

Abstract—The Zigduino is an open-source Arduino compatible
microcontroller platform with an integrated 802.15.4 radio. The
Loosely-coupled Component Infrastructure (LooCI) is a
component-based middleware for building sensor network
applications that runs on the Contiki operating system, which
provides IPv6 networking. In this paper, we describe our
approach to, and experiences of porting the LooCI/Contiki
stack to the Zigduino platform.

Index Terms—LooCI; Contiki; Zigduino; WSN; AVR

I. INTRODUCTION

ireless Sensor Networks (WSN) consist of large
numbers of tiny sensor devices with wireless

communication capabilities which gather sensor data on the
physical environment and transmit this data to more powerful
servers for analysis [1]. Loosely-coupled Component
Infrastructure (LooCI) [21] is a middleware for building
distributed component-based WSN applications. In contrast
to the loose-coupling feature offered by LooCI,
tightly-coupled component models for networked embedded
systems are found in NesC [7], OpenCOM [8], RUNES [9]
and REMORA [10], just to name a few. Remote Procedure
Call (RPC) is often adopted as the means for interaction
between the sensors by the above-mentioned models.
However, this RPC-based interaction is a bad fit with the
characteristics of WSN for three key reasons:

1. Unreliable networking: the low-power wireless

networking protocols available to WSN motes are
inherently unreliable, whereas RPC-calls require a
reliable connection between cooperating components.
While this could be addressed by implementing reliable
networking on top of WSN protocols, this has a high
cost in terms of power-consumption [11].

Zhun Shen is with IBM (Suzhou), China (e-mail:

shenzhun@outlook.com).
David Olalekan Afolabi, Hai-Ning Liang, Nan Zhang, Dawei Liu, Ka

Lok Man are with the Department of Computer Science and Software
Engineering, while Eng Gee Lim is with the Department of Electrical and
Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou,
China (e-mail: david.afolabi09@student.xjtlu.edu.cn and {haining.liang,
nan.zhang, dawei.liu, ka.man, enggee.lim}@xjtlu.edu.cn).

Ka Lok Man is also with the Baltic Institute of Advanced Technologies,
Lithuania.

Chi-Un Lei is with the Department of Electrical and Electronic
Engineering, The University of Hong Kong, Hong Kong, China (e-mail:
culei@eee.hku.hk).

Yue Yang and Lixin Cheng are with the Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences, China (e-mail:
yangyue@hotmail.com, clx009@gmail.com).

* Corresponding author: Ka Lok Man (ka.man@xjtlu.edu.cn).

2. Tight coupling: the use of RPC results in a tight

coupling between cooperating components, which has
two negative effects. Firstly, the failure of one node may
results in the failure of another. Secondly, to safely
enact reconfiguration between nodes cooperating using
RPC it is necessary to place both nodes into quiescent
state [12]. This is problematic as contemporary
quiescence protocols do not scale well in unreliable
network environments.

3. Centralized architecture: while it is not inherent to the

RPC model, current implementations of RPC [13] use a
centralized service registry to mediate the discovery of
software services. As has been argued in [14], this result
in an implicit distributed dependency, which is invisible
to the developer and thus cannot be reasoned about.

To address the above problems, LooCI was designed and it
better fits the dynamic aspect of WSNs for the following
reasons:

1. Loose-coupling: cooperating components is loosely

coupled. This ensures that (a) the failure of a component
does not lead to the failure of remote component and (b)
that components may be reconfigured without the need
for expensive distributed quiescence protocols.

2. Decentralization: the LooCI interaction model for WSN
is decentralized so that the failure of a centralized
system element, or intermittent connectivity do not lead
to the failure of cooperating motes.

3. Separation of concerns: as described previously,

component models facilitate a separation of concerns,
wherein embedded developers provide reusable units of
software functionality and application developers
compose these components together to form
applications. A WSN binding model should therefore
cleanly separate distributed concerns from local
software implementations.

LooCI is considered an important contribution to future

WSNs because of its simplicity in implementation, small
initialization overhead, and low memory requirement. WSNs
are characterized by their high heterogeneity. Take
environment monitoring as an example. Commonly used
environment monitoring sensors include temperature sensors,
CO/CO2 sensors, and noise sensors. These sensors can differ
from each other in the operating systems and in the
underlying hardware, which pose a barrier for

Porting LooCI from the Contiki Platform to the
Zigduino Platform: An Working Approach

Zhun Shen, David Olalekan Afolabi, Hai-Ning Liang, Nan Zhang, Dawei Liu, Ka Lok Man*, Eng Gee
Lim, Chi-Un Lei, Yue Yang, Lixin Cheng

W

IAENG International Journal of Computer Science, 40:2, IJCS_40_2_06

(Advance online publication: 21 May 2013)

__

interoperability. LooCI can help to remove the barrier and
support the interoperation between programs written in
different languages. Small initialization overhead implies
short initialization time. This is very important for real-time
applications like target tracking and object localization. In
order to minimize the energy consumption, sensor nodes are
commonly put in sleep mode until a target is identified or an
object is arriving. For those sensor nodes in sleep mode, it is
critical to be able to wake up immediately. LooCI can be
initialized within a few milliseconds, making it suitable for
real-time applications. Finally, compared with traditional
operation systems of WSNs, such as TinyOS, the memory
cost of LooCI is much smaller. This makes it suitable for the
sensor nodes that have very limited memory space.

LooCI runs on the Contiki operating system that provides

a specialized set of abstractions that can be used to build
highly efficient embedded software. Specifically, Contiki
provides dynamic loading and unloading of individual
programs and services [1]. In this paper we report on our
experiences of porting LooCI and Contiki platform to the
Zigduino platform.

LooCI is comprised of a lightweight execution

environment, runtime reconfigurable component model and
an event-based binding model. Its features promote safe and
efficient application development, management and
reconfiguration [2]. LooCI Reconfiguration Engine
maintains references to all local components and enacts
incoming reconfiguration commands that are received over
the event bus. As all reconfiguration occurs over the event
bus, it is possible for any component to enact reconfiguration
of any other component within the network, subject to access
control policies. The LooCI component model is platform
and language agnostic, allowing developers to implement
components in various languages and for different operating
systems. Upon deployment, a LooCI component registers
with the local Reconfiguration Engine, which supports
introspection of component state and lifecycle control. The
LooCI event-bus is an asynchronous, event based
communication medium that promotes loosely coupled
interactions. On the one hand, synchronization decoupling is
provided by non-blocking interactions between components
and the event bus. On the other hand, loose coupling in space
is realized by separating distribution concerns from
component implementation.

Zigduino platform is an open sources Arduino-compatible

microcontroller platform that addresses this problem by
integrating an 802.15.4 radio, it has powerful wireless
communication ability. LooCI is programmed by C and
codes are host by Google Code, Zigduino and Contiki have
good programming support. So we plan to port LooCI on
Zigduino in order to widely spread LooCI on more open
source hardware in WSN.

The remainder of this paper is structured as follows.

Section II provides background and discusses the motivation
for this work. Section III presents implementation and
evaluation. Section IV discusses our results. Finally Section
V summarizes and discusses directions for future work.

II. BACKGROUND AND MOTIVATION

A. Hardware

Arduino is one of the most common hardware platforms
because of its small size, low cost and modularity; it is used
not only for prototyping but also for creating interactive
applications. Despite its many advantages, the basic Arduino
platform lacks wireless connectivity, which makes it
unsuitable for supporting WSN applications [4]. The
Zigduino platform is an Arduino-compatible microcontroller
platform that addresses this problem by integrating an
802.15.4 radio. The Zigduino offers a reverse polarity SMA
connector (RP-SMA) for an external antenna. All I/O pins on
Zigduino are 5V compatible and can also runs at 3.3V.
Zigduino is based around ATmega128RFA1, and has 128 KB
of flash memory of which 2 KB is occupied by the boot
loader. It also has 16 KB of SRAM and 4 KB of EEPROM,
which can be accessed through the EEPROM library [5]. The
picture below shows a production Zigduino kit with all
components.

Figure	1.	A	picture	of	the	Zigduino	components.	

B. Contiki OS

Contiki OS is designed to satisfy the need for lightweight

mechanisms and abstractions that provide a rich enough
execution environment while staying within the limitations of
the constrained devices [1]. Typical sensor devices are
equipped with 8-bit microcontrollers, code memory on the
order of 100 kilobytes, and less than 20 kilobytes of RAM [1].
Contiki provides dynamic loading and unloading of
individual programs and services that is used by LooCI to
support Over The Air (OTA) component deployment. The
kernel is event-driven, but the system supports preemptive
multi-threading that can be applied on a per-process basis.
Preemptive multi-threading is implemented as a library that
is linked only with programs that explicitly require
multi-threading [1]. This threading approach is used by
LooCI to host multiple concurrently executing components.
Contiki is implemented in the C language and has been
ported to a number of microcontroller architectures,
including the Atmel AVR, which is used on the Zigduino.

IAENG International Journal of Computer Science, 40:2, IJCS_40_2_06

(Advance online publication: 21 May 2013)

__

C. A Loosely-coupled Component Infrastructure

 The Loosely-coupled component infrastructure (LooCI) is
composed of a runtime re-configurable component model, a
hierarchical type system and a distributed event bus (see
Figure 2). LooCI provides a clean separation of distribution
concerns from component implementation, which allows
components to be re-used in different network environment.
LooCI also supports multiple languages and operating
systems. Together, these features promote efficient
application development, management and reconfiguration
[2]. In addition, LooCI plays a role in managing application
dynamism, which arises from evolving requirements,
changing environmental conditions, mobility and unreliable
networking [2].

Figure	2.	LooCI	architecture	and	bindings.	

III. IMPLEMENT AND EVALUATION

According to existing work, LooCI runs on AVR Raven
(see Figure 3), a board which supports wireless
transmissions.

Figure	3.	The	AVR	Raven	architecture.	

The aim of this research is to identify a viable approach to
port the LooCI component to the Zigduino platform. It
presents several challenges and we have tackled them in a
sequential manner [6]. First, we need to install Contiki on
Zigduino, which was achieved using the Contiki port for
Zigduino that is available on Github. The next challenge was
to write the required code to show LEDs blinking on
Zigduino platform, as shown in Figure 4.

Figure	4.	LED	lights	blinking	on	the	Zigduino	board.	

To overcome this challenge, we have relied on the Contiki
2.5 doc and have used and adapted both etime.h and
process.h to create the following code:

#ifndef __ETIMER_H__
#define __ETIMER_H__
#include "sys/timer.h"
#include "sys/process.h"
struct etimer {
struct timer timer;
struct etimer *next;
struct process *p;
};
CCIF void etimer_set(struct etimer *et, clock_time_t
interval);
CCIF void etimer_reset(struct etimer *et);
void etimer_restart(struct etimer *et);
clock_time_t etimer_expiration_time(struct etimer *et);
clock_time_t etimer_start_time(struct etimer *et);
CCIF int etimer_expired(struct etimer *et);
void etimer_stop(struct etimer *et);
PROCESS_NAME(etimer_process);
#endif /* __ETIMER_H__ */

blink.c
#include "contiki.h"
#include <stdio.h>
#include <avr/io.h>
#include "contiki-conf.h"
#include "dev/leds.h"
#include "sys/etimer.h"
#include "sys/process.h"

/*
 * PORT where LEDs are connected
 */
#define LED_PORT0 (PORTB)
#define LED_PORT_DIR0 (DDRB)
#define LED_PORT (PORTD)
#define LED_PORT_DIR (DDRD)

/*
 * PINs where LEDs are connected
 */
#define LED_PIN_0 (PB1)
#define LED_PIN_1 (PD5)
#define LED_PIN_2 (PD6)

static int count=0;
static struct etimer et;

PROCESS(blink_process,"LED blinks");
AUTOSTART_PROCESSES(&blink_process);

PROCESS_THREAD(blink_process,ev,data)
{
PROCESS_BEGIN();

void
leds_arch_init(void)
{
 LED_PORT0 |= (1 << LED_PIN_0);

IAENG International Journal of Computer Science, 40:2, IJCS_40_2_06

(Advance online publication: 21 May 2013)

__

 LED_PORT_DIR0 |= (1 << LED_PIN_0);
 LED_PORT |= (1 << LED_PIN_1);
 LED_PORT_DIR |= (1 << LED_PIN_1);
 LED_PORT |= (1 << LED_PIN_2);
 LED_PORT_DIR |= (1 << LED_PIN_2);
}

void
leds_arch_off(void)
{
 LED_PORT0 &= ~(1 << LED_PIN_0);
 LED_PORT_DIR0 |= (1 << LED_PIN_0);
 LED_PORT &= ~(1 << LED_PIN_1);
 LED_PORT_DIR |= (1 << LED_PIN_1);
 LED_PORT &= ~(1 << LED_PIN_2);
 LED_PORT_DIR |= (1 << LED_PIN_2);
}

while(1)
{
printf("----count %d'sloop begin----\n",count);
leds_arch_off();
etimer_set(&et,CLOCK_SECOND*2);

printf("----etimer_set begin----\n");

printf("----etimer_expired = %d----
\n",etimer_expired(&et));
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
printf("----PROCESS_WAIT_EVENT_UNTIL begin----\n");

leds_arch_init();
printf("----LED Light----\n");
count++;

if(count == 10){
break;
}
}
PROCESS_END();}

code to deply blink on zigduino
#! /bin/bash
cd
contiki-avr-zigduino/platform/avr-zigduino/tools/set-eepro
m
make NODE=3 AVRDUDE_PORT=/dev/ttyUSB0
cd ../../tests/blink
make upload

Then the shell function is also used to check whether the
network can run using two Zigduino boards. Another
challenge we have encountered in the process is to have a
LooCI environment built into the elf file with a blink
component. In order to evaluate the LooCI environment
running well on Zigduino, shell modules in Contiki OS is
also used to start and stop the blink component. The final
challenge is to get the programming working for the LooCI’s
wireless communication. In short, to evaluate the entire
system, we have created a blank elf version LooCI image and
deploy blank image on Contiki on Zigduino, then construct
the blink component, and deployed this component over the
air using the shell. At the end, the shell modules are used to
start the blink component in order to check that LooCI
component is successfully deployed on Zigduino.

The final outcome is a complete port specific for the LooCI

component. All functionalities of LooCI have been
exhaustively tested through the help of already existing
applications and by writing new ones.

A LooCI component containing a “blinking lights” process
has successfully been flushed to Zigduino and tested with
positive results. In order to exemplify the architecture of
LooCI and how to write application on LooCI, “Blinking
Lights” component is listed as an example.

1) Code

#include "looci.h"

#ifdef LOOCI_BLINK_DEBUG

#include <stdio.h>

#endif

#ifdef BUILD_COMPONENT

#undef PRINTF

#define PRINTF(...)

#endif

COMPONENT(blink, "LED Blink");

AUTOSTART_COMPONENTS(&blink);

COMPONENT_THREAD(blink, ev, data)

{

 COMPONENT_BEGIN();

 static struct etimer et;

 while(1) {

 etimer_set(&et, CLOCK_SECOND * 2);

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

}

 COMPONENT_END();

}

2) A code walk-trough
Setting component up, requires that the Contiki and LooCI

header files define the following information.
#include "looci.h"

#ifdef LOOCI_BLINK_DEBUG

#include <stdio.h>

#endif

#ifdef BUILD_COMPONENT

#undef PRINTF

#define PRINTF(...)

#endif

Declaring the blink component itself and its human-readable
component-type: COMPONENT(blink, "LED Blink");

General structure of a component has four macros.
AUTOSTART_COMPONENT is used to run the blink component
automatically. COMPONENT_THREAD(blink, ev, data) macro is the
main method to run components, the first parameter blink is
the name of the variable holding the component metadata as
declared above; The second argument ev is the low-level
Contiki event type that caused the component execution to be
scheduled and the third argument data is a pointer to extra
data passed by the Contiki kernel. COMPONENT_START is used to
start the component. COMPONENT_END is used to stop the
component and clean the running space of this component.
Etimer_set(…) is a timer running every 2 times system clock.
PROCESS_WAIT_EVENT_UNTIL()wakes us up using the timer.

IAENG International Journal of Computer Science, 40:2, IJCS_40_2_06

(Advance online publication: 21 May 2013)

__

AUTOSTART_COMPONENTS(&blink);
COMPONENT_THREAD(blink, ev, data)
{

COMPONENT_BEGIN();
 static struct etimer et;
 while(1) {

etimer_set(&et, CLOCK_SECOND * 2);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

 }
COMPONENT_END();

}

The following code shows that we can show hello-world sent
from one board to another (as shown in Figure 5).

#include "contiki.h"
#include "looci.h"

// For testing
#include "reconfiguration/wiring_private.h"

#include <stdio.h>

#include <stdio.h>
#ifdef CONTIKI_TARGET_AVR_RAVEN
#include <avr/pgmspace.h>
#define PRINTF(FORMAT,args...)
printf_P(PSTR(FORMAT),##args)
#else
#define PRINTF printf
#endif // CONTIKI_TARGET_AVR_RAVEN

// printf alike things are currently broken for loadable
components.
// Your mileage may vary, so you can try to uncomment this,
but don't
// rely on it working.
#ifdef BUILD_COMPONENT
#undef PRINTF
#define PRINTF(...)
#endif

COMPONENT(sender, "Sender component");
COMPONENT(receiver, "Receiver component");

AUTOSTART_COMPONENTS(&sender, &receiver);

static struct etimer et;

COMPONENT_THREAD(sender, ev, data)
{
 COMPONENT_BEGIN();

 PRINTF("Sender started\n");

 while(1) {
 etimer_set(&et, 5 * CLOCK_SECOND);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

 looci_event_publish(100, "Hello world!", 13);
 PRINTF("Sender: event published\n");
 }

 COMPONENT_END();
}

static struct looci_event * recv_event;

COMPONENT_THREAD(receiver, ev, data)
{
 COMPONENT_BEGIN();

 wire_local_all(100, receiver.id);

 while(1) {
 PRINTF("Receiver: waiting for event\n");
 LOOCI_EVENT_RECEIVE(recv_event);
 PRINTF("%s\n", (char*)recv_event->payload);
 }

 COMPONENT_END();
}

Figure	5.	Sending	messages	between	two	boards.	

IV. DISCUSSION: LOOCI AND HARVESTING ENERGY FROM

THE ENVIRONMENT

The challenge of sustaining long-term operation of
wireless senor systems has been investigated in the past
decades. Recently, harvesting electrical power from
environmental energy sources has become an increasingly
feasible option for wireless sensor networks that need to
operate autonomously for long periods of time. Micro-scale
energy harvesting is a technique that enables electrical
energy conversion from other energy forms such as solar,
wind, vibration, thermal, electromagnetic energy [15,16,17].
Up to date, there have been some design prototypes of
wireless sensor nodes that have been tested and demonstrate
the benefits of micro-scale energy harvesting. For example,
the authors of [18] demonstrated successful operation of a
micro power application based on environmental vibration
energy harvesting. The authors of [19] validated the
feasibility of using indoor light energy to power a wireless
sensor network. The aforementioned testing prototypes and
demonstrations show the great potential to use energy
harvesting technique to prolong the lifetime of wireless
sensor systems.

Designing highly efficient micro-scale energy harvesting

systems requires an in-depth understanding of various design
considerations and tradeoffs. In [20], the authors provide an
overview of the various challenges and considerations
involved from maximum power point considerations for
micro-scale energy harvesting powered systems. However,
most of the research in the literature focuses on hardware
system design and implementation for energy harvesting
powered wireless sensor systems. Since software operation
and hardware implementation is tightly coupled in these
systems, it is highly attractive to co-design both aspects of
hardware circuit and software platform.

As mentioned earlier LooCI is very simple in its

implementation, has a small initialization overhead, and low
memory requirements. These features allow it to be a suitable
candidate to be powered by harvesting the power from
environmental energy sources.

IAENG International Journal of Computer Science, 40:2, IJCS_40_2_06

(Advance online publication: 21 May 2013)

__

V. SUMMARY AND FUTURE WORK

In this research, we attempt to find a suitable approach to port
LooCI, a middleware for building distributed
component-based wireless sensor network application, into
the Zigdruino platform, an Arduino-compatible
microcontroller environment that integrates an 802.15.4 radio
on the board. In this paper, we describe our approach to
migrate LooCI / Contiki running on the Raven platform to the
Zigduino platform. These experiences show that it is possible
to quickly port the LooCI component model to new
platforms.

Our future work will focus on evaluating the performance
and efficiency of the LooCI/Zigduino port in comparison to
other LooCI ports in terms of energy consumption and the
efficiency of component installation, binding and execution.

In addition, multi-layer software and hardware adaptivity
will be explored to achieve efficient computing and
communication. We will integrate various energy harvesting
techniques with our LooCI platform, and then adaptively
adjust the hardware configuration and software operation of
our LooCI system. Through this cross-layer joint
optimization methodology, the most energy efficient wireless
sensor network application will have a great potential to be
created.

ACKNOWLEDGEMENTS

The authors are pleased to acknowledge support from the
iMinds-DistriNet research group of KU Leuven, Belgium, the
authors of the original LooCI platform. In addition to this, this work
was partially supported by Xi'an Jiaotong-Liverpool University
(Suzhou, China) Research Development Fund under Grants
RDF10-01-27 and RDF10-02-03; and Transcend Epoch
International Co., Ltd., Hong Kong.

REFERENCES

[1] A. Dunkels, B. Gronvall, and T. Voigt, Contiki - a lightweight and

flexible operating system for tiny networked sensors, In 29th Annual

IEEE International Conference on Local Computer Networks (2004),

pp. 455- 462.

[2] D. Hughes, K. Thoelen, J. Maerien, N. Matthys, J. Del Cid, W. Horre,

C. Huygens, S. Michiels, and W. Joosen, LooCI: The Loosely-coupled

Component Infrastructure, In 11th IEEE International Symposium on

Network Computing and Applications (NCA’12) (2012), pp.236-243.

[3] W. Horre, D. Hughes, K.L. Man, S. Guan, B. Qian; T. Yu, H. Zhang, Z.

Shen, M. Schellekens, and S. Hollands, Eliminating implicit

dependencies in component models, IEEE 2nd nternational Conference

on Networked Embedded Systems for Enterprise Applications

(NESEA’11) (2011), pp.1-6.

[4] V. Georgitzikis, O. Akribopoulos, I. Chatzigiannakis, Controlling

Physical Objects via the Internet using the Arduino Platform over

802.15.4 Networks, IEEE Latin America Transactions (Revista IEEE

America Latina) (2012), vol.10, no.3, pp.1686-1689.

[5] Logos-electro, Onlien:http://logos-electro.com/zigduino/ [accessed on

December 2012].

[6] S. Alexandru, Porting the Core of the Contiki, (2007), Online:

http://www.eecs.iu-bremen.de/archive/bsc-2007/stan.pdf [accessed on

December 2012].

[7] Gay D., Levis P., Von Behren R., Welsh M., Brewer E., Culler D., The

NesC Language: A Holistic Approach to Networked Embedded

Systems, in Proc. of the conference on Programming Language Design

and Implementation, ACM SIGPLAN 2003, San Diego, California,

USA, pp. 1 – 11.

[8] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama

and T. Sivaharan T, “A generic component model for building systems

software”, in ACM Transactions on Computer Systems, Vol. 26, No. 1,

pp. 1-42, 2008.

[9] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G.P.

Picco, T. Sivaharan, N. Weerasinghe and S. Zachariadis, The RUNES

Middleware for Networked Embedded Systems and its Application in a

Disaster Management Scenario, in proc. of 5th IEEE conference on

Pervasive Computing (PerCom’07), White Plains, NY, pp. 69–78, ,

Mar. 19th-23rd 2007.

[10] Rellermeyer J., Alonso G., Concierge: A Service Platform for

Resource-Constrained Devices, in ACM SIGOPS Operating Systems

Review, Vol. 41, No. 3, June 2007, pp. 245 – 258

[11] P. Grace, G. Coulson, G.S. Blair, B. Porter and D. Hughes, “Dynamic

Reconfiguration in Sensor Middleware”, in proc. of 1st International

Workshop on Middleware for Sensor Networks (MidSens ‘06),

Melbourne, Australia, pp. 1-6, Nov. 28th 2006.

[12] Grace P., Hughes D., Porter B., Blair G., Coulson G., Taiani F.,

xperiences with Open Overlays: A Middleware Approach to Network

eterogeneity, in Proc. of the European Conference on Computer ystems

(EuroSys’08), Glasgow, Scotland, UK, March 2008, pp. 23-136.

[13] Java Remote Method Invocation (RMI), available online at:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-

136424.html, (accessed 22/09/11).

[14] W. Horré, D. Hughes, K. Man, S. Guan, B. Qian, T. Yu, H. Zhang, Z.

Shen, M. Schellekens and S. Hollands, Eliminating Implicit

Dependencies in Component Models, in proc. of 2nd IEEE conference

on Networked Embedded Systems for Enterprise Applications

(NESEA’11), Perth, Australia, Dec. 2011, pp. 1-6.

[15] C. Lu, V. Raghunathan, K. Roy, Micro-scale energy harvesting: a

system design perspective, Asia and South Pacific Design Automation

Conference (ASP-DAC), pp. 89-94, 2010.

[16] C. Lu, V. Raghunathan, K. Roy, Efficient design of micro-scale energy

harvesting systems, IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, Vol.1, issue 3, pp. 254-266, 2011.

[17] S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: survey

and implications, IEEE Communications Surveys & Tutorials, vol. 13,

no. 3, pp. 443-461, 2011.

[18] C. Lu, C.-Y. Tsui, W.-H. Ki, Vibration energy scavenging system with

maximum power tracking for micro power applications, IEEE

Transactions on VLSI Systems, vol. 19, issue 11, pp. 2109-2119, Nov.

2011

[19] Q. Huang, C. Lu, M. Shaurette, R.F. Cox, Environmental thermal

energy scavenging powered wireless sensor network for building

monitoring, 28th International Symposium on Automation and

Robotics in Construction, pp. 1376-1380, 2011.

[20] C. Lu, V. Raghunathan, K. Roy, Maximum power point considerations

in micro-scale solar energy harvesting systems, IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 273-276, 2010.

[21] David Olalekan Afolabi, Zhun Shen, Ka Lok Man, Hai-Ning Liang,

Nan Zhang, Eng Gee Lim, Modelling and Analysis of LooCI Models in

Zigduino, Lecture Notes in Engineering and Computer Science:

Proceedings of The International MultiConference of Engineers and

Computer Scientists 2013, 13-15 March, 2013, Hong Kong,

pp713-715.

IAENG International Journal of Computer Science, 40:2, IJCS_40_2_06

(Advance online publication: 21 May 2013)

__

