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Abstract—Concurrent programs are more difficult to test or 

debug than sequential programs because their non-deterministic 

behaviors can produce errors that depend on timing and 

interleaving of threads. A different interleaving might affect 

branch outcomes that can lead the execution path into one 

different from that in which the error was detected. In order to 

detect concurrent errors, a programmer needs to re-execute the 

concurrent program many times by changing the interleaving, 

but it is not always feasible to conduct all the tests due to a large 

number of possible different interleavings. This paper proposes 

an efficient method to minimize the number of test cases for 

detecting errors in a concurrent program. This method 

generates test cases with different interleavings based on the 

execution trace. The method reduces redundant test cases 

without sacrificing the precision of error detection. The method 

is novel because it exploits the branch structure and utilizes data 

flows from trace information to identify only those interleavings 

that affect branch outcomes, whereas existing methods try to 

identify all interleavings that seem to affect shared variables. In 

order to reduce the number of test cases, those execution paths 

with equivalent lock sequences and accesses to shared variables 

are grouped together into the same “race-equivalent” group and 

only one member of the group is tested. We evaluated the 

proposed method against several concurrent Java programs. 

The experimental results for a Java program for telnet show the 

number of test cases is reduced from 147, which is based on the 

existing TPAIR method, to only 2 by the proposed method. 

Moreover, for concurrent programs that contain infinite loops, 

the proposed method generates only a finite and very few 

number of test cases, while many existing methods generate an 

infinite number of test cases. 

 
Index Terms— race detection, testing, concurrent program 

 

I. INTRODUCTION 

A. Background 

ONCURRENT programs are difficult to test or debug 

because their non-deterministic behaviors can produce 

errors that depend on timing, such as race conditions. It is 

suggested that race conditions occur mostly because shared 

variables are accessed by threads using inconsistent locking 

or even no locks[1]–[5]. Programmers often fail to apply 
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appropriate locks due to difficulties in predicting the 

execution path or interrupt timing because of the complexity 

of concurrent programs, especially when branches are 

affected by access to shared variables and interleavings. To 

detect race conditions, a programmer can execute the 

concurrent program and check the execution trace using a 

dynamic race detector. Unfortunately, concurrent errors 

might not be easy to detect because a re-executed concurrent 

program might execute with a different interleaving. Adding 

additional commands or instrumentation of the source code to 

record intermediate results for testing concurrent programs 

might change the interleaving, so that errors may not show up. 

Unfortunately again, dynamic race detectors can detect 

potential errors only if they show up in a re-execution. 

In this paper, we propose a new, efficient dynamic method 

to minimize the number of test cases for detecting concurrent 

errors. This is an improvement over the existing method [11]. 

Our proposed method iteratively uses previous execution 

traces as guidance for generating new test cases. The method 

is particularly intended for situations in which concurrent 

errors are difficult to detect. The number of executions 

needed for testing is the number of possible interleavings of 

the concurrent program. Even when the input values are fixed, 

the number of executions is still very large. The main problem 

is how to reduce this number of re-executions. 

The contributions of this paper are as follows: 

 Eliminating redundant test cases: The proposed method 

reduces the number of interleavings to be tested by 

exploiting the branch coverage information from the 

execution trace. This method is different from previous 

methods because it can distinguish those interleavings that 

can affect branch outcomes from those that cannot. The 

existing reachability testing algorithms try to identify all 

interleavings which may affect shared variables, although 

they may not necessarily affect branch outcomes; thus 

redundant interleavings are included. These redundant 

interleavings are, however, reduced in our method, 

resulting in a significant reduction in the number of 

interleavings for testing. 

 Eliminating infeasible test cases: The existing reachability 

testing algorithms do not consider the synchronization 

event dependency of the execution path, e.x. lock-unlock 

and wait-notify mechanisms. There exist infeasible 

interleavings due to this dependency. The proposed 

method extends the existing model of variant graphs to 

identify infeasible interleavings due to this dependency, 

thereby further contributing to reducing the number of test 

cases. 
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B. Motivation 

Several methods have been proposed to reduce the number 

of interleavings that need to be tested. Partial order reduction 

is a general method which considers only those interleavings 

that may affect an execution of a program based on certain 

criteria. One example of the partial order reduction method 

reduces the number of interleavings by considering only 

those that may affect the values of shared variables [12] [13] 

[14] and by ignoring the order of independent operations, 

where two operations are said to be independent if any 

different order of the operations does not affect the values of 

shared variables. An example of independent operations is 

two read operations from different threads accessing the 

same shared variable. Such interleaving is left unordered 

because its order is irrelevant to the resulting values of any 

shared variables. Unfortunately, such partial order reduction 

still leaves some redundancy when exploring different 

execution paths in a thread for detecting potential race 

conditions. Consider the example in Fig. 1. In the case that 

the loop in the thread T2 is executed only once, there are six 

possible different interleavings. The first and the second 

interleavings are different only in the order of independent 

operations, so they will have the same values for shared 

variables. A similar situation happens for the fifth and sixth 

interleavings. By ignoring the order of independent 

operations, there will be only four groups of interleavings 

with different combinations of values for the shared variables 

x and y. For members of the same group, the same read or 

write operation is guaranteed to use the same value of shared 

variable. If the branch only depends on the shared variable x, 

there are actually only two groups that matter for changing 

the execution path of thread T1. These groups are determined 

by whether CS1 x is executed before CSA x (group 1) or vice 

versa (group 2). When the loop in the thread T2 is executed 

several times or possibly becomes an infinite loop, there are 

more possible interleavings that affect the value of the shared 

variable y, but still there are only two groups of interleavings 

with respect to different values of the shared variable x. We 

will use this idea for exploring different execution paths 

efficiently. 

 Fig 2 shows some possible execution paths for an 

execution of a concurrent program. A thread can take a 

different execution path with a different lock sequence or 

different accesses to shared variables. To detect the 

concurrent errors, we need to find all different interleavings 

that can change the execution path. 

 
 

Suppose that path 1 is executed concurrently with path 3 

(path 1 || path 3) when the program is first tested. In this case, 

there are three possible different interleavings: 

1. CSA x, CS1 x, CS2 x 

2. CS1 x, CSA x, CS2 x 

3. CS1 x, CS2 x, CSA x 

Referring to Fig 2, let us assume that the first interleaving 

is taken when the program is first tested. The other two 

interleavings are other possible test cases. Assuming that the 

branch is conditioned by the shared variable x, the 

conditional statement of the branch is only affected by the 

order of CSA x and CS1 x. In this example, CS1 x is executed 

before CSA x in the second and the third interleavings, so they 

will result in the same execution path for thread T1, that is 

either path 1 or path 2. Since thread T1 follows the same 

execution path in the second and third interleavings, this will 

not change the consistent locking among threads. In other 

words, the same lock sequences and accesses to shared 

variables are held. If the branch condition is true, then both 

the interleavings will lead to the execution of path 1 

concurrent with path 3 (path 1 || path 3). On the other hand, if 

the branch condition is false, then we will have the 

combination of the execution of path 2 concurrent with path 

3 (path 2 || path 3). For exploring different execution paths in 

thread T1 caused by the branch, we need only test one of the 

interleavings, that is either the second or third interleaving. 

By considering the dependency between the conditional 

statement in the branch and the shared variables, we can 

avoid testing interleavings that do not change the execution 

path of a thread. For the example in Fig 2, if we know from 

the previous executions that the branch is not affected by the 

Thread T1 Thread T2

CS1 x

branch

CSA x

CS2 y

CSB y

1. CS1 x, CS2 y, CSA x, CSB y

2. CS1 x, CSA x, CS2 y, CSB y

3. CS1 x, CSA x, CSB y, CS2 y

4. CSA x, CS1 x, CS2 y, CSB y

5. CSA x, CS1 x, CSB y, CS2 y

6. CSA x, CSB y, CS1 x, CS2 y

Only differ in the 

order of independent 

operations.

Grouping by 

ignoring the order 

of independent 

operations.

group 4

group 1

group 2

group 3

Grouping by considering 

data dependency when 

the branch only depends 

on shared variable x

dependent

dependent
loop

group 1: 

CS1 x before  

CSA x

group 2: 

CSA x before 

CS1 x

 
Fig. 1.  Example of grouping for interleaving. 

  

 
Fig. 2.  Example of some possible execution paths for a concurrent program. 

  

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

 
______________________________________________________________________________________ 



 

 

shared variable x, then there is no need to test the second or 

the third interleaving. Of course, the final result for the value 

of the shared variable x can be different in the second and 

third interleavings because it might also depend on the order 

of CSA x and CS2 x. 

If the execution path in thread T1 changes to path 2, we 

compare the locking for accesses to shared variables between 

CS2 and CS3 before checking the race conditions for the 

concurrent execution of path 2 and path 3 (path 2 || path 3). If 

the locking for accesses to shared variables in CS2 and CS3 is 

the same or “equivalent”, then the race conditions are the 

same as in the first test case (path 1 || path 3) in the previous 

execution, thus reducing the effort for checking race 

conditions. 

II. RELATED WORK 

Error detection can be classified into static and dynamic 

methods. Static methods only employ source code analysis at 

compile time without executing the program. Since static 

methods do not know the precise execution of a program that 

causes the error, they use a conservative approach by 

considering all possible executions in order not to overlook 

potential errors [39]. Static methods are more suitable for 

testing because they check all possible program behaviors. 

For debugging, static methods often suffer from the detection 

of false positives; that is, potential race conditions that do not 

actually exist in the execution. 

Dynamic methods [15]–[17] execute the programs and 

detect errors using information from the execution of the 

program, including the execution trace and source code 

information. For the purposes of debugging, dynamic 

methods are more suitable than static methods because they 

can perform more precise error detection by employing the 

execution trace. There are some execution trace analysis 

techniques that use lockset analysis [1] [16] [37] for 

dynamically detecting race conditions. They verify whether 

an execution of a program satisfies a locking discipline. For 

example, Eraser [1] is a lockset analysis that identifies a race 

condition from a particular execution by checking the 

consistency of locking for accesses to shared variables. Most 

research in this field is focused on reducing false positives 

[15] [35] [39] [43] and reducing the overheads caused by 

tracing [30] [38]. J. Huang, J. Zhou, and C. Zhang [38] 

identified one of the causes of redundancy to be that an 

execution trace often contains a large number of events that 

are mapped to the same lexical statements in the source code. 

However, removing them without careful analysis might 

cause false negatives because they might affect the 

reproduction of race conditions. This situation happens when 

a number of events from the same lexical statement in the 

source code affect a conditional statement in a branch 

whose“then” and “else” statements have a different lock 

sequence and accesses to shared variables.  

In other work by C. Park, K. Sen, P. Hargrove, and C. 

Iancu [40], known as active testing, imprecise dynamic 

analysis of an execution trace is performed to generate a set 

of tuples that represents potential concurrent errors. In the 

later phase, it re-executes the program by actively controlling 

the thread schedule to confirm the concurrent errors. 

However, there might be some false negatives for detecting 

race conditions because the set of tuples might be incomplete 

if some tuples were not executed in the execution. This 

situation happens when a race condition is caused by the 

“then” or “else” statements of a branch whose conditional 

statement is affected by interleaving. Race conditions can 

only be detected using dynamic methods if the execution 

trace contains the potential concurrent errors. Unfortunately 

in a concurrent program, a branch can take a different 

execution path not only due to different input values, but also 

due to different interleavings. Hence, depending on the 

branches and interleavings, an execution trace might or 

might not contain potential race conditions. 

Deterministic replay techniques are available for replaying 

an execution of a concurrent program with the same 

interleaving. Such techniques record the concurrent 

execution trace in a recording mode. The recorded execution 

can be replayed later in a replaying mode for dynamic 

analysis. A commercial tool for deterministic replay [27] is 

capable of reproducing the original execution order of 

threads, thus the same interleaving can be replayed. When a 

concurrent error is detected during a recording mode, a 

deterministic replay requires only one execution to replay the 

error and obtain the execution trace containing the error. This 

is useful for debugging concurrent programs. However, this 

is only effective if programmers can identify the errors when 

a concurrent program is running in recording mode during 

software development or a testing cycle. Unfortunately, due 

to the huge number of all possible interleavings, not all of 

them can be tested during software development or the 

testing cycle because of time and cost restrictions. 

Sometimes only regression tests are performed after fixing 

bugs and the software is quickly deployed in real situations, 

leaving the possibility that other errors remain. In recording 

mode, all the information necessary for replaying can be 

traced using instrumentation [7] or a specialized virtual 

machine [6]. Hence, programs run more slowly during 

recording mode and require more memory to store 

information about interleaving and program states. This is 

known as the probe effect. Therefore, executions cannot 

always be traced during the deployment of systems that 

require high performance or where resources are limited, 

such as in embedded systems. To reduce the probe effect, a 

special hardware device can be used to communicate with the 

performance monitor through JTAG (refer to IEEE 1149) for 

tracing, but many hardware constructions cannot run at full 

speed when JTAG is used [33]. The advantage of this 

approach is that an execution can be traced with minimum 

interference, but the drawback is expensive hardware costs.  

In cases when an error has happened in the absence of a 

complete execution trace for replaying, programmers need to 

test the concurrent program with tracing to see if the same 

error can be detected. Unfortunately, the error might not be 

easy to detect because a concurrent program can have a 

different interleaving during re-execution. In this situation, 

programmers need to control the interleaving and use 

deterministic testing. Deterministic testing can enforce a 

particular interleaving specified in test cases. Since the 

number of possible different interleavings can be huge, the 

method proposed in this paper helps in the efficient 
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generation of test cases to reproduce the same or equivalent 

execution conditions. 

Some tools for deterministic replay can also be used for 

deterministic testing. For example, in Jreplay [7] 

programmers can control the interleaving by enforcing 

thread switching using some additional locks, and can write 

them in the locations where a thread switch should occur. 

Enforcing a thread switch is realized by unblocking the next 

thread in the schedule followed by blocking all other threads, 

including the current thread. An additional lock object is 

assigned to each thread. The wait and notifyAll methods are 

used to implement the block and unblock operations that 

suspend and resume an execution of a thread. A binary 

semaphore is used to prevent deadlocks in the control 

transfer method due to interceptions by the JVM scheduler. 

Another method devised by Pugh and Ayewah [36] uses a 

clock to synchronize the order of executions in multiple 

threads. Programmers can delay operations within a thread 

until the clock has reached a desired tick. 

Determining which of all the possible interleavings are 

necessary is important because it directly affects the 

efficiency of test case generations. Basically, there are three 

approaches: 

1. Random: inspect only some of all the possible 

interleavings using randomizing or noise injection. 

2. Partial: inspect only some of all possible interleavings 

based on certain criteria. 

3. Exhaustive: inspect all possible interleavings. 

Random approaches might not discover errors because 

only some of the possible execution paths are inspected. An 

improved random approach uses a heuristic approach [18] to 

reduce the search space. Another improvement - carried out 

in ConTest - uses coverage to guide the heuristic test 

generation [2], but still does not ensure that errors will be 

found because not all possible execution paths are tested. 

Basically, finding errors requires an exhaustive approach. 

Unfortunately, exhaustive approaches often suffer from an 

explosion of the number of possible execution paths to be 

inspected. The idea behind a partial approach is to identify a 

group of execution paths with the same coverage. For each 

particular group, it is sufficient to test only one group. In 

program testing, the “coverage” criterion states how much of 

the program execution space is to be covered during testing. 

We can identify five levels of criteria based on program 

structure [8]. These are statement coverage, node coverage, 

branch coverage, multiple condition coverage, and path 

coverage. Statement coverage and node coverage are rather 

weak criteria, representing necessary but by no means 

sufficient conditions for conducting a reasonable test. 

Branch coverage and multiple condition coverage are 

stronger criteria. Path coverage is the most thorough of all, 

and it is necessary to ensure the correctness of a program by 

testing or to find errors in debugging. However, it is normally 

difficult to achieve, particularly in a concurrent program, 

because the number of possible execution paths might be 

huge. Nevertheless, since different execution paths might 

exercise different lock sequences and accesses to shared 

variables that can affect consistent locking, it is necessary to 

adopt path coverage to ensure that all concurrent accesses to 

shared variables are consistent. 

In the field of concurrent programs, there exist some other 

criteria besides structural coverage that can help to determine 

which interleavings should be tested. For example, CHESS 

[19] generates all interleavings of a given scenario written by 

a tester based on fair scheduling. Another approach [20] 

exhaustively generates all possible execution orders for test 

cases for the purpose of mitigating memory consumption 

problems by dynamically building partitions along the traces. 

There is also a coverage model for evaluating concurrent 

completeness. Synchronization coverage [9] covers different 

orders of synchronization events from different threads. Its 

goal is to check whether the synchronization statements have 

been properly tested. For example, the tryLock method of the 

Lock interface in Java 1.5 is used to check whether a lock is 

available. It does not block, but may succeed or fail 

depending on whether another thread is holding the lock. If it 

always succeeds or always fails, then either the tests are 

sufficient or the operations are redundant.  

Another approach uses program flow as a coverage 

criterion for examining an execution of a program. 

All-du-path coverage [10] uses define-use associations and is 

applicable for parallel programs. Synchronization coverage 

and All-du-path coverage are not suitable criteria for 

checking consistent locking among threads: consider cases 

where only the order of the try-locks is different for 

synchronization coverage or there are different define-use 

associations for All-du-path coverage, but lock consistency 

is not changed. In these cases, all possible concurrent 

lock-unlock sequences and accesses to shared variables may 

not be covered. The work done by Koushik Sen and Gul 

Agha [44] [45] is intended to facilitate the exploration of 

different execution paths. Their tool, called “JCute”, 

explores execution paths by generating new interleavings as 

well as new input. It generates all possible interleavings 

based on previous executions by changing the order of thread 

executions, starting from the smallest indexed thread. 

Redundancy is still present here, because not all 

interleavings would change branch execution and locking, as 

previously shown by the example in the Motivation 

subsection 

III. OVERVIEW OF THE EXISTING REACHABILITY 

TESTING METHOD 

This section explains an existing method for generating 

test cases for concurrent programs using the reachability 

testing method [11] [21] [22]. This is a dynamic method that 

uses partial order reduction for reducing test cases. The 

reachability testing method in [11] covers all different 

interleavings that affect the values of shared variables as test 

cases. This reachability testing uses the previous execution 

trace to derive different read-write sequences that affect 

values of shared variables. Assume that S is a read-write 

sequence from an execution of a concurrent program. The 

concept of reachability testing is defined as follows: 

1. Use S to derive other read-write sequences, called 

“execution-variants”, that produce different values of 

shared variables. 

2. Perform deterministic testing based on the result from 

step 1 using tracing. 

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

 
______________________________________________________________________________________ 



 

 

3. For each new “execution-variant” from step 2, repeat 

step 1 and 2 until no more “execution-variants” are 

found. 

 

Variant Graph 

The reachability testing method performs an efficient 

exploration of “execution-variants” by grouping and 

ignoring different interleavings that do not affect values of 

shared variables, using the idea of partial order reduction. 

Test cases are generated systematically using a variant graph. 

A variant graph derives different read-write sequences from 

the previous execution trace. A different read-write sequence 

that affects the values of shared variables is called an 

“execution-variant”. “Execution-variants” are used as test 

cases in reachability testing. Algorithm 1 shows how to 

create a variant graph from an execution trace of a concurrent 

program. 

Algorithm 1. Creating a variant graph. 

Definitions: 

- S(j) is a read-write sequence for thread Tj. 

- S(j, i) is the i-th operation in the sequence of thread Tj. 

Each node N in the “execution-variant” graph contains the 

following two vectors:  

- index vector: (id1, id2, … , idp), where p is the number of 

threads and idj indicates the i-th operations in a thread Tj 

when node N is generated. The index vector is initialized to 

zero and increased by one after each read or write operation 

in the thread Tj. 

- version vector: (ver1, ver2, …, verq), where q is the 

number of shared variables and verk is the version number of 

variable Vk when node N is generated. The version for 

variable Vk is initialized to zero and increased by one after 

each write operation to the variable Vk. 

Input: read-write sequence. 

Output: variant graph. 

Step 1. Initialize the variant graph.  

Create an initial node and label it as “unmarked”. Set its 

index vector to (0,0, … , 0) and version vector to (0,0, … , 0). 

Step 2. Derive different read-write sequences. 

   2.1 Select an “unmarked” node, say N.  

For each j, 1 ≤ j ≤ p, where p is the number of 

threads 

If idj < the length of S(j),  

Then construct a child node N’ of N 

according to steps 2.2 – 2.5. 

   2.2 Set the index vector of N’ to that of N except that the 

j-th element is idj + 1.  

   2.3 Set the version vector of N’ to that of N. 

   2.4 Let vark be a shared variable in the operation S(j, idj 

+1) and verk is the version number of variable vark in S(j, idj 

+1). 

   2.5 If S(j, idj +1) is a write operation to shared variable 

vark,  

Then increase the verk’ of N’ by 1. 

Step 3. Identify an “execution-variant”. 

3.1 Let verk’ be the k-th element of the version vector of 

N’.  

3.2 If verk != verk’  

            Then label N’ as “marked” and 

“execution-variant” (V). 

Else If the variant graph already contains a node 

with the same index and version vector as N’. 

                       Then label N’ as “marked” 

                       Else label N’ as “unmarked” 

Step 4. Repeat step 2 until all nodes in it are labeled 

“marked”. Do not create child nodes for the nodes which are 

labeled as “execution-variant” (V), as this will be done later 

by executing them as test cases. 

 

Note that we first need to identify all shared variables from 

source code before creating a variant graph. If we do not 

consider all shared variables, then later we might need to 

reconstruct the variant graph when other variables are found 

to be shared. It is not enough just to identify shared variables 

from the execution trace because maybe not all shared 

variables can be detected from a particular execution trace. 

Unfortunately, it is not always possible to identify precisely 

all shared variables from source code: in the case that threads 

are dynamically created according to input data, for example, 

it is necessary to consider all potential shared variables. If 

some variables are not actually shared, they will lead to 

redundant nodes in a variant graph, but they will not produce 

redundancy in test cases because they will not lead to any 

new “execution-variants”. 

 

Model for Concurrent Program Execution Traces 

A concurrent program execution trace contains a sequence 

of operations from all the threads. An operation in a thread is 

modeled as a triplet of: 

location : operation : operand, where 

 location is thread_name:file_name:line_of_code. The 

thread name or the file name is omitted in some cases for 

simplicity when there is no ambiguity. 

 operation is the read or write operation on a shared 

variable. 

 operand is the name of the shared variable. 

Fig 3 shows an example of a concurrent program and its 

flow graph. Let us assume that the following read and write 

sequence S is obtained from an execution trace of the first 

test: 

T1:1 read x, T2:10 write x, T1:1 read y, T1:1: write n, T1:2 

read n, T2:11 write y, T1:3 …, T1:7 read y, T2:12 read x. 

Fig.4 is an example of a variant graph constructed using 

Algorithm 1 for the execution trace above. Lined boxes in a 

variant graph represent possible read-write sequences where 

they access the same values of the shared variables as in the 

previous execution. A dotted box in a variant graph 

represents an “execution-variant” (V) in which some read or 

write operations access values of shared variables different 

from the previous execution as a result of a different 

interleaving. There are seven “execution-variants” V1, V2, 

V3, V4, V5, V6, and V7 in Fig. 4. 

Fig 4 shows two equivalent read-write sequences 

surrounded by dotted lines. They are equivalent in terms of 

the read-write sequence, in the sense that every operation 

will read or write the same versions of shared variables. The 

reachability testing algorithm [11] performs reduction by 

only considering one of them as an “execution-variant”. 
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IV. PROPOSED METHOD 

First, the following essential terms are defined.  

A. Terms 

Execution Path 

A concurrent program consisting of threads T1, T2, T3, …, 

Tp, where p is the number of threads. An execution path is 

defined in the scope of a thread and a concurrent program:  

 An execution path Pi of a thread Ti is a sequence of 

operations executed by the thread Ti. For the execution of 

the program shown in Fig. 6(a) and Fig. 6(b), we have: 

P1 = {10: if (  ), 11:lock a, 12: read x, 13: unlock a} 

P2 = {20:lock a, 21:lock b, 22:read y, 23:write x, 

24:unlock b, 25:unlock a } 

 A concurrent execution path of a concurrent program is 

defined to be a sequence of operations executed by all 

threads, taking into account the global order among 

threads. Fig. 6 shows four possible examples of 

concurrent execution paths for the concurrent program in 

Fig.5. 

We define PATHS as a set of execution paths Pi’s. 

PATHS = (P1, P2, P3, …, Pp), where p is the number of 

threads. 

Note that PATHS does not take into account the global 

ordering among threads. For the example in Fig. 6(a) and Fig. 

6(b), we have: 

0,0

0,0  

1, 0

0, 0 
0, 1 

1,0

0, 2

1,1 

T2:10 write x
T1:1 read x

1, 1

1,0

T2:10 write x

2, 0 

0, 0

3, 0

0,0

2, 1

1,0 

T1:1 read y

2, 1
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T1:1 read y
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1,0 

T2:11 write y

1, 2

1, 1

T1:1 read x
T1:7 read y
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x   y   

0, 3

1,1

T2:12 read x

“execution-variant”

Note:

1,3

1,1 

T1:1 read x
T1:7 read y

1, 1

1,0 

T1:1 read x

2, 2

1,1

T2:11 write y

1, 2

1,1

T2:11 write y

2, 2

1,1 
V3

V5

V6

V7

index

version

Note:

V1

3, 2

1,1 

T1:7 read y

First re-

execution

3, 3

1,1 

T2:12 read x

2, 3

1,1 

T2:12 read x

3, 3

1,1 

T1:7 read y

V2

1, 3

1,1

T2:12 read x

2, 3

1,1 
V4

T2:10 write x

T1:1 read y

T1:1 read y

Equivalent read-write sequence

 
Fig. 4.  Example of a variant graph from an execution trace. 

 

1: n = x + y;

2: if (n<0) {

3:    . . .

4: } else {

5:    . . .

6: }

7: print y;

Thread T2

10: x = -10; 

11: y = 2;

12: print x;

Thread T1

1: n = x + y

2: if (n<0)2: if (n<0)

3: . . . 5: . . .

7: print y

T F

10: x = -10

11: y = 2

12: print x

1: read x

1: read y

1: write n

2: read n2: read n

3: . . . 5: . . .

7: read y

T F

10: write x 

11: write y

12: read x;

Thread T2Thread T1

(a) (b)

Thread T2Thread T1

(c)
 

Fig. 3.  (a) Example of a concurrent program (b) Flow graph. (c) Flow graph for read and write operations. 
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 24:unlock b, 25:unlock a } }. 

PATHS = { P1, P2 } = { {10: if (  ), 11:lock a, 12: read x, 13: 

unlock a}, {20:lock a, 21:lock b, 22:read y, 23:write x, 24: 

unlock b, 25: unlock a} } 

 

Interleaving and Branching 

We denote by bi,j the j-th branch of thread Ti in the 

execution path of thread Ti. The truth value of a conditional 

statement in a branch can be affected by both input values 

and interleaving because interleaving might affect shared 

variables, which may in turn affect the conditional statement. 

Fig. 6(a) and Fig. 6(b) show some possible concurrent 

execution paths for the program in Fig. 5 when the 

conditional statement in the branch b1,1 is true, whereas Fig. 

6(c) and Fig. 6(d) show the concurrent execution paths when 

the conditional statement is false. 

 Let → denotes the “happens-before” relation as follows: 

If a is an event in process Pi, and b is an event in process Pj, 

then event a →event b if and only if event a happens before 

event b. In the example of Fig. 6, the order of T1:10 and 

T2:23 affects the truth value of the branch b1,1. The branch is 

true in executions 1 and 2 when T1:10 →T2:23, and false in 

executions 3 and 4 when T2:23 →T1:10. We will later 

explain how to identify operations that affect a branch. 

 

Race Condition 

Consistent locking for accessing a shared variable means 

there is at least one lock which is always acquired by all 

threads before accessing this shared variable. Such locks are 

called consistent locks. An access to a shared variable is said 

to be well formed if all threads acquire a consistent lock 

before accessing the shared variable, and then perform an 

unlock operation to release the corresponding lock. In 

concurrency control using a lock mechanism, a race 

condition exists when access to a shared variable is not well 

formed. Detecting race conditions is checking consistent 

locking for accessing shared variables. A race detector called 

Eraser [1] proposes an efficient algorithm for checking 

consistent locking in the execution of a concurrent program. 

In concurrency control using a lock mechanism, it is the 

responsibility of programmers that a proper lock operation is 

performed before accessing a shared variable, and that the 

lock is released after the access to the shared variable has 

been completed. There are various reasons why access to a 

shared variable may not be well formed: for example, 

programmers may forget to write the lock, they may write an 

incorrect lock, or they may make an incorrect prediction 

about the execution path, resulting in the lock not being 

properly set. An example is shown in Fig. 6(c) and Fig. 6(d) 

where the "else-statements" in line 15 for thread T1 access 

the shared variable x without acquiring any locks. Another 

reason that an access may not be well formed is that 

programmers may intentionally omit a lock for performance 

reasons when data race are acceptable, for example by using 

a volatile variable in Java. In those cases, the access to shared 

variables is not well formed and a race condition is caused. 

 

 “Access-Manner” 

We divide an execution path of a single thread into several 

parts called “access-manners”. Later we will show that 

“access-manner” is useful to define “equivalency” in terms 

of race condition among different executions of a concurrent 

program, even though they do not have the same exact 

sequence of locks and accesses to shared variables. In order 

to define “access-manner”, we use notation L(Ti) as the 

number of active locks acquired by thread Ti at a particular 

time. At the beginning of the execution of thread Ti, L(Ti) is 0. 

During an execution of a program, L(Ti) is incremented and 

decremented by the following rules: 

 Incremented by 1 when a thread successfully acquires a 

lock (i.e. has completed a lock instruction). 

 Decremented by 1 when a thread releases the lock (i.e. has 

completed an unlock instruction) that is currently acquired. 

L(Ti) is not decremented if a thread is trying to release a 

lock that is not currently acquired. Hence L(Ti) cannot be 

negative. 

Most race conditions occur because programmers use an 

incorrect lock or even forget to acquire a lock before 

accessing shared variables. For checking whether the usage 

of a lock was correct, we use the term “access-manner” when 

the access to a shared variable is performed under a lock. We 

define an “access-manner” as a sequence of operations in 

which a thread has acquired a lock, has accessed a shared 

variable, and has released the corresponding lock. An 

individual “access-manner” is usually a sequence of 

lock-unlock and read-write operations to shared variables 

within a thread’s execution path that start and end with the 

following conditions: 

 Start: lock operation that causes L(Ti) to become 1. 

 End: unlock operation that causes L(Ti) to become 0, or 

when execution trace terminates. 

An individual “access-manner” must end before another 

individual “access-manner” starts and there must not be 

overlaps between “access-manners”. In the case where 

programmers forget to acquire a lock, it is known as an 

unusual “access-manner” when an access to shared variables 

without acquiring a lock starts, or when programmers only 

write an unlock without previously acquiring the lock.

10: if( condition ){

11:   lock a

12:   write x

13:   unlock a

14: } else{

15:   write x

16: }

conditional  statement

“then-statements”

“else-statements”

Thread T1 Thread T2

20: lock a

21: lock b

22: read y

23: write x

24: unlock b

25: unlock a

Access to 

shared 

variable x

without 

previously 

acquiring 

any locks.

branch b1,1

 
Fig. 5.  Example of an if-statement. 
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In such a case, “access-manner” is defined as one operation 

of unlock, read or write to a shared variable. Such an unusual 

“access-manner” might potentially cause a race condition if 

another thread is accessing the same shared variable. 

Two individual “access-manners” are the same if they 

have the same sequence of lock-unlock statements and 

read-write operations on shared variables. We define Mi to 

be a set of “access-manners” for the execution path of thread 

Ti, that is a collection of distinct individual “access-manners” 

without considering their order. We also define a concurrent 

set of “access-manners” MANNERS = {M1, M2, M3, ... , 

MN} as a collection of sets of “access-manners” from all the 

threads within a concurrent execution path of a concurrent 

program. When two concurrent execution paths of a 

concurrent program have the same MANNERS, each thread 

will have the same set of “access-manners”. 

When two different concurrent execution paths of a 

concurrent program have the same PATHS, each thread in the 

two execution paths will exercise exactly the same sequence 

of lock-unlock and read-write operations on shared variables, 

hence they will also have the same set of “access-manners”. 

Therefore, two concurrent execution paths with the same 

PATHS will certainly have the same MANNERS. The 

concurrent execution path in Fig. 6(a) and the execution path 

in Fig. 6(b) have the same PATHS, hence they will also have 

the same MANNERS: 

M1 = {(11:lock a, 12:write x, 13:unlock a) } 

M2 = {(20:lock a, 21:lock b, 22:read y, 23:write x, 

24:unlock b, 25:unlock a) } 

MANNERS = { {(11:lock a, 12:write x, 13:unlock a)}, 

{(20:lock a, 21:lock b, 22:read y, 23:write x, 24:unlock b, 

25:unlock a)} } 

 

“Race-Equivalent” 

Regarding reproducing race conditions due to inconsistent 

locking for accesses to shared variables, it is beneficial to 

consider equivalency between two executions of a 

concurrent program. For this purpose, we introduce a new 

term called “race-equivalence”. Two executions of a 

concurrent program are “race-equivalent” if they have the 

same MANNERS. “Race-equivalent” means the two 

concurrent execution paths of a concurrent program have the 

same consistent locking for accessing shared variables. 

Different concurrent execution paths of a concurrent 

program that are “race-equivalent” are said to be in the same 

“race-equivalent” group. It is sufficient to test only one 

member from each “race-equivalent” group, thereby 

reducing the number of interleavings to be tested. For 

detecting race conditions, we need to check all 

“race-equivalent” groups. 

As explained above, two concurrent execution paths with 

the same PATHS will certainly have the same MANNERS. 

Therefore, two concurrent execution paths of a concurrent 

program that have the same PATHS will certainly be 

“race-equivalent”. As shown before, the execution path in 

Fig. 6(a) and the concurrent execution path in Fig 6.(b) have 

the same PATHS, so they are “race-equivalent”. We can see 

that lock a is a consistent lock for accessing shared variable x 

in both concurrent execution paths. Different 

“race-equivalent” groups can be created by taking a different 

concurrent execution path in which at least one thread 

changes its individual “access-manner”. A branch might lead 

to a different concurrent execution path which, in turn, can 

produce different individual “access-manners” that can 

affect consistent locking. As shown in the concurrent 

execution paths in Fig. 6(c) and Fig. 6(d), there is a race 

condition because there is no consistent lock for access to 

shared variable x in thread T1:  

M1 = {(15:write x) } 

M2 = {(20:lock a, 21:lock b, 22:read y, 23:write x, 

24:unlock b, 25:unlock a) } 

MANNERS = {{( 15:write x) }, {(20:lock a, 21:lock b, 

22:read y, 23:write x, 24:unlock b, 25:unlock a) } } 

To detect this race condition, we need only check the 

concurrent execution path in Fig. 6(c) or the one in Fig. 6(d) 

because they are “race-equivalent”. The same inconsistent 

locking can be detected.  

When a branch changes the execution path of a thread, it 

might not necessarily produce different consistent locking. In 

this situation, the same thread in the two concurrent 

execution paths might not exercise exactly the same 

lock-unlock sequence and read-write operations on shared 

T1:10:  if (    ) {

T1:11:  lock a

T1:12:  write x

T1:13:  unlock a

T2:20:  lock a

T2:21:  lock b 

T2:22:  read y  

T2:23:  write x

T2:24:  unlock b

T2:25:  unlock a 

Execution 1
b1,1 is True

Execution 2
b1,1 is True

(a) (b)
(c)

Execution 3
b1,1 is False

time

Thread T1 is accessing shared variable 

x without previously acquiring any locks.

T2:20:  lock a

T2:21:  lock b

T2:22:  read y

T2:23:  write x

T1:10:  if (    ) {

T1:14:  } else {

T1:15:  write x

T2:24:  unlock b

T2:25:  unlock a 

T2:20:  lock a

T2:21:  lock b

T1:10:  if (   ) {

T1:11:  lock a

T1:12:  write x

T1:13:  unlock a

T2:22:  read y

T2:23:  write x

T2:24:  unlock b

T2:25:  unlock a

T2:20:  lock a

T2:21:  lock b

T2:22:  read y

T2:23:  write x

T2:24:  unlock b

T2:25:  unlock a

T1:10:  if (   ) {

T1:14:  } else {

T1:15:  write x

Execution 4
b1,1 is False

(d)

start: lock, L(T2)=1

end: lock, L(T2)=0

start: write, L(T1)=0

end: write, L(T1)=0

 
Fig. 6.  Example of different concurrent execution paths for program in Fig. 5. 
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variables, but they will still have the same MANNERS, and so 

we can also classify them as “race-equivalent”. This is 

particularly useful in the case of loops because we do not 

need to test all the iterations. It is sufficient to test only a 

partial execution trace from several iterations for checking 

race conditions because the execution of loop iterations can 

have the same “access-manners”.  

In Fig. 7, thread T1 in execution 1 and execution 2 has 

different “access-manners”, hence concurrent execution 

paths 1 and 2 are not “race-equivalent”. When there is an 

active lock that was acquired outside the loop, then the first 

iteration will have different “access-manners” from those in 

the second iteration because they start from different active 

locks, as shown in concurrent execution paths 1 and 2 in Fig. 

7. On the other hand, concurrent execution paths 2 and 3 in 

Fig. 7 are “race-equivalent” because each thread in the two 

executions has the same MANNERS: 

M1 = { (1:lock a, 3:write x, 4:unlock a), (3:write x), 

(4:unlock a) } 

M2 = { (20:lock a, 21:read x, 22:unlock a) } 

MANNERS = {{(1:lock a, 3:write x, 4:unlock a), (3:write 

x), (4:unlock a)}, {(20:lock a, 21:read x, 22:unlock a)}} 

The second iteration for the loop accesses the shared 

variable x without previously acquiring any lock, a fact that 

can be detected in either concurrent execution path 2 or 3. 

When there is no active lock at the end of a loop, the rest of 

the iterations will have the same set of “access-manners”. 

The rest of these iterations are called “equivalent iterations” 

in terms of consistent locking because they have the same set 

of “access-manners”. 

Further to the discussion above, the problem for detecting 

a race condition can be stated as follows:  

Given a concurrent program that has an 

“execution-variant” Verror containing an error in its 

concurrent set of “access-manners” MANNERSerror, find the 

Verror, or another “execution-variant” V, which has the same 

concurrent set of “access-manners” as MANNERSerror. Since 

each thread in V and Verror will have the same set of 

“access-manners”, then the same inconsistent locking and 

improper lock-unlock sequences in Verror will also be 

detected in V. 

B. Reduction in the Number of Different Interleavings 

The number of different interleavings is reduced by trying 

to create only interleavings that lead to a different 

“race-equivalent” group. This subsection explains how to 

create different “race-equivalent” groups efficiently. The 

basic idea is that, for exploring possible different concurrent 

execution paths caused by branches, it is sufficient to create 

and test only those interleavings that might affect the 

conditional statements of branches. Different 

“execution-variants” from a particular branch b might lead to 

the same value for the condition. Hence, in exploring 

different concurrent execution paths caused by the branch b, 

we can reduce test cases by grouping those 

“execution-variants” and testing only one member from each 

group. We name such a group a “branch-affect” group. 

“Execution-variants” within the same “branch-affect” group 

for a branch b will have the same condition value for the 

branch b. Let BranchRelOP(b) be the set of read and write 

operations on shared variables that affect the condition of a 

branch b. The idea for grouping the “execution-variants” 

comes from the fact that if two “execution-variants” execute 

the same sequence of read and write operations from 

BranchRelOP(b), then they will give the same condition 

value for the branch b, and thus they can be grouped into the 

same “branch-affect” group. Two or more 

“execution-variants” in the same “branch-affect” group for a 

branch b are redundant with respect to exploring the different 

concurrent execution paths caused by the branch b. 

 

Determining the Set of Operations that Affect Branch 

Outcomes 

In order to identify "branch-affect” groups, we first need 

to determine the set of operations that affect the conditional 

value of a particular branch b. We propose a data flow 

analysis method to identify operations that affect the 

conditional statement of the branch b from an execution trace. 

This method analyzes data flow among accesses to shared 

variables related to the conditional statement of the branch b. 

Based on this analysis, we can determine which operations 

are affecting the condition. 

One existing method for data flow analysis is by using 

“use-define”. We use “use-define” to find operations that 

affect conditional statements in branches. First we identify 

the “use-define” set SetUD which we will use for grouping 

different interleavings. In sequential programs, a 

“use-define” is a relation consisting of a use, U, of a variable, 

and the definitions, D, of that variable that can be reached 

from that use without any other intervening definitions. A 

“definition” can have many forms, but is generally taken to 

mean the assignment operation of some value to a variable. A 

“use” generally means a read operation on a variable. A 

“use-define” is a triplet (variable_name, use_location, 

define_location). R. Caballero, C. Hermanns, and H. Kuchen 

[23] utilize “use-define” for measuring test coverage but that 

definition does not apply to concurrent programs. We call the 

“use-define” for sequential programs the conventional 

use-define. Yang, A.L. Souter, and L.L. Pollock [10] [34] 

extended the definition and notation of “use-define” to cover 

possible usages and definitions of shared variables in 

concurrent programs. They then proposed an automatic 

generation of concurrent execution paths to cover a 

particular “use-define” for concurrent programs. In the 

extended definition of “use-define” for concurrent programs, 

a use statement includes the usage of a shared variable, and 

the define statement includes the possibility that the value 

can be defined from other threads. We call this an extended 

use-define. 

Which thread actually defines the value in a particular 

execution would depend on the interleaving. The 

“use-define” set can be obtained by analyzing the execution 

trace or source code. Since the method proposed in this paper 

iteratively generates different interleavings based on 

previous execution traces, it is sufficient to use the 

“use-define” set obtained only from the execution trace. The 

“use-define” set obtained by the static analysis of source 

code may contain redundant elements. Information from the 

source code can be used as a supplement if execution traces 
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do not contain complete information for obtaining the 

“use-define” set. In this paper, we assume that the execution 

trace contains enough information to obtain the “use-define” 

set consisting of triplets of variable names, read or write 

operations, and locations. Fig. 8 shows an example of a 

“use-define” set for the program example in Fig. 3. 

To detect a conventional “use-define”, we identify the 

variable in a thread’s execution trace and check if it forms a 

conventional “use-define”. To detect an extended 

“use-define”, we first need to identify shared variables from 

the execution trace. A variable is shared if it is accessed by 

more than one thread. In the example of Fig. 8, we see that 

the variable x and y are shared variables because they were 

accessed by more than one thread. For each access to a 

shared variable in a thread, we check if it forms an extended 

“use-define” with another thread. In the example of Fig. 8, 

the read operation on shared variable x in line 1 and the write 

operation on shared variable x in line 10 form an extended 

“use-define”. There are several examples of “use-define” in 

Fig. 8, as follows: 

 Conventional “use-define”: ud2 = (n, 2, 1), ud4 = (x, 12, 

10) 

 Extended “use-define” for concurrent programs: ud1 = (x, 

1, 10), ud3 = (x, 1, 11), ud5 = (y, 7, 11) 

Since a wait-notify mechanism can change data flow, it 

might cause some infeasible “use-defines”. This situation 

could happen, for example, when there is a “wait” command 

without the corresponding “notify” command. In this 

example, the “use” or “define” after the wait command will 

not be executed, so the “use-define” becomes infeasible. C. 

Yang, A.L. Souter, and L. L. Pollock [10] [34] describe some 

complications that synchronization causes during data flow 

analysis. Some infeasible “use-defines” might be included in 

a “use-define” set, but they will not be executed and will not 

be used for grouping “execution-variants”. The infeasible 

“use-define” pairs will cause redundancy in the “use-define” 

set, but they will not cause redundancy in test case 

generation. 

 

Data Flow Relation with “use-define” 

For identifying data flow, we define a dependency relation 

between “use-defines”. A “use-define” ud2 depends on 

another “use-define” ud1, if the “definition” for the variable 

in “use-define” ud2 is using the variable in the “use-define” 

ud1. It is basically a dependency relation. When there can be 

only one assignment statement for every line of code, a 

“use-define” ud2 depends on another “use-define” ud1 when 

the following condition is satisfied: 

define_location of “use-define” ud2 = = use_location of 

“use-define” ud1 

An example of a dependency relation between 

“use-defines” is shown in Fig. 8. Since the def_location of 

“use-define” ud1 is the same as the use_location of 

“use-define” ud2, “use-define” ud2 depends on “use-define” 

ud1. This means that there is data flow from the variable x to 

the variable n, because the definition of variable n in line 1 

uses the variable x in line 10. In a similar way, the 

“use-define” ud2 depends on the “use-define” ud3. 

We define BranchRelUD(b) as a set of “use-defines” on 

which a conditional statement of a branch b could depend. It 

is basically a dependency relation. Algorithm 2 shows how to 

find the members of BranchRelUD(b) using the dependency 

relation of “use-define”. We also define BranchRelOP(b) as 

a set of read and write operations from members of 

BranchRelUD(b). They are read and write operations on 

shared variables from the “use-define” that has a data flow 

relation with the variables in the conditional statement of a 

branch b. Members of BranchRelOP(b) are operations in 

threads which are defined as triples:  

location:operation:operand 

as defined in the Model for Concurrent Program Execution 

Traces subsection. 

Algorithm 2. Finding a set of operations that is affecting 

branch outcomes. 

Input: 

- SetUD: set of “use-defines” from a concurrent program 

execution trace. 

- A branch b. 

 

1: lock a

2: while(condition){

3: write x

4: unlock  a

5: }

1: lock a

2: while(  ) {

3: write x

4: unlock  a

Execution 1: 

Iterates once

Execution 2: 

Iterates twice

Execution 3: 

Iterates three times

20: lock a

21: read x

22: unlock  a

T1 T2

1st

T2T1

2nd

T2

3rd

T1

20: lock a

21: read x

22: unlock  a

Thread T1 Thread T2

access without previously acquiring any locks

20: lock a

21: read x

22: unlock  a

20: lock a

21: read x

22: unlock  a
1: lock a

2: while(  ) {

3: write x

4: unlock  a

1st

2: while(  ) {

3: write x

4: unlock  a

2nd

1: lock a

2: while(  ) {

3: write x

4: unlock  a

1st

2: while(  ) {

3: write x

4: unlock  a

2: while(  ) {

3: write x

4: unlock  a

Same 

individual 

“access-

manner”

 
Fig. 7.  Example of set of “access-manners” for a loop. 
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Output:  

- BranchRelOP(b): a set of read and write operations that 

is affecting the conditional statement of branch b. 

Step 1. Initialization. 

1.1 BranchRelUD(b): “use-defines” from SetUD where 

the variables are used in the conditional statement of the 

branch b. 

Step 2. Find all related “use-defines”. 

2.1 For each “use-define” ud in SetUD, where  

ud is not included in BranchRelUD(b), and  

ud does not contain any operations from the same 

thread as the branch b after the execution of the branch b. 

2.1.1 Check if ud is affecting any “use-define” in 

BranchRelUD(b). 

2.2 If any “use-define” is found in Step 2.1.1 

Then Add all the “use-defines” found in Step 2.1.1 

to BranchRelUD(b) and repeat Step 2.1. 

Or Else Go to Step 3. 

Step 3. Find read and write operations that are affecting 

the conditional statement of branch b. 

3.1 Take all the read and write operations from members 

of BranchRelUD(b), and add them into BranchRelOP(b). 

When Algorithm 2 no longer finds “use-defines” that 

satisfy the conditions in step 2.1.1, it means that all 

“use-defines” related to the conditional statement of the 

branch b have been included in BranchRelUD(b). In step 3, 

BranchRelOP(b) contains all read and write operations on 

shared variables that affect the conditional statement of the 

branch b. Fig. 9 shows an example of a BranchRelOP(b). 

When we consider different effects caused by interleaving, 

we need only consider different interleavings of read and 

write operations on shared variables. Note that 

BranchRelOP(b) is calculated from a particular execution 

path and a particular execution trace. If a new test case 

explores a different execution path, then new members for 

BranchRelOP(b) might need to be added. The example in 

Table I illustrates how Algorithm 2 finds BranchRelOP(b1,1) 

for the program example in Fig. 8. The BranchRelOP(b1,1) 

operations are indicated by asterisks (*) in Fig.8. 

 

 
Grouping “Execution-Variants” That Have the Same Effect 

on Branch Outcomes 

Only interleavings that might affect the condition values of 

branches need be tested for exploring possible different 

concurrent execution paths created by the branches. We 

define Algorithm 3 for creating “branch-affect” groups by 

grouping “execution-variants” that give the same condition 

value for a branch b. 

Algorithm 3. Creating a set of “branch-affect” groups for 

a branch. 

Input: “execution-variants” from a variant graph 

Output: A set of “branch-affect” groups G(b) for a branch 

b. 

G(b) = {g1(b), g2(b), g3(b), ... }, where g1(b), g2(b), g3(b) 

are the first, second, and third "branch-affect” groups for the 

branch b in the execution trace. 

Step 1. Find BranchRelOP(b) using Algorithm 2. 

Step 2. For each “execution-variant” V in the variant 

graph. 

2.1 If the order of operations from BranchRelOP(b) in 

the current “execution-variant” already exists in the 

“branch-affect” groups. 

              Then Add the current “execution-variant” into 

the corresponding existing “branch-affect group”. 

               Else Add a new “branch-affect” group into G(b) 

                       Include the current “execution-variant” V in 

the new “branch-affect” group. 

 

As shown in the example in Fig. 10, “execution-variants” 

V3 and V4 can be grouped together into the same 

BranchRelatedUD(b1,1) 

{ (n, 2, 1), (x, 1, 10), (y, 1, 11) } 

{1:read x, 10:write x, 1:read y, 11:write y}

BranchRelatedOP(b1,1)  
Fig. 9.  Obtain the BranchRelOP(b1,1) operations from their 

BranchRelatedUD(b1,1). 

  

Thread T2Thread T1

1: n = x + y

5: . . .

7: print y

10: x = -10

11: y = 2

12: print x

2: if ( n < 0 )

ud4 = 

(x, 12,  10)

ud5 = (y, 7, 11)

ud3 = ( y,  1,   11) 
defdef

useuse

useuse defdef

Conventional use-

define for sequential 

programs 

ud1 = ( x,   1,   10 ) 

use define

ud2 = ( n,   2,   1  ) 
use define

ud1 is 

affecting 

ud2

Extension of use-define 

for concurrent programs

use defineud3 is 

affecting 

ud2

useuse

defdef

defdef

useuse

branch b1,1

* *

*

use define

use define

 
Fig. 8.  Examples of “use-defines” for the concurrent program in Fig. 3. 
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“branch-affect” group with respect to the branch b1,1 because 

they execute the same order of operations from 

BranchRelOP(b1,1). A similar situation also applies for the 

“execution-variants” V6 and V7, as shown in Fig. 10. Table II 

shows the complete groups for the examples in Fig 10. 

 As mentioned in Section IV.A, two different concurrent 

execution paths with the same set of execution paths PATHS 

will be “race-equivalent”. To explore different 

“race-equivalent” groups, it is necessary to find different sets 

of execution paths PATHS. Since the execution path of a 

thread is affected by branches, we introduce a 

“branch-condition” table to measure the progress of a test. A 

“branch-condition” table contains a list of all possible sets of 

execution paths PATHS. Each row in a 

“branch-combination” table represents the condition values 

of if-statements and the number of iterations for loops in a 

concurrent execution path, so each row represents a possible 

set of execution paths PATHS. Each different loop iteration 

will lead to a different execution path, so we need to consider 

all loop iterations. However, if loop iterations have the same 

set of “access-manners”, then there is no need to check all of 

the iterations because they will be “race-equivalent”. A 

“branch-combination” table is an accumulation from each 

execution of a test case. It is possible that not all branches can 

be identified from the execution trace of the first test case. If 

new branches are found during the execution of the next test 

case, they should be added to the “branch-combination” table. 

At the beginning, all rows are marked as “untested”, except 

for the one corresponding to the execution in the first test 

case. 

An example of a “branch-condition” table is shown in 

Fig.11. We need to test all the feasible sets of execution paths 

PATHS; that is, in order to find the inconsistent locking for 

accesses to shared variables that have caused errors, all the 

rows in a “branch-combination” table need to be tested. 

Algorithm 4 is the complete algorithm of the proposed 

method. This algorithm integrates the existing reachability 

testing in step 1.2, with the deterministic testing and race 

detection in step 4. 

Algorithm 4. Complete algorithm for generating test 

cases and testing consistent locking 

Definitions: 

- Outcome(gk(bi,j)) is the truth value for an if-statement or 

the number of iterations for a loop of a “branch-affect” group 

gk(bi,j) 

- Outcome(r, bi,j) is the truth value or the number of 

iterations of the branch bi,j for row r in a “branch-condition” 

table. 

Input: a concurrent program and its input.  

Output: test cases and race-detection results. 

Step 1. Initialization: 

  1.1. Re-execute the concurrent program taking tracing 

using the same input as when the error occurred.  

1.2. Create the corresponding variant graph from the 

execution trace using Algorithm 1. 

1.3. Create a “branch-condition” table based on the 

execution trace from step 1.1.  

1.4. For each branch of the variant graph in step 1.3, 

classify each “execution-variant” into “branch-affect” 

groups using Algorithm 3.  

Step 2. Conditions for termination. 

2.1 Terminate this algorithm if at least one of the 

following conditions is satisfied:  

- Condition 1: all rows in the “branch-condition” table 

have been tested,  

- Condition 2: all “branch-affect” groups have been 

marked as “tested”. Note that the algorithm terminates with 

the second condition if there exists any infeasible set of 

concurrent execution paths for the given input. 

Step 3. Select the next test cases TestCases:  

3.1 TestCases = { Ø } 

3.2 For each untested row r in “branch-condition” table  

       3.2.1 Candidates = { Ø }, firstGroup = true. 

       3.2.2 For each branch bi,j. 

                    If (firstGroup = = true). 

                        Then Candidates = all members of 

“branch-affect” groups of branch bi,j where Outcome(gk(bi,j)) 

== Outcome(r, bi,j)  

                                   firstGroup = false 

                        Else Candidates = Candidates ⋂  all 

members of the “branch-affect” groups of the branch bi,j 

where Outcome(gk(bi,j)) == Outcome(r, bi,j) 

       3.2.3 Select one “execution-variant” from Candidates 

and add it to TestCases. 

3.2.4 If step 3.2.3 does not produce any test cases. 

Then choose a member from an untested 

“branch-affect” group and add it to the TestCases.  

Step 4. Test cases execution. 

4.1 Execute the “execution-variants” from the 

TestCases using deterministic testing with tracing. 

    4.2 Check the execution trace from step 4.1 using an 

existing race detector and report any errors. 

4.3 Derive new “execution-variants” from the execution 

trace in step 4.1, update the variant graph and 

“branch-condition” table. 

4.4 Classify the new “execution-variants” into 

“branch-affect” groups. 

Step 5. Repeat from step 2. 

 

“Race-equivalent” means two concurrent execution paths of 

a concurrent program have the same consistent locking for 

accessing shared variables, and also share the same 

proper/improper lock-unlock sequences. When a variant 

graph produces “execution-variants”, our algorithm groups 

them into “race-equivalent” groups. Our method achieves 

test case reduction by testing only one member of each 

TABLE II 

EXAMPLE OF A “BRANCH-AFFECT” TABLE. 

Branch 

Members of 

“branch-affect” 

groups 

Order of operations from 

BranchRelOP(b1,1) 

b1,1 g1(b1,1) = {V1} 1:read x → 1:read y 

g2(b1,1) = {V2} 1:read x → 10:write x → 1:read y 

g3(b1,1) = {V3, V4} 1:read x → 10:write x → 11:write 

y → 1:read y 

g4(b1,1) = {V5} 
10:write x → 1:read x 

g5(b1,1) = {V6, V7} 10:write x → 11:write y → 1:read 

x 
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“race-equivalent” group. 

 

Step-by-step Example of Algorithm 4 

A step-by–step example of Algorithm 4 is shown in Tables 

III and IV. We assume that there is a concurrent program 

with two threads T1 and T2. Thread T1 has one branch b1,1 

and thread T2 has one branch b2,1. The branches b1,1 and b2,1 

are if-statements The steps in Table III are deduced from the 

analysis shown in Fig. 11. The steps in Table IV are deduced 

from the analysis shown in Fig. 12. 

There is no need to test the “branch-affect” group g3(b1,1) 

because all the rows in the “branch-condition” table in Fig. 

12 have been completed. Our algorithm only requires the 

testing of four “execution-variants” from the total of six 

“execution-variants”. 

C. Extension of a Variant Graph for Handling 

Synchronization 

We extend the existing variant graph [11] by considering 

synchronization dependencies to eliminate redundancy and  

 

to avoid false negatives. The extended model for variant 

graphs utilizes trace information about lock-unlock and 

wait-notify operations. For wait-notify, we assume a simple 

model in which a thread that is waiting can receive a 

notification from any thread and a notification is sent to all 

threads. Only waiting threads can accept the notification, 

otherwise the incoming notification will be lost. We extend 

the node in a variant graph to include flags for “lock” and 

“wait” besides the existing “index” and “version”. “Index” 

will also be incremented for lock-unlock and wait-notify 

operations. In this way, different orders of wait-notify will be 

considered in test case generation, thus avoiding false 

negatives. We add the following rules in the extended variant 

graph for handling lock-unlock and wait-notify operations: 

 Lock-unlock: 

- If the operation is “lock”, set the lock flag for the 

corresponding lock to 1. 

- If the operation is “unlock”, reset the lock flag for 

the corresponding lock to 0. 

 

0,0

0,0  

1, 0

0, 0 
0, 1 

1,0

0, 2

1,1 

T2:10 write x
T1:1 read x

1, 1

1,0

T2:10 write x

2, 0 

0, 0

3, 0

0,0

T1:1 read y

2, 1

1,0 

T1:1 read y

3, 1

1,0 

T2:11 write y

1, 2

1, 1

T1:1 read x

T1:7 read y

T1  T2

x   y   

0, 3

1,1

T2:12 read x

Note:

1,3

1,1 

T1:1 read x
T1:7 read y

1, 1

1,0 

T1:1 read x

T2:11 write y

1, 2

1,1

T2:11 write y

2, 2

1,1 
V3

V5

V6

V7

index

version

V1

V2

1, 3

1,1

T2:12 read x

2, 3

1,1 
V4

T2:10 write x

T1:1 read y

T1:1 read y

Group 1

Group 2

Group 3

Group 4

Group 5

 
Fig. 10.  Examples of “branch-affect” groups for the variant graph in Figure 4. 

  
TABLE IV 

STEP-BY-STEP EXAMPLE OF ALGORITHM 4 (CONTINUED). 

Step Description 

2 Not all rows in the branch-condition table have been tested, 

so proceed to Step 3. 

3 TestCases = { Ø }, for each untested row r in the 

“branch-condition” table 

The 2nd row: Candidates = {V1, V2, V3 } ⋂  {V3, V5} = 

V3.  

The 3rd row: Candidates = {V5, V6} ⋂  {V1, V2, V4, V6} = 

V6. 

The 4th row: Candidates = {V5, V6} ⋂  {V3, V5} = V5. 

TestCases = { V3, V6, V5} 

4 No need to do step 4 because there are some test cases from 

step 3. 

5.1 Execute the members of TestCases. 

5.2 No new “execution-variants” can be derived from the trace 

in step 5.1. 

2 All rows in the “branch-condition” table have been tested, 

so the algorithm terminates. 

 

TABLE III 

STEP-BY-STEP EXAMPLE OF ALGORITHM 4. 

Step Description 

1 Let us assume that step 1 results a variant graph with five 

“execution-variants”. The execution for the first test case is 

V1 which makes b1,1 and b2,1 True. Assume that the 

“branch-affect” group has been calculated using Algorithm 

3 and the “branch-condition” table is as exemplified in Fig. 

11. 

2 Not all rows in the branch-condition table have been tested, 

so proceed to Step 3. 

3 Step 3.2.3 does not produce any test cases.  

3.2.4 Since Step 3.2.3 does not find any test cases, V5 is chosen 

as a test case from untested branch affect group g2(b1,1). 

4.1 Execute V5 using deterministic testing and obtain 

execution trace.  

4.3 When we derive the execution trace from step 4.1, we find 

new “execution-variant” V6 

4.4 The new “execution-variant” V6 is classified into g2(b1,1) 

and g1(b2,1), see Fig. 12. 

5 Repeat from step 2 
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Fig. 13.  Example of the extension of a variant graph.  

Fig. 12.  “Branch-affect” group table and “branch-condition” table when Algorithm 4 terminates. 

  

 
Fig. 11.  “Branch-affect” group table and “branch-condition” table for the first test case 
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 Wait-notify:  

- If the operation is “wait”, set the wait flag for the 

corresponding thread to 1. 

- If the operation is “notify”, reset the wait flags for 

all threads to 0. 

When expanding an extended variant graph, a node is 

infeasible if any one of the following conditions holds: 

 The wait flag for the corresponding thread is 1. 

 The operation is lock and the lock flag is 1. 

Fig. 13 shows an extension of a variant graph which adds 

lock-unlock and wait-notify operations for the concurrent 

program in Fig. 3(a). The extended variant graph in Fig. 13 

identifies some infeasible interleavings caused by the 

lock-unlock and wait-notify operations. 

D. Correctness  

Theorem 1: Given a particular input, Algorithm 4 

guarantees that any error caused by inconsistent locking in an 

execution of a concurrent program will be detected. 

Proof: Let us assume that a concurrent program has an 

“execution-variant” Verror that contains an error with its 

concurrent set of “access-manners” MANNERSerror. We need 

to show that our algorithm will detect an “execution-variant” 

V in the test cases that has the same concurrent set of 

“access-manners” as MANNERSerror. Since Verror and V are in 

the same “race-equivalent” group, the same inconsistent 

locking and improper lock sequence will be reproduced 

when the algorithm terminates. 

There are two conditions for termination in the Algorithm 

4 step 2: 

The first condition for termination ensures that all possible 

concurrent execution paths have been tested, so it is certain 

that one set of concurrent execution paths will be the same as 

PATHSerror. Since two concurrent executions with the same 

set of concurrent execution paths will certainly have the same 

MANNERSerror, the same inconsistent locking will be 

reproduced. In the case of loops, it is ensured that all 

equivalent iterations in terms of race condition have been 

tested. 

The second condition for termination ensures that all 

“branch-affect” groups have been tested, but not all possible 

concurrent execution paths are tested because some might be 

infeasible. When Algorithm 4 iterates, it chooses an 

“execution-variant” as a test case from an untested 

“branch-affect” group in step 4. The same 

“execution-variant” as Verror or an “execution-variant” with 

the same PATHSerror or MANNERSerror might be chosen, so 

the same cause of error will be detected. Otherwise the 

algorithm keeps iterating from step 2 to step 5. It updates the 

“branch-affect” groups in step 5.4 until all are created and 

tested; hence we know the condition value or the number of 

iterations for all the “branch-affect” groups. The intersection 

of Candidates in step 3.2.2.1.1 will produce a non-empty 

feasible set of concurrent execution paths. If Verror exists, 

then PATHSerror would also certainly be feasible, so the 

Candidates will contain some members. Step 3.2 will select 

an untested row r in the “branch-condition” table for which 

the outcomes for each branch will be the same as in Verror. For 

this row r, branches for the members in Candidates will have 

the same condition values for if-statements as in Verror and 

equivalent iterations for loops in terms of “access-manners”. 

Therefore, they will have the same concurrent set of 

“access-manners” as MANNERSerror, and thus the same 

inconsistent locking will be detected. QED. 

E. False Alarms 

False Positives 

The occurrence of false positives depends on the precision 

of the information from the execution trace. In the proposed 

method, we use an execution trace that contains information 

about access to shared variables, lock acquisition, and 

branches, but we currently do not consider indexes of arrays 

or commands to “wait” for a fixed period of time. We explore 

some of the possibilities for the occurrence of false positives. 

Arrays: when an array is shared, the actual element that is 

shared depends on the index of the array. The index could be 

specified by a variable whose value can depend on input and 

interleaving. Since our method currently does not consider 

the value of the index variable in test case generation, we 

cannot guarantee whether two or more threads are always 

accessing the same or a different element of the array. To be 

safe, we take a conservative approach by considering all 

elements in an array to be shared when we are checking for 

race conditions. Unfortunately, locking all elements in an 

array would decrease concurrency because other threads 

have to wait to access different elements. To increase 

concurrency, sometimes programmers divide the values of 

the index into several groups and use separate locks for each 

group consistently during programming. In this situation, our 

proposed method results in false positives. 

Wait: using commands to “wait” for a fixed period of time, 

for example wait(100ms), will cause some interleavings to 

become infeasible. Some commands in the same thread after 

a “wait” command would not be interleaved with other 

threads because the thread is suspended for a period of time. 

For example, in an extreme situation, other threads might 

have finished, so the waiting thread continues its own 

execution without interleaving with any other threads. Since 

our current method does not consider the usage of “wait” 

command for a fixed period of time, our algorithm might 

generate some interleavings that are infeasible. However, we 

consider using a command to “wait” for a fixed period of 

time to be a bad programming practice. 

 

False Negatives 

The basic premise suggested in this method is that 

covering an execution path is sufficient to detect a race or 

no-race condition by checking consistent locking in that 

concurrent execution path, independent of variable values. In 

some cases, this might not be sufficient, since the value of the 

lock object itself may depend on the data flow and, 

theoretically, on the interleaving. Similar problems may also 

arise when different shared reference variables (a pointer in 

C or an object reference in Java) actually refer to the same 

data. Threads acquire a consistent lock for accessing 

different reference variables, but actually they are referring 

to the same data. On the other hand, even when the same 

reference variable is shared between threads, the actual data 

referred to may not necessarily be shared. This situation may 

be considered to be a race condition, but currently it is 
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beyond the scope of our proposed method, so our algorithm 

might produce false negatives. However, such a situation is 

rare in programming practice and is not recommended 

because it can confuse programmers about the usage of 

object locks. 

 

V. EXPERIMENTS 

A. Lock Mechanism and Tracing in Java 

Lock Mechanism in Java 

In Java, the lock mechanism is implemented as follows: 

1. Lock object: an actual object that represents a lock. One 

example of an implementation class is ReentrantLock. A 

lock is acquired by calling the lock() method and 

released by calling the unlock() method. 

2. Synchronized method: a method which has a 

“synchronized” keyword in its method declaration. A 

synchronized method uses the object instance (i.e., this) 

as the lock object, unless it is a static method, in which 

case the lock is the class lock. A thread that wants to 

execute a synchronized method must first obtain the lock. 

The lock is released after it returns from the 

synchronized method. 

3. Synchronized statement: similar to synchronized 

method, but an object that provides the lock must be 

specified. 

For the three mechanisms above, a lock is being acquired 

irrespective of which syntactic approach is used. 

 

Tracing 

We use AspectJ [25] for tracing Java multi-threaded 

concurrent programs. AspectJ was chosen because of its 

ability to trace the necessary data from an execution of a 

program. Other means of tracing can also be used as long as 

they can capture the necessary information about lock 

sequences, access to shared variables, and branches. We 

capture the necessary information from an execution of a 

program using the concept of “pointcut”, “advice”, and 

“reflection” in AspectJ. Note that “pointcut”, “advice”, and 

“reflection” are specific terms for AspectJ. Here, we only 

describe the general idea of tracing using AspectJ.  

We wrote “pointcut” to specify locations within an 

execution of a program where necessary information needs 

to be captured. We do not explicitly specify the locations; 

instead we specify wildcards so AspectJ will take a trace 

when any locks are acquired or released, or any shared 

variables are accessed. For each lock acquisition and access  

 

to a shared variable, we write a corresponding additional 

piece of code to be executed, called “advice”. Within the 

“advice”, we use “reflection” to get the necessary 

information for tracing, such as the shared variable’s name. 

For detecting branches, the line of code in the source code is 

recorded when a variable is accessed, and then later 

compared to the source code to determine whether it is in an 

if-statement or a loop. The AspectJ codes necessary for 

tracing are written in AspectJ files, which are separated from 

the target programs. The target source code must then be 

weaved with AspectJ codes. 

B. Experiment Results 

We use some Java open source programs in network 

control and database management for the experiments, 

because these programs are usually designed to be 

multithread. The objective of the experiments is to show the 

effectiveness of the proposed method for reducing the 

number of test cases in detecting race conditions. Later we 

will compare the number of test cases against an existing test 

case reduction method based on the Thread-Pair-Interleaving 

(TPAIR) criterion [47]. The results are summarized in Table 

V. For a fair comparison, we allow only the same input for 

both methods. In these experiments, we measure the 

reduction in the number of different interleavings used for 

test case generation. We ignore different orders of 

read-shared variables. A read-shared variable is a variable 

that it is written during initialization only and becomes 

read-only thereafter [1]. Its value is determined only by the 

input and it does not change during an execution of a 

program. As such, it can be ignored during test case 

generation because different interleavings do not affect its 

value. 

 

Experiment 1: Apache Commons Pool [46] 

In Experiment 1, we use a generic object-pooling library 

called Apache Commons Pool. Some race conditions have 

been reported in related work [26] [48]. Most of the race 

conditions are easy to detect in that they can be found by 

simply re-executing the program and using an existing 

dynamic race detector. Our proposed method is intended to 

find race conditions that are difficult to detect. This is 

because such race conditions are affected by branches and 

different interleavings. There are 160 race conditions 

reported at [26]. We observed 15% of them as being difficult 

to detect. One possible example is shown in Fig. 14. 

There is a race condition in Fig. 14 between thread T1 and 

thread T2 when accessing the shared variable _factory, 

TABLE V 

SUMMARY OF EXPERIMENTAL RESULTS 

 
Apache 

Commons Pool 

Jtelnet jNetMap  JoBo Apache Derby 

Program size (Kloc) 123 5 3 45 292 

Trace size (KB) 35 1638 201 87500 72800 

Number of threads 3 3 6 4 5 

Number of shared variables 33 7 10 4 33 

Number of branches executed from trace 17 329 31 121665 14164 

Number of branches affected by interleaving 1 0 1 1 29 

Number of test cases in TPAIR 23 66 Infinite Infinite 1453539 

Number of test cases in proposed method 2 0 5 2 58 
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because thread T1 does not acquire any locks. However, it 

happens only when the conditional statement for the branch 

in thread T2 is false. Furthermore, the conditional statement

depends on the value of shared variable _numActive which is 

affected by interleaving with thread T3. Fig. 15 shows read 

and write accesses to the shared variables for the execution of 

the first test case, in which the race condition is not 

reproduced. Using Algorithm 2, we calculate the following: 

BranchRelUD(b) = { (_numActive, 906, 765) }.  

BranchRelOP(b) = { 906: read _numActive, 765: write 

_numActive } 

Our proposed method generates two test cases based on 

Table VI. Group g2(b) will cause the conditional statement 

to become false, so the error will be reproduced. 

 

We compare our proposed method against an existing test 

case reduction method based on the Thread-Pair-Interleaving 

(TPAIR) criteria [47]. Instead of generating different 

interleavings among all threads, TPAIR only generates 

different interleavings for every pair of threads to reduce the 

number of test cases. This reduction is based on the fact that 

most concurrency bugs are caused by the interaction between  

Note:
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: _numActive
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operations:
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branch

r
r

r

w w
w

Only 

interleavings

affecting 

branch.

 
Fig. 15.  A comparison of reachability testing, TPAIR, and the proposed method. 

904: public synchronized void 

setFactory(PoolableObjectFactor

y factory) throws 

IllegalStateException {

906:   if (0 < _numActive) {

907:      throw new 

IllegalStateException("Objects

are already active");

908:   } else {

:

910:        _factory = factory;

911:   }

912:}

:

_numActive--;

:

_numActive--;

:

_pool = null;

995: public void 

addObject() {

996:   Object obj = 

_factory.makeObject();

:

}

:

1025: Iterator it =   

_pool.iterator();

Thread T1 Thread T2

Access to a shared 

variable only if conditional 

statement is false

A shared variable affecting 

conditional statement in a 

branch. Hence, it can be 

affected by different 

interleaving. 

Access to a shared 

variable without 

acquiring any locks.

715: public Object 

borrowObject() {

:

765:  _numActive++;

}

Thread T3

The interleavings affect 

conditional statement in 

the branch.

race 

condition

branch

The interleavings do not affect 

conditional statement in the branch.

 
Fig. 14.  Example of a race condition that is difficult to detect. 

TABLE VI 

TEST CASES FOR EXPERIMENT 1. 

Groups Order of operations from BranchRelOP(b) 

g1(b)  765: write _numActive → 906: read _numActive 

g2(b)  906: read _numActive → 765: write _numActive 
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two threads, instead of all threads, as explained in the 

previous error detection work [1] [24]. This also happens for 

the race condition between thread T1 and thread T2 when 

accessing shared variable _factory in Fig. 14. Its 

reproduction depends on the branch in thread T2 whose 

conditional statement is affected by the interleaving between 

thread T2 and thread T3. However, not all different 

interleavings between those two threads will affect the 

reproduction of the race condition. For example, shared 

variable _pool is affected by the interleaving between thread 

T1 and thread T2, but the race condition when accessing the 

shared variable _pool will always be reproduced. Hence, it 

can always be detected by a race detector independent of the 

interleaving between those two threads. In this experiment, 

the reachability testing method produces 147 test cases, the 

TPAIR method produces 23 test cases, and our proposed 

method produces only 2 test cases for detecting the race 

condition. 

 

 
 

In order to evaluate the feasibility, we performed several 

experiments by increasing the number of shared variables 

accesses for the same target program. Fig. 16 indicates the 

increase in the number of test cases when the number of 

accesses to shared variables is increased. In order to 

reproduce the race condition, Fig. 16 shows that our 

proposed method produces fewer test cases than test 

generation based on the existing TPAIR. In addition, error 

detection by TPAIR can be guaranteed only if the errors are 

caused by interteaving between two threads. In contrast, our 

proposed method can reproduce errors caused by 

interleaving from any number of threads, precisely because it 

takes into consideration data flow that affects the conditional 

statement in the branch. 

 

Experiment 2: JTelnet [29] 

The JTelnet is a telnet client written in Java. Among the 7 

shared variables, 6 of them are read-shared. Based on the 

data flow analysis, one branch is affected by a shared  

 

variable. This experiment shows that some interleaving will 

change the values of shared variables, but they might not 

affect the reproduction of race conditions. In such 

circumstances, the existing reachability testing and TPAIR 

methods will generate test cases, while our proposed method 

generates no test case. The results are summarized as 

follows: 

 TPAIR (66 test cases): Test cases generated by TPAIR 

will affect only the values of shared variables in thread 

AWT-EventQueue-0, but will not affect any conditional 

statements for branches in thread T2 (Fig. 17). 

 Our proposed method (0 test cases): Branches in thread T2 

are only affected by operations in the same thread. 

Therefore, the proposed method does not produce any test 

cases because their outcomes will not be affected by a 

different interleaving. 

 

Experiment 3: jNetMap [28] 

The jNetMap program is a network client to monitor devices 

in a network. This program detects PCs and a router in a 

network. Among the 10 shared variables, 9 of them are 

read-shared variables. Based on data flow analysis, the one 

non read-shared variable affects one branch. The source code 

and its execution trace are shown in Fig. 18 and Fig. 19. The 

results are summarized as follows: 

 TPAIR (infinite test cases): There is an infinite loop 

affecting the read and write sequence which causes 

infinite test case generation because it considers different 

values of shared variables as different test cases. 

 Our proposed method (5 test cases): There are two test 

cases from the “branch-affect” group for branch b2,1 and 

three test cases from the “branch-affect” group for branch 

b2,2. All these groups are listed in Table VII. The same set 

of operations BranchRelOP(b) affects branches b2,2, b2,3, 

b2,4 and the rest of the branches within the loop 1 for 

iteration 2, 3, 4, and so on. In this example, the test cases 

for the branch b2,2 do not change the branch outcomes, i.e., 

they are always false. Therefore, branches within the loop 

1 will always have the same outcome, so there is no need 

to test for infinite iterations in loop 1. 

 

Experiment 4: JoBo [37] 

JoBo is similar to jNetMap. Experiment 4 shows that our 

proposed method generates a finite number of test cases, 

while existing methods generate an infinite number of test 

cases. 

 

Experiment 5: Apache Derby [42] 

Apache Derby is a database written in Java. It has a higher 

degree of concurrency because it has more non read-shared 

variables. In such a program, our proposed method proves its 

significance because there are more potential concurrent  

 
Fig. 16. Comparison of numbers of test cases. 

  

TABLE VII 

“BRANCH- AFFECT” GROUPS FOR JNETMAP 

“Branch- affect” groups Order of operations from BranchRelOP(b) 

g1(b2,1) T2:279: read pingInterval → T-AWT:112: write pingInterval 

g2(b2,1) T-AWT:112: write pingInterval, T2:279: read pingInterval 

g1(b2,2) T2:286: write pingInterval → T2:279: read pingInterval → T-AWT:112: write pingInterval 

g2(b2,2) T2:286: write pingInterval → T-AWT:112: write pingInterval → T2:279: read pingInterval 

g3(b2,2) T-AWT:112: write pingInterval → T2:286: write pingInterval → T2:279: read pingInterval 
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Execution trace for the first re-execution:

T2:279: read pingInterval

T2:284: read pingInterval

T2:286: write pingInterval

T-AWT:112: write pingInterval

T-AWT:123: read pingInterval

T2:279: read pingInterval

T2:284: read pingInterval

T2:285: write pingInterval

T2:279: read pingInterval

T2:284: read pingInterval

T2:286: write pingInterval

loop 1 

first 

iteration

loop 1 

second 

iteration

loop 1 

third 

iteration

branch b2,1   False

branch b2,2    False

branch b2,3    False

Affect(b2,1) = {2:279: read pingInterval, 

T-AWT:112: write pingInterval }

Affect(b2,2) = {T2:286: write pingInterval,      

T2:279: read pingInterval, 

T-AWT:112: write pingInterval }

Affect(b2,3) = {T2:286: write pingInterval,      

T2:279: read pingInterval, 

T-AWT:112: write pingInterval }

Time

:

:
loop 1 

fourth

iteration

Same set of 

operations

 
Fig. 19.  Execution trace for jNetMap. 

276: while (true) {

:

279: if (pingInterval <= 0) {

280: synchronized (t) {

t.wait(); 

}

283: } else {

284: Thread.sleep((int)

(60000*pingInterval));     

285: } 

286: pingInterval = 

parseFloat(interval.getText());

:                 

:    

}

108: FileOutputStream out = null;

109: ObjectOutputStream obj = null;

:

112: pingInterval = 

parseFloat(interval.getText());

:

114: File conf = new 

File(System.getProperty("user.home")+"

/.jNetMap.conf");

115: out = new FileOutputStream(conf);

116: obj =new ObjectOutputStream(out);

:

:

123: obj.writeFloat(pingInterval);

:

224: notifyAll();

:

Thread T-AWT-EventQueue-0Thread T2

shared variable: pingInterval
 

Fig. 18.  The source code of the jNetMap. 

public void paint(Graphics g) {

:
317:  g.setColor(new Color(screenbg[yloc][xloc].

getRGB()^ 0xFFFFFF));        

318:  g.fillRect(3+xloc*charOffset, 2+yloc*

lineOffset, charOffset, lineOffset);        

319:  g.setColor(new Color(screenfg[yloc][xloc].

getRGB() ^ 0xFFFFFF));        

320:  g.drawChars(screen[yloc], xloc, 1, 3+xloc*

charOffset, topOffset+yloc*lineOffset);

:

shared variable: xloc

Thread T-AWT-EventQueue-0 Updating GUI

Receiving input from socket

while (true) {     

try {

if ((read=sIn.read(buf))>= 0){

71: if (xloc >= columns) { 

:

}

:

114: screen[yloc][xloc] = (char) c;    

115: screenfg[yloc][xloc] = fgcolor;    

116: screenbg[yloc][xloc] = bgcolor;    

117: xloc++; 

:

Thread T2

T-AWT:317: read xloc

T-AWT:318: read xloc

T-AWT:319: read xloc

T-AWT:320: read xloc

T-AWT:320: read xloc

:

T2:71: read xloc

T2:114: read xloc

T2:115: read xloc

T2:116: read xloc

T2:117: read xloc

T2:117: write xloc

: 

operations 

affecting 

branch b2,1branch 

b2,1

T-AWT:317: read xloc

T-AWT:318: read xloc

T-AWT:319: read xloc

T-AWT:320: read xloc

T-AWT:320: read xloc

:

T2:71: read xloc

T2:114: read xloc

T2:115: read xloc

T2:116: read xloc

T2:117: read xloc

T2:117: write xloc

: 

time

branch 

b2,2

operations 

affecting 

branch b2,2

Affect(b2,1) = 

{T2:71: read xloc }

Affect(b2,2) = 

{ T2:117: write xloc, 

T2:71: read xloc }

 
Fig. 17.  The source code of the JTelnet and its execution trace. 
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errors that are difficult to reproduce. 

VI. DISCUSSION 

The usefulness of the proposed method depends on the 

structure of the target programs. The proposed method is 

useful for reproducing errors efficiently in a concurrent 

program which has complex lock sequences in branches. Such 

complex structures often make it difficult to reproduce 

concurrent errors because different execution paths caused by 

different interleavings often execute different lock sequences 

and accesses to shared variables. Our proposed method 

significantly reduces the number of test cases, first by 

grouping together different interleavings that do not affect 

consistent locking using the concept of “race-equivalence”, 

and then by testing only one member of each group. Some 

concurrent programs only have read-shared variables [1], for 

example BlueJ [31] and Baralga [32]. The values of 

read-shared variables are only assigned once during 

initialization and they are not affected by different 

interleavings. Hence, they also do not have branches that are 

affected by different interleavings. We do not include them in 

our case studies because debugging such programs is 

relatively easy by treating them as similar to sequential 

programs. 

Currently, our proposed method is applied to the actual 

target program written in Java language. Another existing 

work from [41] proposed prototyping for software testing and 

showed its benefits. Applying our method to a prototyping 

language could be the direction for further research. 

VII. CONCLUSION 

In this paper, we proposed an efficient algorithm for 

generating test cases for detecting concurrent program errors, 

particularly race conditions. The proposed method is intended 

as a complement for dynamic race detector tools. We 

extended past work, in particular [11] which concerned 

reachability testing, to improve efficiency for detecting race 

conditions by reducing the number of required test cases. The 

originality of our proposed method represents an 

improvement in efficiency in the following ways: 

1. Reduction of test cases that do not affect consistent 

locking for accessing shared variables. The existence of 

race conditions in concurrent programs is detected by 

checking the consistent locking for access to shared 

variables among threads. In this sense, interleavings that 

do not change the concurrent execution path in a thread 

produce redundancy with respect to checking race 

conditions because they will have the same consistent 

locking. Therefore, for the detection of race conditions 

we can classify them into the same “race-equivalent” 

group and check only one from each group. Since a 

concurrent execution path in a thread is affected by 

branches, our proposed method identifies only those 

interleavings that affect branch outcomes, whereas the 

existing methods try to identify all interleavings which 

may affect shared variables. Our proposed method 

identifies only those interleavings that affect branch 

outcomes by utilizing data flow from the trace 

information to identify redundancy. For identifying data 

flow, we use an extension of the notation “use-define” to 

cover the usage and definition of shared variables in 

multi-thread programs. We first identify the set of 

operations that affect the conditional statements of 

branches. Based on this analysis, we can determine which 

interleavings affect the branches’ outcomes. This 

significantly reduces the number of different 

interleavings needed for testing. 

2. Reduction of test cases by eliminating infeasible 

interleavings. Our method extends the existing model of 

variant graphs to identify infeasible interleavings caused 

by lock-unlock and wait-notify operations. 

We conducted some experiments with several existing Java 

concurrent programs and demonstrated the effectiveness of 

our proposed method. The experiments’ results suggest that 

redundant interleaving can be identified and removed and that 

our method leads to a significant reduction in the number of 

test cases. 
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