pc = 0.25 and Po = 0.50. LGIC with tol diff = 100 suc-
cessfully discovered the true grammar from this transmuted
plant. Figure 3 shows a plant model transmuted in r-type with
Pc = 0.50 and Po = 0.25. Even from this transmuted plant,
LGIC with tol diff = 100 discovered the true grammar.

Fig. 2. Plant model transmuted in r-type (Pc = 0.25, Po = 0.50)

Table II shows CPU time spent and the number of simi-
larity calculations needed by LGIC with tol diff = 100 for
r-type transmutation. In the experiments we observed most
CPU time was spent for similarity calculation. There is a
tendency that CPU time is proportional to the number of
similarity calculations.

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_06

(Advance online publication: 9 February 2013)

__

Fig. 3. Plant model transmuted in r-type (Pc = 0.50, Po = 0.25)

Table III shows the average statistics of Table II. For each
Po, average CPU time spent by LGIC gets longer as Pc gets
larger; however, for each Pc, average CPU time does not
necessarily increase even if Po gets larger. This may indicate
that the number of rule candidates gets larger when Pc gets
larger for a fixed Po, but doesn’t always get larger even if
Po gets larger for a fixed Pc.

TABLE II
CPU TIME (SEC) OF LGIC FOR R-TYPE TRANSMUTATION TOGETHER
WITH THE NUMBER OF SIMILARITY CALCULATIONS IN PARENTHESES

(tol diff=100)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
93.8 (23) 329.4 (163) 98.0 (26) 127.2 (45)
158.8 (59) 133.7 (50) 95.7 (22) 161.1 (61)

0.25 187.4 (71) 247.8 (113) 199.5 (83) 107.3 (33)
158.3 (62) 426.6 (215) 107.7 (31) 217.5 (100)
205.7 (92) 350.1 (173) 439.7 (223) 286.8 (140)
619.4 (301) 501.1 (244) 684.4 (338) 186.8 (33)
307.9 (130) 545.8 (273) 734.2 (357) 205.4 (46)

0.50 594.9 (297) 370.0 (167) 390.7 (157) 315.1 (103)
1898.3 (1044) 239.9 (84) 375.3 (142) 251.0 (64)

711.0 (357) 562.3 (287) 845.1 (436) 388.7 (157)
1556.8 (855) 2049.7 (1108) 856.7 (394) 700.4 (278)
1232.2 (664) 1606.7 (866) 694.4 (282) 921.1 (434)

0.75 422.3 (168) 2567.6 (1401) 1102.6 (530) 553.4 (194)
423.6 (177) 2236.8 (1194) 773.3 (326) 874.7 (354)

1878.1 (1029) 1206.9 (639) 560.9 (206) 874.9 (370)

TABLE III
AVERAGE CPU TIME (SEC) OF LGIC FOR R-TYPE TRANSMUTATION

TOGETHER WITH THE AVERAGE NUMBER OF SIMILARITY
CALCULATIONS IN PARENTHESES (tol diff=100)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
0.25 160.8 (61) 297.5 (143) 188.1 (77) 180.0 (76)
0.50 826.3 (426) 443.8 (211) 605.9 (286) 269.4 (81)
0.75 1102.6 (579) 1933.5 (1042) 797.6 (348) 784.9 (326)

Now we changed tol diff from 100 to 150, which will
increase LGIC error correction capability since the search
range is enlarged. Table IV shows the success rates of
LGIC with tol diff = 150 for r-type transmutation. When
Pt = Pc × Po = 3/16 (= 0.1875), LGIC with tol diff =
150 discovered the true grammar with probability 0.8 or
1. However, when Pt = 0.25, the success rate dropped to
20 % for Pc = Po = 0.5. Three combinations shown in

parentheses in Table IV were skipped since LGIC will fail
for such Pt.

TABLE IV
SUCCESS RATES OF LGIC ERROR CORRECTION FOR R-TYPE

TRANSMUTATION (tol diff=150)

Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
Pc = 0.25 5/5 5/5 5/5 4/5
Pc = 0.50 5/5 1/5 0/5 (0/5)
Pc = 0.75 4/5 0/5 (0/5) (0/5)

Figure 4 shows a plant model transmuted in r-type with
Pc = Po = 0.50. LGIC with tol diff = 150 successfully
discovered the true grammar from this transmuted plant.
Figure 5 shows a plant model transmuted in r-type with Pc =
0.75 and Po = 0.25. Even from this transmuted plant, LGIC
with tol diff = 150 discovered the true grammar.

Fig. 4. Plant model transmuted in r-type (Pc = 0.50, Po = 0.50)

Fig. 5. Plant model transmuted in r-type (Pc = 0.75, Po = 0.25)

Table V shows CPU time spent and the number of similar-
ity calculations needed by LGIC with tol diff = 150 for r-
type transmutation. When Pt ≤ 1/8, it is obvious LGIC with
tol diff = 150 will succeed; thus, skipped. On the other
hand, when Pt ≥ 1/2, it is also obvious LGIC with tol diff
= 150 will fail; thus, three combinations were skipped. Again,
there is a tendency that CPU time is proportional to the
number of similarity calculations.

Table VI shows the average of Table V. Again, for each
Po, average CPU time gets longer as Pc gets larger; however,
for each Pc, it does not necessarily increase even if Po gets

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_06

(Advance online publication: 9 February 2013)

__

larger. Moreover, when tol diff gets larger, the number of
rule candidates gets larger, and therefore, CPU time gets
longer. When tol diff was changed from 100 to 150, CPU
time increased more than double in most cases.

TABLE V
CPU TIME (SEC) OF LGIC FOR R-TYPE TRANSMUTATION TOGETHER
WITH THE NUMBER OF SIMILARITY CALCULATIONS IN PARENTHESES

(tol diff=150)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
633.9 (315) 397.7 (166)
329.1 (125) 672.4 (328)

0.25 n/a n/a 692.9 (338) 299.5 (104)
250.3 (80) 580.7 (273)

n/a 488.0 (222)
1922.8 (1008) 1449.9 (710)
1932.4 (1026) 992.2 (438)

0.50 n/a 1638.3 (841) 2249.3 (1157) n/a
1621.9 (811) 997.3 (423)
1716.6 (888) 1720.8 (889)

3786.1 (2095) 2767.7 (1424)
3599.8 (1959) 2834.8 (1495)

0.75 2646.8 (1418) 3255.8 (1686) n/a n/a
3191.4 (1724) 4325.3 (2350)
3904.4 (2144) 2067.1 (1025)

TABLE VI
AVERAGE CPU TIME (SEC) OF LGIC FOR R-TYPE TRANSMUTATION

TOGETHER WITH THE AVERAGE NUMBER OF SIMILARITY
CALCULATIONS IN PARENTHESES (tol diff=150)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
0.25 n/a n/a 476.6 (215) 487.7 (219)
0.50 n/a 1766.4 (915) 1481.9 (723) n/a
0.75 3425.7 (1868) 3050.1 (1596) n/a n/a

B. Error Correction for i-type Transmutation

Next, we show the results for i-type transmutation. Table
VII shows the success rates of LGIC with tol diff = 100 for
i-type transmutation. The success range is quite limited; Only
when Pt = Pc ×Po = 1/16 (= 0.0625), LGIC with tol diff
= 100 discovered the true grammar with probability 0.8. For
the other combinations, however, LGIC with tol diff = 100
could not discover the true grammar at all. Compared with
the results for r-type transmutation, LGIC with tol diff =
100 could not work well for i-type transmutation.

TABLE VII
SUCCESS RATES OF LGIC ERROR CORRECTION FOR I-TYPE

TRANSMUTATION (tol diff=100)

Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
Pc = 0.25 4/5 0/5 (0/5) (0/5)
Pc = 0.50 0/5 (0/5) (0/5) (0/5)
Pc = 0.75 (0/5) (0/5) (0/5) (0/5)

Figure 6 shows a plant model transmuted in i-type with
Pc = Po = 0.25. LGIC with tol diff = 100 successfully
discovered the true grammar from this transmuted plant.

Table VIII shows CPU time and the number of similarity
calculations needed by LGIC with tol diff = 100 for i-type
transmutation. Again, there is a tendency that CPU time is
proportional to the number of similarity calculations.

Fig. 6. Plant model transmuted in i-type (Pc = 0.25, Po = 0.25)

Table IX shows the average of Table VIII. For Po= 0.25,
average CPU time gets longer as Pc gets larger; however, for
Pc= 0.25, it does not increase even if Po gets larger.

TABLE VIII
CPU TIME (SEC) OF LGIC FOR I-TYPE TRANSMUTATION TOGETHER

WITH THE NUMBER OF SIMILARITY CALCULATIONS IN PARENTHESES
(tol diff=100)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
552.3 (271) 139.8 (43)
474.4 (226) 813.6 (367)

0.25 499.8 (240) 130.5 (34) n/a n/a
257.7 (112) 285.2 (102)
171.7 (63) 144.1 (45)
268.3 (92)

600.5 (253)
0.50 254.0 (84) n/a n/a n/a

307.9 (114)
989.9 (438)

0.75 n/a n/a n/a n/a

TABLE IX
AVERAGE CPU TIME (SEC) OF LGIC FOR I-TYPE TRANSMUTATION

TOGETHER WITH THE AVERAGE NUMBER OF SIMILARITY
CALCULATIONS IN PARENTHESES (tol diff=100)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
0.25 391.2 (182) 302.6 (118) n/a n/a
0.50 484.1 (196) n/a n/a n/a
0.75 n/a n/a n/a n/a

Now we changed tol diff from 100 to 200, which will
increase error correction capability of LGIC. Table X shows
the success rates of LGIC with tol diff = 200 for i-
type transmutation. When Pt = Pc × Po= 1/16 (= 0.0625),
LGIC with tol diff = 200 discovered the true grammar
with probability 1. When Pt = 1/8 (= 0.125), however, the
success rate dropped to 80 %. Further, in most combinations
where Pt ≥ 3/16 (= 0.1875), LGIC with tol diff = 200
could not discover the true grammar. Compared with the
results with tol diff = 150 for r-type transmutation, we see
LGIC could not work well for i-type even with tol diff =
200. This is because insertion-type transmutation drastically
change occurrence frequencies of symbols, which prevents

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_06

(Advance online publication: 9 February 2013)

__

LGIC from selecting the right set of parameters. Deletion-
type transmutation will work similarly.

TABLE X
SUCCESS RATES OF LGIC ERROR CORRECTION FOR I-TYPE

TRANSMUTATION (tol diff=200)

Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
Pc = 0.25 5/5 4/5 0/5 (0/5)
Pc = 0.50 4/5 0/5 (0/5) (0/5)
Pc = 0.75 0/5 (0/5) (0/5) (0/5)

Figure 7 shows a plant model transmuted in i-type with
Pc = 0.25 and Po = 0.50. LGIC with tol diff = 200 suc-
cessfully discovered the true grammar from this transmuted
plant. Figure 8 shows a plant model transmuted in i-type with
Pc = 0.50 and Po = 0.25. Even from this transmuted plant,
LGIC with tol diff = 200 discovered the true grammar.

Fig. 7. Plant model transmuted in i-type (Pc = 0.25, Po = 0.50)

Fig. 8. Plant model transmuted in i-type (Pc = 0.50, Po = 0.25)

Table XI shows CPU time and the number of similarity
calculations needed by LGIC with tol diff = 200 for i-type
transmutation. Again, there is a tendency that CPU time is
proportional to the number of similarity calculations.

Table XII shows the average of Table XI. Again, for each
Po, average CPU time gets longer as Pc gets larger; however,
for each Pc, average CPU time does not necessarily increase
even if Po gets larger. Moreover, when tol diff gets larger,
the number of rule candidates gets larger, and therefore, CPU
time gets longer. When tol diff was changed from 100 to
200, CPU time increased around three times.

TABLE XI
CPU TIME (SEC) OF LGIC FOR I-TYPE TRANSMUTATION TOGETHER

WITH THE NUMBER OF SIMILARITY CALCULATIONS IN PARENTHESES
(tol diff=200)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
n/a 643.3 (208) 647.9 (180)
n/a 1337.3 (534) 675.7 (189)

0.25 n/a 803.8 (286) 759.4 (225) n/a
n/a 970.6 (355) 1125.7 (377)

1050.9 (466) 594.6 (187) 780.8 (243)
1125.4 (390) 1911.5 (602)
2092.8 (846) 3087.8 (1048)

0.50 978.3 (312) 1661.1 (499) n/a n/a
1329.2 (502) 1978.5 (606)

3506.3 (1544) 1804.2 (577)
3751.6 (1436)
4478.9 (1791)

0.75 2302.6 (818) n/a n/a n/a
3441.2 (1308)
3137.7 (1193)

TABLE XII
AVERAGE CPU TIME (SEC) OF LGIC FOR I-TYPE TRANSMUTATION

TOGETHER WITH THE AVERAGE NUMBER OF SIMILARITY
CALCULATIONS IN PARENTHESES (tol diff=200)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
0.25 1050.9 (466) 869.9 (314) 797.9 (243) n/a
0.50 1806.4 (719) 2088.6 (666) n.a n/a
0.75 3422.4 (1309) n/a n/a n/a

V. CONCLUSION

This paper evaluated error correction capability of gram-
matical induction called LGIC for deterministic context-
free L-systems. Given a transmuted string, LGIC induces
L-system grammars, employing an enumerative approach
to find suitable parameters. Our experiments using strings
with replacement- or insertion-type transmutation showed
that LGIC error correction strongly depends on some system
parameter and works much better for replacement-type than
for insertion-type. In the future we plan to invent another
induction method to overcome these drawbacks.

REFERENCES

[1] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants.
New York: Springer-Verlag, 1990.

[2] J. McCormack, “Interactive evolution of L-system grammars for com-
puter graphics modelling,” in Complex Systems: From Biology to
Computation. ISO Press, Amsterdam, 1993, pp. 118–130.

[3] C. Nevill-Manning, “Inferring sequential structure,” Univ of Waikato,
Tech. Rep. Doctoral Thesis, 1996.

[4] J. Schlecht, K. Barnard, E. Springgs, and B. Pryor, “Inferring grammar-
based structure models from 3d microscopy data,” in Proc. of IEEE
Conf. on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[5] R. Damasevicius, “Structural analysis of regulatory DNA sequences us-
ing grammar inference and support vector machine,” Neurocomputing,
vol. 73, pp. 633–638, 2010.

[6] R. Nakano and N. Yamada, “Number theory-based induction of de-
terministic context-free L-system grammar,” in Proc. Int. Joint Conf.
on Knowledge Discovery, Knowledge Engineering and Knowledge
Management 2010, pp. 194–199.

[7] R. Nakano and S. Suzumura, “Grammatical induction with error cor-
rection for deterministic context-free L-systems,” in Proc. of the World
Congress on Engineering and Computer Science 2012, WCECS 2012,
24-26 Oct, 2012, San Francisco, USA, pp. 534–538.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
algorithms. MIT Press, 1990.

[9] V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–
710, 1966.

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_06

(Advance online publication: 9 February 2013)

__

