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Abstract—A large number of landmarks selection techniques
has been proposed. However, finding optimal solutions requires
to solve some hard problems. In this paper, we consider the ρ-
minimum overlapping region decomposition problem that was
proposed for landmarks selection. This problem is NP-complete.
We describe an approach to solve the problem optimally. This
approach is based on an explicit reduction from the problem
to the satisfiability problem. Also, we consider some greedy
algorithms for solution of the problem.

Index Terms—visual landmarks, landmarks selection, mobile
robot navigation, NP-complete, satisfiability problem, greedy
algorithms.

I. INTRODUCTION

D IFFERENT problems of technical vision have been
extensively studied recently (see e.g. [1] – [3]). In

particular, visual navigation is received a lot of attention
in contemporary robotics (see e.g. [4] – [6]). It should be
noted that visual sensors can be used not only for solution of
different problems of navigation. For instance, visual sensors
are widely used in various systems of robot self-awareness
(see e.g. [7] – [14]).

The various methods of selection, extraction and recogni-
tion of visual landmarks have been extensively applied for
the mobile robot navigation (see e.g. [15] – [18]). Visual
landmarks robot navigation approaches select certain features
in the snapshot image as landmarks, and try to establish cor-
respondences between these landmarks and features extracted
from the current view image. Such approaches differ with
respect to the strategy for selecting the landmarks. Some
methods strive to extract maximally distinctive features (see
e.g. [19] – [22]). Other approaches use less unique features.
For instance, we can mention dark and bright sectors (see
e.g. [23] – [26]), Harris corners (see e.g. [27], [28]), and
colored regions (see e.g. [29], [30]). Visual landmarks can be
used for external cameras robot localization (see e.g. [31] –
[33]). In particular, problems of sensor placement have been
extensively studied recently (see e.g. [34] – [38]).

The representation of knowledge of the surrounding world
plays an important role in mobile robot navigation tasks (see
e.g. [39] – [52]). It is not surprising that a huge variety
of landmarks selection techniques has been proposed (see
e.g. [53] – [62]). However, finding optimal solutions usually
requires to solve some hard problem (see e.g. [63] – [65]).
In particular, we consider the ρ-minimum overlapping region
decomposition problem. The problem was proposed in [65]
for landmarks selection. The ρ-minimum overlapping region
decomposition problem is NP-complete. It should be noted
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that many robotic problems are computationally hard (e.g.
[66] – [72]). Frequently, hard problems give us essentially
better solutions. Although the ρ-minimum overlapping region
decomposition problem is NP-complete, quality of visual
navigation methods which use landmarks depends critically
on the method of selection of landmarks. So, we need an
optimal method for solution of the problem. In this paper,
we consider an approach to solve the problem optimally. This
approach is based on an explicit reduction from the problem
to the satisfiability problem.

II. PRELIMINARIES AND PROBLEM DEFINITIONS

In this section, we consider basic definitions from [65].
Let a virtual grid is overlaid on the floor of the envi-

ronment. We assume that vertices of this virtual grid are
accessible points of the environment. The pose space is the
set of positions of the virtual grid at which the robot can
be at any time. We assume that images for visual landmarks
were acquired from the discrete subset of the pose space.
Therefore, we can use an undirected planar graph

G = (V,E)

as a model for this subset. In particular, we assume that each
node v ∈ V corresponds to a sampled pose. Also, we assume
that two nodes are adjacent if and only if the corresponding
poses are contiguous in 2-D space.

We assume that a set of interest-point-based features
are extracted and stored in a database during collection of
images. Let F be the set of computed features from all
collected images. The visibility set of v is the set Fv ⊆ F
of all features that are visible from pose v ∈ V .

We consider a view-based localization approach. In this
approach, the current pose of the robot is estimated using the
locations of a small number of features in the current image,
matched against their locations in the training images. This
set of simultaneously visible features constitutes a landmark.
Clearly, the minimum number of features necessary for this
task depends on the method employed for pose estimation.

A world instance consists of a tuple

〈G,F, {Fv | v ∈ V }〉,

where the graph G models a discrete set of sampled poses,
F is a set of features, and {Fv | v ∈ V } is a collection
of visibility sets. A region is a set of poses R ⊆ V such
that for all poses u, v ∈ R, there is a path between u and v
completely contained in R, i.e., for all u, v ∈ R, there is

{u = v0, . . . , vh} ⊆ R

such that
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(vi, vi+1) ∈ E, for all0 ≤ i < h.

A decomposition of V is a collection of regions

D = {R1, . . . , Rd} ⊆ 2V

such that V = ∪di=1Ri. The ρ-neighborhood of a pose v ∈ V
is the set

Nρ(v) = {u | u ∈ V, δ(u, v) ≤ ρ},

where δ(u, v) is the length of the shortest path between nodes
u and v in G. The ρ-overlapping is a decomposition

D = {R1, . . . , Rd}

of V such that for all v ∈ V , there is i such that Nρ(v) ⊆ Ri.
Let k be the number of features required for reliable

localization at each position, according to the localization
method employed. The ρ-minimum overlapping region de-
composition problem (ρ-MORDP) for a world instance
〈G,F, {Fv | v ∈ V }〉 consists of finding a minimum-size
ρ-overlapping decomposition D = {R1, . . . , Rd} of V such
that | ∩v∈Ri Fv| ≥ k, for all 1 ≤ i ≤ d.

We assume that N0(v) = {v}, for any v ∈ V . It should
be noted that ρ-MORDP can be reduced to 0-MORDP, and
that a solution to the reduced 0-MORDP can be transformed
back into a solution of ρ-MORDP (see [65]). Therefore, we
can consider only 0-MORDP.

Let

V = {v[1], v[2], . . . , v[n]}.

Let

D = {R1, . . . , Rp}

is an 0-overlapping decomposition of V such that

| ∩v∈Ri
Fv| ≥ k, for all1 ≤ i ≤ p.

Since D is an 0-overlapping decomposition of V , for any
v[i], 1 ≤ i ≤ n, there is some Rj , 1 ≤ j ≤ p, such that
v[i] ∈ Rj . Therefore,

∩v∈Rj
Fv ⊆ Fv[i].

Since | ∩v∈Rj
Fv| ≥ k, it is clear that |Fv[i]| ≥ k. Note that

{{v[1]}, {v[2]}, . . . , {v[n]}}

is an 0-overlapping decomposition of V . Therefore, we can
assume that p ≤ n. If p < n, then there are

i[1], i[2], . . . , i[n− p]

such that

Rj 6= {v[i[s]]}, for any1 ≤ j ≤ p, 1 ≤ s ≤ n− p.

So, if p < n, then

D′ = D ∪
(
∪ts=1{{v[i[s]]}}

)
is an 0-overlapping decomposition of V such that

| ∩v∈R Fv| ≥ k, for allR ∈ D′.

Therefore, the decision version of 0-MORDP can be formu-
lated as following.

0-MORDP:
INSTANCE: A world instance

〈G,F, {Fv | v ∈ V }〉

and positive integers d ≤ n and k.
QUESTION: Is there an 0-overlapping decomposition

D = {R1, . . . , Rd}

of V such that | ∩v∈Ri
Fv| ≥ k, for any 1 ≤ i ≤ d?

III. AN EXPLICIT REDUCTION FROM 0-MORDP TO THE
SATISFIABILITY PROBLEM

0-MORDP is NP-complete [65]. Encoding different hard
problems as instances of variants of the satisfiability problem
and solving them with very efficient satisfiability algorithms
has caused considerable interest (see e.g. [73] – [79]). In this
paper, we consider an explicit reduction from 0-MORDP to
the satisfiability problem.

Let

ϕ[1] = ∧1≤i≤d,
1≤j≤n

∨1≤s≤n x[i, j, s],

ϕ[2] = ∧1≤i≤d,
1≤j≤n,

1≤s[1]<s[2]≤n

(¬x[i, j, s[1]] ∨ ¬x[i, j, s[2]]),

ϕ[3] = ∧1≤i≤n ∨1≤j≤d,
1≤s≤n

y[i, j, s],

ϕ[4] = ∧1≤i≤n,
1≤j≤d,

1≤s≤n

(¬y[i, j, s] ∨ x[j, s, i]),

ϕ[5] = ∧1≤i≤d,
1≤j[1]<j[2]≤n,
1≤s≤n

∨1≤t≤n z[1, i, j[1], j[2], s, t],

ϕ[6] = ∧1≤i≤d,
1≤j[1]<j[2]≤n,
1≤s<n

(z[2, i, j[1], j[2], s]∨

¬z[2, i, j[1], j[2], s+ 1]),

ϕ[7] = ∧1≤i≤d,
1≤j[1]<j[2]≤n

z[2, i, j[1], j[2], 1],

ϕ[8] = ∧1≤i≤d,
1≤j[1]<j[2]≤n,
1≤s<n,

1≤t[1]≤n,

1≤t[2]≤n,

1≤t[3]≤n,

1≤t[4]≤n,

(v[t[3]],v[t[4]])/∈E

(¬z[2, i, j[1], j[2], s]∨
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¬z[1, i, j[1], j[2], s, t[1]]∨

¬z[1, i, j[1], j[2], s+ 1, t[2]]∨

¬x[i, t[1], t[3]] ∨ ¬x[i, t[2], t[4]]),

ϕ[9] = ∧1≤i≤d,
1≤j[1]<j[2]≤n,

1≤t[1]≤n,

1≤t[2]≤n,

1≤t[3]≤n,

1≤t[4]≤n,

t[3]6=j[1]

(¬z[1, i, j[1], j[2], 1, t[1]]∨

¬z[1, i, j[1], j[2], 2, t[2]]∨

¬x[i, t[1], t[3]] ∨ ¬x[i, t[2], t[4]]),

ϕ[10] = ∧1≤i≤d,
1≤j[1]<j[2]≤n,
1≤s<n,

1≤t[1]≤n,

1≤t[2]≤n,

1≤t[3]≤n,

1≤t[4]≤n,

t[4]6=j[2]

(¬z[2, i, j[1], j[2], s]∨

z[2, i, j[1], j[2], s+ 1]∨

¬z[1, i, j[1], j[2], s, t[1]]∨

¬z[1, i, j[1], j[2], s+ 1, t[2]]∨

¬x[i, t[1], t[3]] ∨ ¬x[i, t[2], t[4]]),

ϕ = ∧10i=1ϕ[i],

ψ[1] = ∧1≤i≤d,
1≤j≤k

∨1≤s≤n w[i, j, s],

ψ[2] = ∧1≤i≤d,
1≤j≤k,

1≤s[1]<s[2]≤n

(¬w[i, j, s[1]] ∨ ¬w[i, j, s[2]]),

ψ[3] = ∧1≤i≤d,
1≤j[1]<j[2]≤k,
1≤s≤n

(¬w[i, j[1], s] ∨ ¬w[i, j[2], s]),

ψ[4] = ∧1≤i≤d,
1≤j≤k,

1≤s≤n,

1≤t[1]≤n,

1≤t[2]≤n,

v[s]/∈Fv[t[2]]

(¬w[i, j, s] ∨ ¬x[i, t[1], t[2]]),

ψ = ∧4i=1ψ[i],

ξ = ϕ ∧ ψ.

Theorem. There is an 0-overlapping decomposition

D = {R1, . . . , Rd}

of V such that for all 1 ≤ i ≤ d, | ∩v∈Ri
Fv| ≥ k if and

only if ξ is satisfiable.
Proof. Let ξ is satisfiable. In this case, there are some

values

x0[i[1], i[2], i[3]], y0[i[1], i[2], i[3]],

z0[i[1], i[2], i[3], i[4], i[5]], w0[i[1], i[2], i[3]]

of variables

x[i[1], i[2], i[3]], y[i[1], i[2], i[3]],

z[i[1], i[2], i[3], i[4], i[5]], w[i[1], i[2], i[3]]

such that ξ = 1. Since ξ = 1, it is clear that ϕ[i] = 1, for all
1 ≤ i ≤ 10. In view of ϕ[1] = 1, it is easy to see that there
is s0(i, j), 1 ≤ i ≤ d and 1 ≤ j ≤ n, such that

x[i, j, s0(i, j)] = 1.

Since ϕ[2] = 1, s0(i, j) is a function. Let

Ri = {v[t] | t = s0(i, j), 1 ≤ j ≤ n}.

Since ϕ[3] = 1, for any 1 ≤ i ≤ n, there are j0 ∈ {1, . . . , d}
and s0 ∈ {1, . . . , n} such that y[i, j0, s0] = 1. Whereas
ϕ[4] = 1 and y[i, j0, s0] = 1, for any t ∈ {1, . . . , n}, there
are i and j such that t = s0(i, j). Therefore, V = ∪di=1Ri. It
is easy to see that ϕ[5] = 1 if and only if for all 1 ≤ i ≤ d,
1 ≤ j[1] < j[2] ≤ n, and 1 ≤ s ≤ n, there is

t0(i, j[1], j[2], s) ∈ {1, . . . , n}

such that

z[1, i, j[1], j[2], s, t0(i, j[1], j[2], s)] = 1.

Clearly, ϕ[6] = 1 and ϕ[7] = 1 if and only if

z[2, i, j[1], j[2], 1] . . . z[2, i, j[1], j[2], n] = 1α0β ,

for some α, β such that α + β = n, α > 0, and for all
1 ≤ i ≤ d, 1 ≤ j[1] < j[2] ≤ n. If s ≤ α, then ϕ[8] = 1 if
and only if

(v[s0(i, t0(i, j[1], j[2], s))],

v[s0(i, t0(i, j[1], j[2], s+ 1))]) ∈ E.

Since ϕ[9] = 1, it is easy to see that

s0(i, t0(i, j[1], j[2], 1)) = j[1].
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Similarly, in view of ϕ[10] = 1, if s = α, then

s0(i, t0(i, j[1], j[2], s+ 1)) = j[2].

Since ϕ[5] = ϕ[8] = ϕ[9] = ϕ[10] = 1, it is easy to check
that Ri is a region, for any i. Therefore, D = {R1, . . . , Rd}
is an 0-overlapping decomposition of V .

Since ξ = 1, it is clear that ψ[i] = 1, for all 1 ≤ i ≤ 4.
In view of ψ[1] = 1, it is easy to see that there is u0(i, j),
1 ≤ i ≤ d and 1 ≤ j ≤ k, such that w[i, j, u0(i, j)] = 1.
Since ψ[2] = 1, u0(i, j) is a function. It is easy to see that
ψ[3] = 1 if and only if

u0(i, j[1]) 6= u0(i, j[2]),

for j[1] 6= j[2]. Since ψ[4] = 1, it is easy to check that
| ∩v∈Ri Fv| ≥ k, for all i.

Now, we assume that there is an 0-overlapping decompo-
sition D = {R1, . . . , Rd} of V such that | ∩v∈Ri Fv| ≥ k,
for all i. Let

Ri = {v[t(i, 1)], v[t(i, 2)], . . . , v[t(i, pi)]}.

For any 1 ≤ i ≤ d and 1 ≤ j ≤ pi, we assume

x[i, j, s] = 1

if and only if

s = t(i, j).

For any 1 ≤ i ≤ d and pi + 1 ≤ j ≤ n, we assume

x[i, j, s] = 1

if and only if

s = t(i, 1).

Let

y[i, j, s] = 1

if and only if

x[j, s, i] = 1.

Since Ri is a region, for any 1 ≤ r[1] < r[2] ≤ pi, there is
a path

v[t(i, qi[1])], v[t(i, qi[2])], . . . , v[t(i, qi[mi])]

such that mi ≤ n, qi[1] = r[1], qi[m] = r[2]. Let

z[2, i, j[1], j[2], s] = 1

if and only if

x[i, j[1], r[1]]x[i, j[2], r[2]]+

x[i, j[1], r[2]]x[i, j[2], r[1]] > 0,

s < mi. For any s < mi, we assume that

z[1, i, j[1], j[2], 1, t[1]] = z[1, i, j[1], j[2], 2, t[2]] = 1

if and only if

x[i, t[1], t[3]] = x[i, t[2], t[4]] = 1.

It is easy to check that ϕ = 1.
Since | ∩v∈Ri

Fv| ≥ k, for all i, there is

{v[t(i, ai[1])], v[t(i, ai[2])], . . . , v[t(i, ai[k])]} ⊆ ∩v∈RiFv.

Let w[i, j, s] = 1 if and only if s = t(i, ai[j]). It is easy to
check that ψ = 1.

Clearly, ξ is a CNF. Therefore, in view of the Theorem,
ξ gives us an explicit reduction from 0-MORDP to SAT.
Using standard transformations (see e.g. [80]) we can obtain
an explicit transformation ξ into ζ such that ξ ⇔ ζ and ζ is a
3-CNF. It is easy to see that ζ gives us an explicit reduction
from 0-MORDP to 3SAT.

IV. GROWING REGIONS FROM SEEDS

A number of greedy algorithms for solution of 0-MORDP
was proposed in [65]. In this section, we consider algorithms
A.1, A.2, and A.3 from [65]. Those three algorithms differ
only criteria for selecting the pose.

We assume that |Fv| ≥ k, for all v ∈ V . Now, we consider
a general schema of algorithms A.1, A.2, and A.3. Let U be
a current set of nodes. Let ∆ be a partial decomposition. At
first, we assume that U = V , ∆ = ∅. While U 6= ∅, we
repeat the algorithm from Figure 1.

Select v ∈ U
R := {v}
repeat

W := {u | u ∈ {v | v ∈ V \R,
∃w ∈ R(w, v) ∈ E},

|Fu ∩ (∩v∈RFv) | ≥ k}
if W 6= ∅ then

if U ∩W 6= ∅ then W := U ∩W
u := arg maxw∈W |Fw ∩ (∩v∈RFv) |
R := R ∪ {u}

end
until W = ∅
U := U\R
D := D ∪ {R}

Fig. 1. A general schema of algorithms A.1, A.2, and A.3 (see [65]).

Algorithms A.1, A.2, and A.3 use the following criteria
for pose selection (see [65]).

A.1 selects the pose v ∈ U at which the least number
of features is visible, i.e., v := arg minu∈U |Fu|.

A.2 selects the pose v ∈ U at which the greatest number
of features is visible, i.e., v := arg maxu∈U |Fu|.

A.3 randomly selects a pose v ∈ U .
Note that there is no sufficiently clear evidence for selec-

tion of those criteria. We consider a genetic algorithm GAS
for pose selection. Let

H[i] = h[i, 1]h[i, 2] . . . h[i, p]

where
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h[i, j] ∈ {0, 1}

and p > n, for all 1 ≤ i ≤ r, 1 ≤ j ≤ p, and for any
possible G. We consider

H = {H[1], H[2], . . . ,H[r]}

as a population of chromosomes of GAS. We can consider
H[i] as a sequence of choices. We can use this sequence as
a criterion for A.x. In particular, if h[i, j] = 1, then

v := arg min
u∈U
|Fu|

at jth step. If h[i, j] = 0, then

v := arg max
u∈U
|Fu|

at jth step. For given H[i], we can calculate |D|. We can
use the value of |D| as the value of the fitness function.

Let A and B are sets. For given A, B, and a ∈ A, the
elementary operation M(A,B, a) can be defined as follows:

A := A\{a},

B := B ∪ {a}.

Using SAT-solvers we can obtain an optimal decomposition
D. Let Di is a decomposition that is obtained using H[i]. Let
h(Di, D) be the minimal number of elementary operations
that needed to obtain D from Di. Let GAS SAT is a genetic
algorithm that uses h(Di, D) as the fitness function.

In our computational experiments, we consider A.1, A.2,
A.3, and two additional algorithms, A.4, A.5. Those algo-
rithms use the general schema of A.1, A.2, and A.3.

A.4 use GAS as the criterion for pose selection.
A.5 use GAS SAT as the criterion for pose selection.

V. ARTIFICIAL PHYSICS OPTIMIZATION ALGORITHMS
FOR 0-MORDP

Note that different nature-inspired heuristics have proven
very effective for solving different global optimization prob-
lems (see e.g. [81]). In particular, we can mention an artificial
physics optimization algorithm. In this section, we consider
an artificial physics optimization algorithm for the solution
of 0-MORDP.

Note that in an artificial physics optimization algorithm, a
swarm of individuals is sampled randomly from a problem
space in the initialization. Masses of individuals of the
swarm should be calculated in the procedure of calculation
force. The procedure of motion uses the total force to
calculate the velocity of individuals. It should be noted that
a felicitous design of force law can drive individuals search
problem space intelligently and efficiently. Therefore, the
main advantage of artificial physics optimization algorithms
consists in the proper design of force law. Note that different
virtual forces are considered (see e.g. [81]). In particular,
we can mention negative exponential force law, unimodal
force law, linear force law [81]. It is well-known that Runge
Kutta neural networks can be used for the prediction of
different nonlinear systems [82]. Therefore, we use Runge
Kutta neural networks for the design of a general force

Fig. 2. Robot Kuzma-II.

Fig. 3. Robot Neato XV-11 with an onboard computer and a camera.

law. In this paper, we consider 4-order Runge Kutta neural
networks with multilayer perceptron networks. We use a
gradient learning algorithm for 4-order Runge Kutta neural
networks. Note that SAT-solvers allow us to obtain optimal
decompositions. We use SAT-solvers to create a training set
for 4-order Runge Kutta neural networks.

In our computational experiments, we consider an artificial
physics optimization algorithm with negative exponential
force law (A.6) and an artificial physics optimization algo-
rithm with Runge Kutta neural network force law (A.7).

VI. REAL WORLD DATA FOR EXPERIMENTS

We use three different types of robots to perform ex-
periments on real world data. For our experiments, we use
autonomous mobile robots Kuzma-II (see e.g. [83], see also
Figure 2; design of the robot Kuzma-II based on the well-
known Johnny 5 Robot [84]) and Neato XV-11 [85]. Also,
we use humanoid robot Nao [86].

This three types of robots allow us to obtain essentially
different data for experiments. In particular, we have obtained
five different data sets, RW1 (Kuzma-II), RW2 (Neato XV-
11), RW3 (Nao), RW4 (Neato XV-11 and Kuzma-II), RW5
(Neato XV-11 with an onboard camera).

We consider Neato XV-11 with an onboard computer and
a camera (see Figure 3). For such configuration of Neato,
we consider a model of navigation with two sensors, a laser
sensor and a camera.
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Kuzma-II is equipped with a 2 DOF robotic camera. This
robotic camera allows Kuzma-II to have a large visibility
sector. However, due to the low position of the camera,
Kuzma-II has relatively small visibility radius. In particular,
in most cases, the robot does not see the environment behind
obstacles.

Nao has a larger visibility radius than the radius of Kuzma-
II. However, the visibility sector of Nao is much smaller
than the visibility sector of Kuzma-II. Frequently, Fv is not
connected.

For Neato XV-11, we consider a model of external station-
ary cameras robot localization. Note that Neato is equipped
with a laser sensor. Therefore, Neato can solve localization
problem without cameras. However, cameras can be used to
identify dangerous areas (e.g. wet floor), dusty places, and
difficult to navigate sites. If Neato can easily use the laser
navigation in some area of a flat, then we can consider all
points of this area as a same node. Such unification allows
us to reduce |V |. But, in this case, we obtain a very large
visibility radius.

Also, we consider a model of external mobile camera robot
localization for Neato XV-11. In this case, Neato uses an
information from Kuzma-II.

VII. SYNTHETIC DATA FOR EXPERIMENTS

We use a model of synthetic data generation from [65] to
perform experiments on synthetic data. The synthetic data for
experiments was produced using a simulator that randomly
generates worlds, given a mixture of probability distributions
for each of the defining parameters of the world.

There are three main components of synthetic data, the
value of the perimeter, obstacles, and features. The value of
the perimeter depends from the sides count and the vertex
radius. Obstacles depend from the total obstacles count, the
sides count, and the vertex radius. Features depend from the
total features count, the visibility angular extent, and the
visibility range.

A synthetic world consists of a 2-D top view of the
pose space defined by a polygon, with internal polygonal
obstacles and a collection of features on the polygons. For
such synthetic worlds, we use four different world settings
from [65]. In particular, we have obtained four different data
sets, SW1, SW2, SW3, SW4.

VIII. COMPUTATIONAL EXPERIMENTS

To obtain optimal solutions of 0-MORDP, we consider
our explicit reduction from 0-MORDP to the satisfiability
problem and use our own genetic algorithms OA[1] (see
[87]), OA[2] (see [88]), and OA[3] (see [89]) for the satisfi-
ability problem. We have used a heterogeneous cluster based
on three clusters (Cluster USU, umt, um64) [90]. Each test
was runned on a cluster of at least 100 nodes. Note that due
to restrictions on computation time (20 hours) we have used
savepoints. Selected experimental results are given in Tables
I – III.

Let N(X,Y ) be the average number of regions for given
data set X and algorithm Y . Let Nopt(X) be the average
optimal number of regions for given data set X . We have
calculated values of

N(X,Y )

Nopt(X)

TABLE I
EXPERIMENTAL RESULTS FOR OA[1]

time average max best
RW1 16.32 min 6.23 h 4.63 sec
RW2 2.97 h 36.44 h 21.34 min
RW3 34.25 min 18.62 h 0.28 sec
RW4 1.19 h 13.28 h 8.17 min
RW5 11.8 min 4.18 h 0.43 sec
SW1 1.77 h 21.83 h 12.3 sec
SW2 3.18 h 20.76 h 14.21 sec
SW3 2.57 h 24.37 h 15.39 sec
SW4 2.89 h 25.16 h 3.73 min

TABLE II
EXPERIMENTAL RESULTS FOR OA[2]

time average max best
RW1 3.06 h 24.19 h 12.6 min
RW2 4.19 h 67.33 h 17.5 min
RW3 2.22 h 54.11 h 19.8 min
RW4 3.72 h 34.3 h 17.2 min
RW5 2.66 h 22.7 h 23.1 min
SW1 9.53 h 36.48 h 37.4 min
SW2 8.12 h 38.12 h 42.1 min
SW3 10.9 h 45.6 h 35.4 min
SW4 11.2 h 42.4 h 39.2 min

for different greedy algorithms and data sets. Selected exper-
imental results are given in Tables IV – VII.

IX. CONCLUSION

In this paper, we have considered an approach to create
solvers for the ρ-minimum overlapping region decomposition
problem. In particular, explicit polynomial reductions from
the problem to 3SAT is constructed. We have considered
some greedy algorithms for solution of the problem. Also,
we have considered computational experiments for different
data sets.
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