



Abstract—Concurrent programs are more difficult to test or

debug than sequential programs because their non-deterministic

behaviors can produce errors that depend on timing and

interleaving of threads. A different interleaving might affect

branch outcomes that can lead the execution path into one

different from that in which the error was detected. In order to

detect concurrent errors, a programmer needs to re-execute the

concurrent program many times by changing the interleaving,

but it is not always feasible to conduct all the tests due to a large

number of possible different interleavings. This paper proposes

an efficient method to minimize the number of test cases for

detecting errors in a concurrent program. This method

generates test cases with different interleavings based on the

execution trace. The method reduces redundant test cases

without sacrificing the precision of error detection. The method

is novel because it exploits the branch structure and utilizes data

flows from trace information to identify only those interleavings

that affect branch outcomes, whereas existing methods try to

identify all interleavings that seem to affect shared variables. In

order to reduce the number of test cases, those execution paths

with equivalent lock sequences and accesses to shared variables

are grouped together into the same “race-equivalent” group and

only one member of the group is tested. We evaluated the

proposed method against several concurrent Java programs.

The experimental results for a Java program for telnet show the

number of test cases is reduced from 147, which is based on the

existing TPAIR method, to only 2 by the proposed method.

Moreover, for concurrent programs that contain infinite loops,

the proposed method generates only a finite and very few

number of test cases, while many existing methods generate an

infinite number of test cases.

Index Terms— race detection, testing, concurrent program

I. INTRODUCTION

A. Background

ONCURRENT programs are difficult to test or debug

because their non-deterministic behaviors can produce

errors that depend on timing, such as race conditions. It is

suggested that race conditions occur mostly because shared

variables are accessed by threads using inconsistent locking

or even no locks[1]–[5]. Programmers often fail to apply

Manuscript received August 25, 2012; revised June 22, 2013.

T. E. Setiadi is with the Graduate School of Information Systems,

University of Electro-Communications, Tokyo, Japan. The author was

supported by the JINNAI international student scholarship. (phone:

+81-90-4171-9071; e-mail: eric@maekawa.is.uec.ac.jp).

A. Ohsuga is with the Graduate School of Information Systems,

University of Electro-Communications, Tokyo, Japan. (e-mail:

akihiko@ohsuga.is.uec.ac.jp).

M. Maekawa is with the Graduate School of Information Systems,

University of Electro-Communications, Tokyo, Japan. (e-mail:

maekawa@maekawa.is.uec.ac.jp).

appropriate locks due to difficulties in predicting the

execution path or interrupt timing because of the complexity

of concurrent programs, especially when branches are

affected by access to shared variables and interleavings. To

detect race conditions, a programmer can execute the

concurrent program and check the execution trace using a

dynamic race detector. Unfortunately, concurrent errors

might not be easy to detect because a re-executed concurrent

program might execute with a different interleaving. Adding

additional commands or instrumentation of the source code to

record intermediate results for testing concurrent programs

might change the interleaving, so that errors may not show up.

Unfortunately again, dynamic race detectors can detect

potential errors only if they show up in a re-execution.

In this paper, we propose a new, efficient dynamic method

to minimize the number of test cases for detecting concurrent

errors. This is an improvement over the existing method [11].

Our proposed method iteratively uses previous execution

traces as guidance for generating new test cases. The method

is particularly intended for situations in which concurrent

errors are difficult to detect. The number of executions

needed for testing is the number of possible interleavings of

the concurrent program. Even when the input values are fixed,

the number of executions is still very large. The main problem

is how to reduce this number of re-executions.

The contributions of this paper are as follows:

 Eliminating redundant test cases: The proposed method

reduces the number of interleavings to be tested by

exploiting the branch coverage information from the

execution trace. This method is different from previous

methods because it can distinguish those interleavings that

can affect branch outcomes from those that cannot. The

existing reachability testing algorithms try to identify all

interleavings which may affect shared variables, although

they may not necessarily affect branch outcomes; thus

redundant interleavings are included. These redundant

interleavings are, however, reduced in our method,

resulting in a significant reduction in the number of

interleavings for testing.

 Eliminating infeasible test cases: The existing reachability

testing algorithms do not consider the synchronization

event dependency of the execution path, e.x. lock-unlock

and wait-notify mechanisms. There exist infeasible

interleavings due to this dependency. The proposed

method extends the existing model of variant graphs to

identify infeasible interleavings due to this dependency,

thereby further contributing to reducing the number of test

cases.

Efficient Execution Path Exploration for

Detecting Races in Concurrent Programs

Theodorus E. Setiadi, Akihiko Ohsuga, and Mamoru Maekawa

C

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

B. Motivation

Several methods have been proposed to reduce the number

of interleavings that need to be tested. Partial order reduction

is a general method which considers only those interleavings

that may affect an execution of a program based on certain

criteria. One example of the partial order reduction method

reduces the number of interleavings by considering only

those that may affect the values of shared variables [12] [13]

[14] and by ignoring the order of independent operations,

where two operations are said to be independent if any

different order of the operations does not affect the values of

shared variables. An example of independent operations is

two read operations from different threads accessing the

same shared variable. Such interleaving is left unordered

because its order is irrelevant to the resulting values of any

shared variables. Unfortunately, such partial order reduction

still leaves some redundancy when exploring different

execution paths in a thread for detecting potential race

conditions. Consider the example in Fig. 1. In the case that

the loop in the thread T2 is executed only once, there are six

possible different interleavings. The first and the second

interleavings are different only in the order of independent

operations, so they will have the same values for shared

variables. A similar situation happens for the fifth and sixth

interleavings. By ignoring the order of independent

operations, there will be only four groups of interleavings

with different combinations of values for the shared variables

x and y. For members of the same group, the same read or

write operation is guaranteed to use the same value of shared

variable. If the branch only depends on the shared variable x,

there are actually only two groups that matter for changing

the execution path of thread T1. These groups are determined

by whether CS1 x is executed before CSA x (group 1) or vice

versa (group 2). When the loop in the thread T2 is executed

several times or possibly becomes an infinite loop, there are

more possible interleavings that affect the value of the shared

variable y, but still there are only two groups of interleavings

with respect to different values of the shared variable x. We

will use this idea for exploring different execution paths

efficiently.

 Fig 2 shows some possible execution paths for an

execution of a concurrent program. A thread can take a

different execution path with a different lock sequence or

different accesses to shared variables. To detect the

concurrent errors, we need to find all different interleavings

that can change the execution path.

Suppose that path 1 is executed concurrently with path 3

(path 1 || path 3) when the program is first tested. In this case,

there are three possible different interleavings:

1. CSA x, CS1 x, CS2 x

2. CS1 x, CSA x, CS2 x

3. CS1 x, CS2 x, CSA x

Referring to Fig 2, let us assume that the first interleaving

is taken when the program is first tested. The other two

interleavings are other possible test cases. Assuming that the

branch is conditioned by the shared variable x, the

conditional statement of the branch is only affected by the

order of CSA x and CS1 x. In this example, CS1 x is executed

before CSA x in the second and the third interleavings, so they

will result in the same execution path for thread T1, that is

either path 1 or path 2. Since thread T1 follows the same

execution path in the second and third interleavings, this will

not change the consistent locking among threads. In other

words, the same lock sequences and accesses to shared

variables are held. If the branch condition is true, then both

the interleavings will lead to the execution of path 1

concurrent with path 3 (path 1 || path 3). On the other hand, if

the branch condition is false, then we will have the

combination of the execution of path 2 concurrent with path

3 (path 2 || path 3). For exploring different execution paths in

thread T1 caused by the branch, we need only test one of the

interleavings, that is either the second or third interleaving.

By considering the dependency between the conditional

statement in the branch and the shared variables, we can

avoid testing interleavings that do not change the execution

path of a thread. For the example in Fig 2, if we know from

the previous executions that the branch is not affected by the

Thread T1 Thread T2

CS1 x

branch

CSA x

CS2 y

CSB y

1. CS1 x, CS2 y, CSA x, CSB y

2. CS1 x, CSA x, CS2 y, CSB y

3. CS1 x, CSA x, CSB y, CS2 y

4. CSA x, CS1 x, CS2 y, CSB y

5. CSA x, CS1 x, CSB y, CS2 y

6. CSA x, CSB y, CS1 x, CS2 y

Only differ in the

order of independent

operations.

Grouping by

ignoring the order

of independent

operations.

group 4

group 1

group 2

group 3

Grouping by considering

data dependency when

the branch only depends

on shared variable x

dependent

dependent
loop

group 1:

CS1 x before

CSA x

group 2:

CSA x before

CS1 x

Fig. 1. Example of grouping for interleaving.

Fig. 2. Example of some possible execution paths for a concurrent program.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

shared variable x, then there is no need to test the second or

the third interleaving. Of course, the final result for the value

of the shared variable x can be different in the second and

third interleavings because it might also depend on the order

of CSA x and CS2 x.

If the execution path in thread T1 changes to path 2, we

compare the locking for accesses to shared variables between

CS2 and CS3 before checking the race conditions for the

concurrent execution of path 2 and path 3 (path 2 || path 3). If

the locking for accesses to shared variables in CS2 and CS3 is

the same or “equivalent”, then the race conditions are the

same as in the first test case (path 1 || path 3) in the previous

execution, thus reducing the effort for checking race

conditions.

II. RELATED WORK

Error detection can be classified into static and dynamic

methods. Static methods only employ source code analysis at

compile time without executing the program. Since static

methods do not know the precise execution of a program that

causes the error, they use a conservative approach by

considering all possible executions in order not to overlook

potential errors [39]. Static methods are more suitable for

testing because they check all possible program behaviors.

For debugging, static methods often suffer from the detection

of false positives; that is, potential race conditions that do not

actually exist in the execution.

Dynamic methods [15]–[17] execute the programs and

detect errors using information from the execution of the

program, including the execution trace and source code

information. For the purposes of debugging, dynamic

methods are more suitable than static methods because they

can perform more precise error detection by employing the

execution trace. There are some execution trace analysis

techniques that use lockset analysis [1] [16] [37] for

dynamically detecting race conditions. They verify whether

an execution of a program satisfies a locking discipline. For

example, Eraser [1] is a lockset analysis that identifies a race

condition from a particular execution by checking the

consistency of locking for accesses to shared variables. Most

research in this field is focused on reducing false positives

[15] [35] [39] [43] and reducing the overheads caused by

tracing [30] [38]. J. Huang, J. Zhou, and C. Zhang [38]

identified one of the causes of redundancy to be that an

execution trace often contains a large number of events that

are mapped to the same lexical statements in the source code.

However, removing them without careful analysis might

cause false negatives because they might affect the

reproduction of race conditions. This situation happens when

a number of events from the same lexical statement in the

source code affect a conditional statement in a branch

whose“then” and “else” statements have a different lock

sequence and accesses to shared variables.

In other work by C. Park, K. Sen, P. Hargrove, and C.

Iancu [40], known as active testing, imprecise dynamic

analysis of an execution trace is performed to generate a set

of tuples that represents potential concurrent errors. In the

later phase, it re-executes the program by actively controlling

the thread schedule to confirm the concurrent errors.

However, there might be some false negatives for detecting

race conditions because the set of tuples might be incomplete

if some tuples were not executed in the execution. This

situation happens when a race condition is caused by the

“then” or “else” statements of a branch whose conditional

statement is affected by interleaving. Race conditions can

only be detected using dynamic methods if the execution

trace contains the potential concurrent errors. Unfortunately

in a concurrent program, a branch can take a different

execution path not only due to different input values, but also

due to different interleavings. Hence, depending on the

branches and interleavings, an execution trace might or

might not contain potential race conditions.

Deterministic replay techniques are available for replaying

an execution of a concurrent program with the same

interleaving. Such techniques record the concurrent

execution trace in a recording mode. The recorded execution

can be replayed later in a replaying mode for dynamic

analysis. A commercial tool for deterministic replay [27] is

capable of reproducing the original execution order of

threads, thus the same interleaving can be replayed. When a

concurrent error is detected during a recording mode, a

deterministic replay requires only one execution to replay the

error and obtain the execution trace containing the error. This

is useful for debugging concurrent programs. However, this

is only effective if programmers can identify the errors when

a concurrent program is running in recording mode during

software development or a testing cycle. Unfortunately, due

to the huge number of all possible interleavings, not all of

them can be tested during software development or the

testing cycle because of time and cost restrictions.

Sometimes only regression tests are performed after fixing

bugs and the software is quickly deployed in real situations,

leaving the possibility that other errors remain. In recording

mode, all the information necessary for replaying can be

traced using instrumentation [7] or a specialized virtual

machine [6]. Hence, programs run more slowly during

recording mode and require more memory to store

information about interleaving and program states. This is

known as the probe effect. Therefore, executions cannot

always be traced during the deployment of systems that

require high performance or where resources are limited,

such as in embedded systems. To reduce the probe effect, a

special hardware device can be used to communicate with the

performance monitor through JTAG (refer to IEEE 1149) for

tracing, but many hardware constructions cannot run at full

speed when JTAG is used [33]. The advantage of this

approach is that an execution can be traced with minimum

interference, but the drawback is expensive hardware costs.

In cases when an error has happened in the absence of a

complete execution trace for replaying, programmers need to

test the concurrent program with tracing to see if the same

error can be detected. Unfortunately, the error might not be

easy to detect because a concurrent program can have a

different interleaving during re-execution. In this situation,

programmers need to control the interleaving and use

deterministic testing. Deterministic testing can enforce a

particular interleaving specified in test cases. Since the

number of possible different interleavings can be huge, the

method proposed in this paper helps in the efficient

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

generation of test cases to reproduce the same or equivalent

execution conditions.

Some tools for deterministic replay can also be used for

deterministic testing. For example, in Jreplay [7]

programmers can control the interleaving by enforcing

thread switching using some additional locks, and can write

them in the locations where a thread switch should occur.

Enforcing a thread switch is realized by unblocking the next

thread in the schedule followed by blocking all other threads,

including the current thread. An additional lock object is

assigned to each thread. The wait and notifyAll methods are

used to implement the block and unblock operations that

suspend and resume an execution of a thread. A binary

semaphore is used to prevent deadlocks in the control

transfer method due to interceptions by the JVM scheduler.

Another method devised by Pugh and Ayewah [36] uses a

clock to synchronize the order of executions in multiple

threads. Programmers can delay operations within a thread

until the clock has reached a desired tick.

Determining which of all the possible interleavings are

necessary is important because it directly affects the

efficiency of test case generations. Basically, there are three

approaches:

1. Random: inspect only some of all the possible

interleavings using randomizing or noise injection.

2. Partial: inspect only some of all possible interleavings

based on certain criteria.

3. Exhaustive: inspect all possible interleavings.

Random approaches might not discover errors because

only some of the possible execution paths are inspected. An

improved random approach uses a heuristic approach [18] to

reduce the search space. Another improvement - carried out

in ConTest - uses coverage to guide the heuristic test

generation [2], but still does not ensure that errors will be

found because not all possible execution paths are tested.

Basically, finding errors requires an exhaustive approach.

Unfortunately, exhaustive approaches often suffer from an

explosion of the number of possible execution paths to be

inspected. The idea behind a partial approach is to identify a

group of execution paths with the same coverage. For each

particular group, it is sufficient to test only one group. In

program testing, the “coverage” criterion states how much of

the program execution space is to be covered during testing.

We can identify five levels of criteria based on program

structure [8]. These are statement coverage, node coverage,

branch coverage, multiple condition coverage, and path

coverage. Statement coverage and node coverage are rather

weak criteria, representing necessary but by no means

sufficient conditions for conducting a reasonable test.

Branch coverage and multiple condition coverage are

stronger criteria. Path coverage is the most thorough of all,

and it is necessary to ensure the correctness of a program by

testing or to find errors in debugging. However, it is normally

difficult to achieve, particularly in a concurrent program,

because the number of possible execution paths might be

huge. Nevertheless, since different execution paths might

exercise different lock sequences and accesses to shared

variables that can affect consistent locking, it is necessary to

adopt path coverage to ensure that all concurrent accesses to

shared variables are consistent.

In the field of concurrent programs, there exist some other

criteria besides structural coverage that can help to determine

which interleavings should be tested. For example, CHESS

[19] generates all interleavings of a given scenario written by

a tester based on fair scheduling. Another approach [20]

exhaustively generates all possible execution orders for test

cases for the purpose of mitigating memory consumption

problems by dynamically building partitions along the traces.

There is also a coverage model for evaluating concurrent

completeness. Synchronization coverage [9] covers different

orders of synchronization events from different threads. Its

goal is to check whether the synchronization statements have

been properly tested. For example, the tryLock method of the

Lock interface in Java 1.5 is used to check whether a lock is

available. It does not block, but may succeed or fail

depending on whether another thread is holding the lock. If it

always succeeds or always fails, then either the tests are

sufficient or the operations are redundant.

Another approach uses program flow as a coverage

criterion for examining an execution of a program.

All-du-path coverage [10] uses define-use associations and is

applicable for parallel programs. Synchronization coverage

and All-du-path coverage are not suitable criteria for

checking consistent locking among threads: consider cases

where only the order of the try-locks is different for

synchronization coverage or there are different define-use

associations for All-du-path coverage, but lock consistency

is not changed. In these cases, all possible concurrent

lock-unlock sequences and accesses to shared variables may

not be covered. The work done by Koushik Sen and Gul

Agha [44] [45] is intended to facilitate the exploration of

different execution paths. Their tool, called “JCute”,

explores execution paths by generating new interleavings as

well as new input. It generates all possible interleavings

based on previous executions by changing the order of thread

executions, starting from the smallest indexed thread.

Redundancy is still present here, because not all

interleavings would change branch execution and locking, as

previously shown by the example in the Motivation

subsection

III. OVERVIEW OF THE EXISTING REACHABILITY

TESTING METHOD

This section explains an existing method for generating

test cases for concurrent programs using the reachability

testing method [11] [21] [22]. This is a dynamic method that

uses partial order reduction for reducing test cases. The

reachability testing method in [11] covers all different

interleavings that affect the values of shared variables as test

cases. This reachability testing uses the previous execution

trace to derive different read-write sequences that affect

values of shared variables. Assume that S is a read-write

sequence from an execution of a concurrent program. The

concept of reachability testing is defined as follows:

1. Use S to derive other read-write sequences, called

“execution-variants”, that produce different values of

shared variables.

2. Perform deterministic testing based on the result from

step 1 using tracing.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

3. For each new “execution-variant” from step 2, repeat

step 1 and 2 until no more “execution-variants” are

found.

Variant Graph

The reachability testing method performs an efficient

exploration of “execution-variants” by grouping and

ignoring different interleavings that do not affect values of

shared variables, using the idea of partial order reduction.

Test cases are generated systematically using a variant graph.

A variant graph derives different read-write sequences from

the previous execution trace. A different read-write sequence

that affects the values of shared variables is called an

“execution-variant”. “Execution-variants” are used as test

cases in reachability testing. Algorithm 1 shows how to

create a variant graph from an execution trace of a concurrent

program.

Algorithm 1. Creating a variant graph.

Definitions:

- S(j) is a read-write sequence for thread Tj.

- S(j, i) is the i-th operation in the sequence of thread Tj.

Each node N in the “execution-variant” graph contains the

following two vectors:

- index vector: (id1, id2, … , idp), where p is the number of

threads and idj indicates the i-th operations in a thread Tj

when node N is generated. The index vector is initialized to

zero and increased by one after each read or write operation

in the thread Tj.

- version vector: (ver1, ver2, …, verq), where q is the

number of shared variables and verk is the version number of

variable Vk when node N is generated. The version for

variable Vk is initialized to zero and increased by one after

each write operation to the variable Vk.

Input: read-write sequence.

Output: variant graph.

Step 1. Initialize the variant graph.

Create an initial node and label it as “unmarked”. Set its

index vector to (0,0, … , 0) and version vector to (0,0, … , 0).

Step 2. Derive different read-write sequences.

 2.1 Select an “unmarked” node, say N.

For each j, 1 ≤ j ≤ p, where p is the number of

threads

If idj < the length of S(j),

Then construct a child node N’ of N

according to steps 2.2 – 2.5.

 2.2 Set the index vector of N’ to that of N except that the

j-th element is idj + 1.

 2.3 Set the version vector of N’ to that of N.

 2.4 Let vark be a shared variable in the operation S(j, idj

+1) and verk is the version number of variable vark in S(j, idj

+1).

 2.5 If S(j, idj +1) is a write operation to shared variable

vark,

Then increase the verk’ of N’ by 1.

Step 3. Identify an “execution-variant”.

3.1 Let verk’ be the k-th element of the version vector of

N’.

3.2 If verk != verk’

 Then label N’ as “marked” and

“execution-variant” (V).

Else If the variant graph already contains a node

with the same index and version vector as N’.

 Then label N’ as “marked”

 Else label N’ as “unmarked”

Step 4. Repeat step 2 until all nodes in it are labeled

“marked”. Do not create child nodes for the nodes which are

labeled as “execution-variant” (V), as this will be done later

by executing them as test cases.

Note that we first need to identify all shared variables from

source code before creating a variant graph. If we do not

consider all shared variables, then later we might need to

reconstruct the variant graph when other variables are found

to be shared. It is not enough just to identify shared variables

from the execution trace because maybe not all shared

variables can be detected from a particular execution trace.

Unfortunately, it is not always possible to identify precisely

all shared variables from source code: in the case that threads

are dynamically created according to input data, for example,

it is necessary to consider all potential shared variables. If

some variables are not actually shared, they will lead to

redundant nodes in a variant graph, but they will not produce

redundancy in test cases because they will not lead to any

new “execution-variants”.

Model for Concurrent Program Execution Traces

A concurrent program execution trace contains a sequence

of operations from all the threads. An operation in a thread is

modeled as a triplet of:

location : operation : operand, where

 location is thread_name:file_name:line_of_code. The

thread name or the file name is omitted in some cases for

simplicity when there is no ambiguity.

 operation is the read or write operation on a shared

variable.

 operand is the name of the shared variable.

Fig 3 shows an example of a concurrent program and its

flow graph. Let us assume that the following read and write

sequence S is obtained from an execution trace of the first

test:

T1:1 read x, T2:10 write x, T1:1 read y, T1:1: write n, T1:2

read n, T2:11 write y, T1:3 …, T1:7 read y, T2:12 read x.

Fig.4 is an example of a variant graph constructed using

Algorithm 1 for the execution trace above. Lined boxes in a

variant graph represent possible read-write sequences where

they access the same values of the shared variables as in the

previous execution. A dotted box in a variant graph

represents an “execution-variant” (V) in which some read or

write operations access values of shared variables different

from the previous execution as a result of a different

interleaving. There are seven “execution-variants” V1, V2,

V3, V4, V5, V6, and V7 in Fig. 4.

Fig 4 shows two equivalent read-write sequences

surrounded by dotted lines. They are equivalent in terms of

the read-write sequence, in the sense that every operation

will read or write the same versions of shared variables. The

reachability testing algorithm [11] performs reduction by

only considering one of them as an “execution-variant”.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

IV. PROPOSED METHOD

First, the following essential terms are defined.

A. Terms

Execution Path

A concurrent program consisting of threads T1, T2, T3, …,

Tp, where p is the number of threads. An execution path is

defined in the scope of a thread and a concurrent program:

 An execution path Pi of a thread Ti is a sequence of

operations executed by the thread Ti. For the execution of

the program shown in Fig. 6(a) and Fig. 6(b), we have:

P1 = {10: if (), 11:lock a, 12: read x, 13: unlock a}

P2 = {20:lock a, 21:lock b, 22:read y, 23:write x,

24:unlock b, 25:unlock a }

 A concurrent execution path of a concurrent program is

defined to be a sequence of operations executed by all

threads, taking into account the global order among

threads. Fig. 6 shows four possible examples of

concurrent execution paths for the concurrent program in

Fig.5.

We define PATHS as a set of execution paths Pi’s.

PATHS = (P1, P2, P3, …, Pp), where p is the number of

threads.

Note that PATHS does not take into account the global

ordering among threads. For the example in Fig. 6(a) and Fig.

6(b), we have:

0,0

0,0

1, 0

0, 0
0, 1

1,0

0, 2

1,1

T2:10 write x
T1:1 read x

1, 1

1,0

T2:10 write x

2, 0

0, 0

3, 0

0,0

2, 1

1,0

T1:1 read y

2, 1

1,0

T1:1 read y

3, 1

1,0

T2:11 write y

1, 2

1, 1

T1:1 read x
T1:7 read y

T1 T2

x y

0, 3

1,1

T2:12 read x

“execution-variant”

Note:

1,3

1,1

T1:1 read x
T1:7 read y

1, 1

1,0

T1:1 read x

2, 2

1,1

T2:11 write y

1, 2

1,1

T2:11 write y

2, 2

1,1
V3

V5

V6

V7

index

version

Note:

V1

3, 2

1,1

T1:7 read y

First re-

execution

3, 3

1,1

T2:12 read x

2, 3

1,1

T2:12 read x

3, 3

1,1

T1:7 read y

V2

1, 3

1,1

T2:12 read x

2, 3

1,1
V4

T2:10 write x

T1:1 read y

T1:1 read y

Equivalent read-write sequence

Fig. 4. Example of a variant graph from an execution trace.

1: n = x + y;

2: if (n<0) {

3: . . .

4: } else {

5: . . .

6: }

7: print y;

Thread T2

10: x = -10;

11: y = 2;

12: print x;

Thread T1

1: n = x + y

2: if (n<0)2: if (n<0)

3: . . . 5: . . .

7: print y

T F

10: x = -10

11: y = 2

12: print x

1: read x

1: read y

1: write n

2: read n2: read n

3: . . . 5: . . .

7: read y

T F

10: write x

11: write y

12: read x;

Thread T2Thread T1

(a) (b)

Thread T2Thread T1

(c)

Fig. 3. (a) Example of a concurrent program (b) Flow graph. (c) Flow graph for read and write operations.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

 24:unlock b, 25:unlock a } }.

PATHS = { P1, P2 } = { {10: if (), 11:lock a, 12: read x, 13:

unlock a}, {20:lock a, 21:lock b, 22:read y, 23:write x, 24:

unlock b, 25: unlock a} }

Interleaving and Branching

We denote by bi,j the j-th branch of thread Ti in the

execution path of thread Ti. The truth value of a conditional

statement in a branch can be affected by both input values

and interleaving because interleaving might affect shared

variables, which may in turn affect the conditional statement.

Fig. 6(a) and Fig. 6(b) show some possible concurrent

execution paths for the program in Fig. 5 when the

conditional statement in the branch b1,1 is true, whereas Fig.

6(c) and Fig. 6(d) show the concurrent execution paths when

the conditional statement is false.

 Let → denotes the “happens-before” relation as follows:

If a is an event in process Pi, and b is an event in process Pj,

then event a →event b if and only if event a happens before

event b. In the example of Fig. 6, the order of T1:10 and

T2:23 affects the truth value of the branch b1,1. The branch is

true in executions 1 and 2 when T1:10 →T2:23, and false in

executions 3 and 4 when T2:23 →T1:10. We will later

explain how to identify operations that affect a branch.

Race Condition

Consistent locking for accessing a shared variable means

there is at least one lock which is always acquired by all

threads before accessing this shared variable. Such locks are

called consistent locks. An access to a shared variable is said

to be well formed if all threads acquire a consistent lock

before accessing the shared variable, and then perform an

unlock operation to release the corresponding lock. In

concurrency control using a lock mechanism, a race

condition exists when access to a shared variable is not well

formed. Detecting race conditions is checking consistent

locking for accessing shared variables. A race detector called

Eraser [1] proposes an efficient algorithm for checking

consistent locking in the execution of a concurrent program.

In concurrency control using a lock mechanism, it is the

responsibility of programmers that a proper lock operation is

performed before accessing a shared variable, and that the

lock is released after the access to the shared variable has

been completed. There are various reasons why access to a

shared variable may not be well formed: for example,

programmers may forget to write the lock, they may write an

incorrect lock, or they may make an incorrect prediction

about the execution path, resulting in the lock not being

properly set. An example is shown in Fig. 6(c) and Fig. 6(d)

where the "else-statements" in line 15 for thread T1 access

the shared variable x without acquiring any locks. Another

reason that an access may not be well formed is that

programmers may intentionally omit a lock for performance

reasons when data race are acceptable, for example by using

a volatile variable in Java. In those cases, the access to shared

variables is not well formed and a race condition is caused.

 “Access-Manner”

We divide an execution path of a single thread into several

parts called “access-manners”. Later we will show that

“access-manner” is useful to define “equivalency” in terms

of race condition among different executions of a concurrent

program, even though they do not have the same exact

sequence of locks and accesses to shared variables. In order

to define “access-manner”, we use notation L(Ti) as the

number of active locks acquired by thread Ti at a particular

time. At the beginning of the execution of thread Ti, L(Ti) is 0.

During an execution of a program, L(Ti) is incremented and

decremented by the following rules:

 Incremented by 1 when a thread successfully acquires a

lock (i.e. has completed a lock instruction).

 Decremented by 1 when a thread releases the lock (i.e. has

completed an unlock instruction) that is currently acquired.

L(Ti) is not decremented if a thread is trying to release a

lock that is not currently acquired. Hence L(Ti) cannot be

negative.

Most race conditions occur because programmers use an

incorrect lock or even forget to acquire a lock before

accessing shared variables. For checking whether the usage

of a lock was correct, we use the term “access-manner” when

the access to a shared variable is performed under a lock. We

define an “access-manner” as a sequence of operations in

which a thread has acquired a lock, has accessed a shared

variable, and has released the corresponding lock. An

individual “access-manner” is usually a sequence of

lock-unlock and read-write operations to shared variables

within a thread’s execution path that start and end with the

following conditions:

 Start: lock operation that causes L(Ti) to become 1.

 End: unlock operation that causes L(Ti) to become 0, or

when execution trace terminates.

An individual “access-manner” must end before another

individual “access-manner” starts and there must not be

overlaps between “access-manners”. In the case where

programmers forget to acquire a lock, it is known as an

unusual “access-manner” when an access to shared variables

without acquiring a lock starts, or when programmers only

write an unlock without previously acquiring the lock.

10: if(condition){

11: lock a

12: write x

13: unlock a

14: } else{

15: write x

16: }

conditional statement

“then-statements”

“else-statements”

Thread T1 Thread T2

20: lock a

21: lock b

22: read y

23: write x

24: unlock b

25: unlock a

Access to

shared

variable x

without

previously

acquiring

any locks.

branch b1,1

Fig. 5. Example of an if-statement.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

In such a case, “access-manner” is defined as one operation

of unlock, read or write to a shared variable. Such an unusual

“access-manner” might potentially cause a race condition if

another thread is accessing the same shared variable.

Two individual “access-manners” are the same if they

have the same sequence of lock-unlock statements and

read-write operations on shared variables. We define Mi to

be a set of “access-manners” for the execution path of thread

Ti, that is a collection of distinct individual “access-manners”

without considering their order. We also define a concurrent

set of “access-manners” MANNERS = {M1, M2, M3, ... ,

MN} as a collection of sets of “access-manners” from all the

threads within a concurrent execution path of a concurrent

program. When two concurrent execution paths of a

concurrent program have the same MANNERS, each thread

will have the same set of “access-manners”.

When two different concurrent execution paths of a

concurrent program have the same PATHS, each thread in the

two execution paths will exercise exactly the same sequence

of lock-unlock and read-write operations on shared variables,

hence they will also have the same set of “access-manners”.

Therefore, two concurrent execution paths with the same

PATHS will certainly have the same MANNERS. The

concurrent execution path in Fig. 6(a) and the execution path

in Fig. 6(b) have the same PATHS, hence they will also have

the same MANNERS:

M1 = {(11:lock a, 12:write x, 13:unlock a) }

M2 = {(20:lock a, 21:lock b, 22:read y, 23:write x,

24:unlock b, 25:unlock a) }

MANNERS = { {(11:lock a, 12:write x, 13:unlock a)},

{(20:lock a, 21:lock b, 22:read y, 23:write x, 24:unlock b,

25:unlock a)} }

“Race-Equivalent”

Regarding reproducing race conditions due to inconsistent

locking for accesses to shared variables, it is beneficial to

consider equivalency between two executions of a

concurrent program. For this purpose, we introduce a new

term called “race-equivalence”. Two executions of a

concurrent program are “race-equivalent” if they have the

same MANNERS. “Race-equivalent” means the two

concurrent execution paths of a concurrent program have the

same consistent locking for accessing shared variables.

Different concurrent execution paths of a concurrent

program that are “race-equivalent” are said to be in the same

“race-equivalent” group. It is sufficient to test only one

member from each “race-equivalent” group, thereby

reducing the number of interleavings to be tested. For

detecting race conditions, we need to check all

“race-equivalent” groups.

As explained above, two concurrent execution paths with

the same PATHS will certainly have the same MANNERS.

Therefore, two concurrent execution paths of a concurrent

program that have the same PATHS will certainly be

“race-equivalent”. As shown before, the execution path in

Fig. 6(a) and the concurrent execution path in Fig 6.(b) have

the same PATHS, so they are “race-equivalent”. We can see

that lock a is a consistent lock for accessing shared variable x

in both concurrent execution paths. Different

“race-equivalent” groups can be created by taking a different

concurrent execution path in which at least one thread

changes its individual “access-manner”. A branch might lead

to a different concurrent execution path which, in turn, can

produce different individual “access-manners” that can

affect consistent locking. As shown in the concurrent

execution paths in Fig. 6(c) and Fig. 6(d), there is a race

condition because there is no consistent lock for access to

shared variable x in thread T1:

M1 = {(15:write x) }

M2 = {(20:lock a, 21:lock b, 22:read y, 23:write x,

24:unlock b, 25:unlock a) }

MANNERS = {{(15:write x) }, {(20:lock a, 21:lock b,

22:read y, 23:write x, 24:unlock b, 25:unlock a) } }

To detect this race condition, we need only check the

concurrent execution path in Fig. 6(c) or the one in Fig. 6(d)

because they are “race-equivalent”. The same inconsistent

locking can be detected.

When a branch changes the execution path of a thread, it

might not necessarily produce different consistent locking. In

this situation, the same thread in the two concurrent

execution paths might not exercise exactly the same

lock-unlock sequence and read-write operations on shared

T1:10: if () {

T1:11: lock a

T1:12: write x

T1:13: unlock a

T2:20: lock a

T2:21: lock b

T2:22: read y

T2:23: write x

T2:24: unlock b

T2:25: unlock a

Execution 1
b1,1 is True

Execution 2
b1,1 is True

(a) (b)
(c)

Execution 3
b1,1 is False

time

Thread T1 is accessing shared variable

x without previously acquiring any locks.

T2:20: lock a

T2:21: lock b

T2:22: read y

T2:23: write x

T1:10: if () {

T1:14: } else {

T1:15: write x

T2:24: unlock b

T2:25: unlock a

T2:20: lock a

T2:21: lock b

T1:10: if () {

T1:11: lock a

T1:12: write x

T1:13: unlock a

T2:22: read y

T2:23: write x

T2:24: unlock b

T2:25: unlock a

T2:20: lock a

T2:21: lock b

T2:22: read y

T2:23: write x

T2:24: unlock b

T2:25: unlock a

T1:10: if () {

T1:14: } else {

T1:15: write x

Execution 4
b1,1 is False

(d)

start: lock, L(T2)=1

end: lock, L(T2)=0

start: write, L(T1)=0

end: write, L(T1)=0

Fig. 6. Example of different concurrent execution paths for program in Fig. 5.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

variables, but they will still have the same MANNERS, and so

we can also classify them as “race-equivalent”. This is

particularly useful in the case of loops because we do not

need to test all the iterations. It is sufficient to test only a

partial execution trace from several iterations for checking

race conditions because the execution of loop iterations can

have the same “access-manners”.

In Fig. 7, thread T1 in execution 1 and execution 2 has

different “access-manners”, hence concurrent execution

paths 1 and 2 are not “race-equivalent”. When there is an

active lock that was acquired outside the loop, then the first

iteration will have different “access-manners” from those in

the second iteration because they start from different active

locks, as shown in concurrent execution paths 1 and 2 in Fig.

7. On the other hand, concurrent execution paths 2 and 3 in

Fig. 7 are “race-equivalent” because each thread in the two

executions has the same MANNERS:

M1 = { (1:lock a, 3:write x, 4:unlock a), (3:write x),

(4:unlock a) }

M2 = { (20:lock a, 21:read x, 22:unlock a) }

MANNERS = {{(1:lock a, 3:write x, 4:unlock a), (3:write

x), (4:unlock a)}, {(20:lock a, 21:read x, 22:unlock a)}}

The second iteration for the loop accesses the shared

variable x without previously acquiring any lock, a fact that

can be detected in either concurrent execution path 2 or 3.

When there is no active lock at the end of a loop, the rest of

the iterations will have the same set of “access-manners”.

The rest of these iterations are called “equivalent iterations”

in terms of consistent locking because they have the same set

of “access-manners”.

Further to the discussion above, the problem for detecting

a race condition can be stated as follows:

Given a concurrent program that has an

“execution-variant” Verror containing an error in its

concurrent set of “access-manners” MANNERSerror, find the

Verror, or another “execution-variant” V, which has the same

concurrent set of “access-manners” as MANNERSerror. Since

each thread in V and Verror will have the same set of

“access-manners”, then the same inconsistent locking and

improper lock-unlock sequences in Verror will also be

detected in V.

B. Reduction in the Number of Different Interleavings

The number of different interleavings is reduced by trying

to create only interleavings that lead to a different

“race-equivalent” group. This subsection explains how to

create different “race-equivalent” groups efficiently. The

basic idea is that, for exploring possible different concurrent

execution paths caused by branches, it is sufficient to create

and test only those interleavings that might affect the

conditional statements of branches. Different

“execution-variants” from a particular branch b might lead to

the same value for the condition. Hence, in exploring

different concurrent execution paths caused by the branch b,

we can reduce test cases by grouping those

“execution-variants” and testing only one member from each

group. We name such a group a “branch-affect” group.

“Execution-variants” within the same “branch-affect” group

for a branch b will have the same condition value for the

branch b. Let BranchRelOP(b) be the set of read and write

operations on shared variables that affect the condition of a

branch b. The idea for grouping the “execution-variants”

comes from the fact that if two “execution-variants” execute

the same sequence of read and write operations from

BranchRelOP(b), then they will give the same condition

value for the branch b, and thus they can be grouped into the

same “branch-affect” group. Two or more

“execution-variants” in the same “branch-affect” group for a

branch b are redundant with respect to exploring the different

concurrent execution paths caused by the branch b.

Determining the Set of Operations that Affect Branch

Outcomes

In order to identify "branch-affect” groups, we first need

to determine the set of operations that affect the conditional

value of a particular branch b. We propose a data flow

analysis method to identify operations that affect the

conditional statement of the branch b from an execution trace.

This method analyzes data flow among accesses to shared

variables related to the conditional statement of the branch b.

Based on this analysis, we can determine which operations

are affecting the condition.

One existing method for data flow analysis is by using

“use-define”. We use “use-define” to find operations that

affect conditional statements in branches. First we identify

the “use-define” set SetUD which we will use for grouping

different interleavings. In sequential programs, a

“use-define” is a relation consisting of a use, U, of a variable,

and the definitions, D, of that variable that can be reached

from that use without any other intervening definitions. A

“definition” can have many forms, but is generally taken to

mean the assignment operation of some value to a variable. A

“use” generally means a read operation on a variable. A

“use-define” is a triplet (variable_name, use_location,

define_location). R. Caballero, C. Hermanns, and H. Kuchen

[23] utilize “use-define” for measuring test coverage but that

definition does not apply to concurrent programs. We call the

“use-define” for sequential programs the conventional

use-define. Yang, A.L. Souter, and L.L. Pollock [10] [34]

extended the definition and notation of “use-define” to cover

possible usages and definitions of shared variables in

concurrent programs. They then proposed an automatic

generation of concurrent execution paths to cover a

particular “use-define” for concurrent programs. In the

extended definition of “use-define” for concurrent programs,

a use statement includes the usage of a shared variable, and

the define statement includes the possibility that the value

can be defined from other threads. We call this an extended

use-define.

Which thread actually defines the value in a particular

execution would depend on the interleaving. The

“use-define” set can be obtained by analyzing the execution

trace or source code. Since the method proposed in this paper

iteratively generates different interleavings based on

previous execution traces, it is sufficient to use the

“use-define” set obtained only from the execution trace. The

“use-define” set obtained by the static analysis of source

code may contain redundant elements. Information from the

source code can be used as a supplement if execution traces

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

do not contain complete information for obtaining the

“use-define” set. In this paper, we assume that the execution

trace contains enough information to obtain the “use-define”

set consisting of triplets of variable names, read or write

operations, and locations. Fig. 8 shows an example of a

“use-define” set for the program example in Fig. 3.

To detect a conventional “use-define”, we identify the

variable in a thread’s execution trace and check if it forms a

conventional “use-define”. To detect an extended

“use-define”, we first need to identify shared variables from

the execution trace. A variable is shared if it is accessed by

more than one thread. In the example of Fig. 8, we see that

the variable x and y are shared variables because they were

accessed by more than one thread. For each access to a

shared variable in a thread, we check if it forms an extended

“use-define” with another thread. In the example of Fig. 8,

the read operation on shared variable x in line 1 and the write

operation on shared variable x in line 10 form an extended

“use-define”. There are several examples of “use-define” in

Fig. 8, as follows:

 Conventional “use-define”: ud2 = (n, 2, 1), ud4 = (x, 12,

10)

 Extended “use-define” for concurrent programs: ud1 = (x,

1, 10), ud3 = (x, 1, 11), ud5 = (y, 7, 11)

Since a wait-notify mechanism can change data flow, it

might cause some infeasible “use-defines”. This situation

could happen, for example, when there is a “wait” command

without the corresponding “notify” command. In this

example, the “use” or “define” after the wait command will

not be executed, so the “use-define” becomes infeasible. C.

Yang, A.L. Souter, and L. L. Pollock [10] [34] describe some

complications that synchronization causes during data flow

analysis. Some infeasible “use-defines” might be included in

a “use-define” set, but they will not be executed and will not

be used for grouping “execution-variants”. The infeasible

“use-define” pairs will cause redundancy in the “use-define”

set, but they will not cause redundancy in test case

generation.

Data Flow Relation with “use-define”

For identifying data flow, we define a dependency relation

between “use-defines”. A “use-define” ud2 depends on

another “use-define” ud1, if the “definition” for the variable

in “use-define” ud2 is using the variable in the “use-define”

ud1. It is basically a dependency relation. When there can be

only one assignment statement for every line of code, a

“use-define” ud2 depends on another “use-define” ud1 when

the following condition is satisfied:

define_location of “use-define” ud2 = = use_location of

“use-define” ud1

An example of a dependency relation between

“use-defines” is shown in Fig. 8. Since the def_location of

“use-define” ud1 is the same as the use_location of

“use-define” ud2, “use-define” ud2 depends on “use-define”

ud1. This means that there is data flow from the variable x to

the variable n, because the definition of variable n in line 1

uses the variable x in line 10. In a similar way, the

“use-define” ud2 depends on the “use-define” ud3.

We define BranchRelUD(b) as a set of “use-defines” on

which a conditional statement of a branch b could depend. It

is basically a dependency relation. Algorithm 2 shows how to

find the members of BranchRelUD(b) using the dependency

relation of “use-define”. We also define BranchRelOP(b) as

a set of read and write operations from members of

BranchRelUD(b). They are read and write operations on

shared variables from the “use-define” that has a data flow

relation with the variables in the conditional statement of a

branch b. Members of BranchRelOP(b) are operations in

threads which are defined as triples:

location:operation:operand

as defined in the Model for Concurrent Program Execution

Traces subsection.

Algorithm 2. Finding a set of operations that is affecting

branch outcomes.

Input:

- SetUD: set of “use-defines” from a concurrent program

execution trace.

- A branch b.

1: lock a

2: while(condition){

3: write x

4: unlock a

5: }

1: lock a

2: while() {

3: write x

4: unlock a

Execution 1:

Iterates once

Execution 2:

Iterates twice

Execution 3:

Iterates three times

20: lock a

21: read x

22: unlock a

T1 T2

1st

T2T1

2nd

T2

3rd

T1

20: lock a

21: read x

22: unlock a

Thread T1 Thread T2

access without previously acquiring any locks

20: lock a

21: read x

22: unlock a

20: lock a

21: read x

22: unlock a
1: lock a

2: while() {

3: write x

4: unlock a

1st

2: while() {

3: write x

4: unlock a

2nd

1: lock a

2: while() {

3: write x

4: unlock a

1st

2: while() {

3: write x

4: unlock a

2: while() {

3: write x

4: unlock a

Same

individual

“access-

manner”

Fig. 7. Example of set of “access-manners” for a loop.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

Output:

- BranchRelOP(b): a set of read and write operations that

is affecting the conditional statement of branch b.

Step 1. Initialization.

1.1 BranchRelUD(b): “use-defines” from SetUD where

the variables are used in the conditional statement of the

branch b.

Step 2. Find all related “use-defines”.

2.1 For each “use-define” ud in SetUD, where

ud is not included in BranchRelUD(b), and

ud does not contain any operations from the same

thread as the branch b after the execution of the branch b.

2.1.1 Check if ud is affecting any “use-define” in

BranchRelUD(b).

2.2 If any “use-define” is found in Step 2.1.1

Then Add all the “use-defines” found in Step 2.1.1

to BranchRelUD(b) and repeat Step 2.1.

Or Else Go to Step 3.

Step 3. Find read and write operations that are affecting

the conditional statement of branch b.

3.1 Take all the read and write operations from members

of BranchRelUD(b), and add them into BranchRelOP(b).

When Algorithm 2 no longer finds “use-defines” that

satisfy the conditions in step 2.1.1, it means that all

“use-defines” related to the conditional statement of the

branch b have been included in BranchRelUD(b). In step 3,

BranchRelOP(b) contains all read and write operations on

shared variables that affect the conditional statement of the

branch b. Fig. 9 shows an example of a BranchRelOP(b).

When we consider different effects caused by interleaving,

we need only consider different interleavings of read and

write operations on shared variables. Note that

BranchRelOP(b) is calculated from a particular execution

path and a particular execution trace. If a new test case

explores a different execution path, then new members for

BranchRelOP(b) might need to be added. The example in

Table I illustrates how Algorithm 2 finds BranchRelOP(b1,1)

for the program example in Fig. 8. The BranchRelOP(b1,1)

operations are indicated by asterisks (*) in Fig.8.

Grouping “Execution-Variants” That Have the Same Effect

on Branch Outcomes

Only interleavings that might affect the condition values of

branches need be tested for exploring possible different

concurrent execution paths created by the branches. We

define Algorithm 3 for creating “branch-affect” groups by

grouping “execution-variants” that give the same condition

value for a branch b.

Algorithm 3. Creating a set of “branch-affect” groups for

a branch.

Input: “execution-variants” from a variant graph

Output: A set of “branch-affect” groups G(b) for a branch

b.

G(b) = {g1(b), g2(b), g3(b), ... }, where g1(b), g2(b), g3(b)

are the first, second, and third "branch-affect” groups for the

branch b in the execution trace.

Step 1. Find BranchRelOP(b) using Algorithm 2.

Step 2. For each “execution-variant” V in the variant

graph.

2.1 If the order of operations from BranchRelOP(b) in

the current “execution-variant” already exists in the

“branch-affect” groups.

 Then Add the current “execution-variant” into

the corresponding existing “branch-affect group”.

 Else Add a new “branch-affect” group into G(b)

 Include the current “execution-variant” V in

the new “branch-affect” group.

As shown in the example in Fig. 10, “execution-variants”

V3 and V4 can be grouped together into the same

BranchRelatedUD(b1,1)

{ (n, 2, 1), (x, 1, 10), (y, 1, 11) }

{1:read x, 10:write x, 1:read y, 11:write y}

BranchRelatedOP(b1,1)
Fig. 9. Obtain the BranchRelOP(b1,1) operations from their

BranchRelatedUD(b1,1).

Thread T2Thread T1

1: n = x + y

5: . . .

7: print y

10: x = -10

11: y = 2

12: print x

2: if (n < 0)

ud4 =

(x, 12, 10)

ud5 = (y, 7, 11)

ud3 = (y, 1, 11)
defdef

useuse

useuse defdef

Conventional use-

define for sequential

programs

ud1 = (x, 1, 10)

use define

ud2 = (n, 2, 1)
use define

ud1 is

affecting

ud2

Extension of use-define

for concurrent programs

use defineud3 is

affecting

ud2

useuse

defdef

defdef

useuse

branch b1,1

* *

*

use define

use define

Fig. 8. Examples of “use-defines” for the concurrent program in Fig. 3.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

“branch-affect” group with respect to the branch b1,1 because

they execute the same order of operations from

BranchRelOP(b1,1). A similar situation also applies for the

“execution-variants” V6 and V7, as shown in Fig. 10. Table II

shows the complete groups for the examples in Fig 10.

 As mentioned in Section IV.A, two different concurrent

execution paths with the same set of execution paths PATHS

will be “race-equivalent”. To explore different

“race-equivalent” groups, it is necessary to find different sets

of execution paths PATHS. Since the execution path of a

thread is affected by branches, we introduce a

“branch-condition” table to measure the progress of a test. A

“branch-condition” table contains a list of all possible sets of

execution paths PATHS. Each row in a

“branch-combination” table represents the condition values

of if-statements and the number of iterations for loops in a

concurrent execution path, so each row represents a possible

set of execution paths PATHS. Each different loop iteration

will lead to a different execution path, so we need to consider

all loop iterations. However, if loop iterations have the same

set of “access-manners”, then there is no need to check all of

the iterations because they will be “race-equivalent”. A

“branch-combination” table is an accumulation from each

execution of a test case. It is possible that not all branches can

be identified from the execution trace of the first test case. If

new branches are found during the execution of the next test

case, they should be added to the “branch-combination” table.

At the beginning, all rows are marked as “untested”, except

for the one corresponding to the execution in the first test

case.

An example of a “branch-condition” table is shown in

Fig.11. We need to test all the feasible sets of execution paths

PATHS; that is, in order to find the inconsistent locking for

accesses to shared variables that have caused errors, all the

rows in a “branch-combination” table need to be tested.

Algorithm 4 is the complete algorithm of the proposed

method. This algorithm integrates the existing reachability

testing in step 1.2, with the deterministic testing and race

detection in step 4.

Algorithm 4. Complete algorithm for generating test

cases and testing consistent locking

Definitions:

- Outcome(gk(bi,j)) is the truth value for an if-statement or

the number of iterations for a loop of a “branch-affect” group

gk(bi,j)

- Outcome(r, bi,j) is the truth value or the number of

iterations of the branch bi,j for row r in a “branch-condition”

table.

Input: a concurrent program and its input.

Output: test cases and race-detection results.

Step 1. Initialization:

 1.1. Re-execute the concurrent program taking tracing

using the same input as when the error occurred.

1.2. Create the corresponding variant graph from the

execution trace using Algorithm 1.

1.3. Create a “branch-condition” table based on the

execution trace from step 1.1.

1.4. For each branch of the variant graph in step 1.3,

classify each “execution-variant” into “branch-affect”

groups using Algorithm 3.

Step 2. Conditions for termination.

2.1 Terminate this algorithm if at least one of the

following conditions is satisfied:

- Condition 1: all rows in the “branch-condition” table

have been tested,

- Condition 2: all “branch-affect” groups have been

marked as “tested”. Note that the algorithm terminates with

the second condition if there exists any infeasible set of

concurrent execution paths for the given input.

Step 3. Select the next test cases TestCases:

3.1 TestCases = { Ø }

3.2 For each untested row r in “branch-condition” table

 3.2.1 Candidates = { Ø }, firstGroup = true.

 3.2.2 For each branch bi,j.

 If (firstGroup = = true).

 Then Candidates = all members of

“branch-affect” groups of branch bi,j where Outcome(gk(bi,j))

== Outcome(r, bi,j)

 firstGroup = false

 Else Candidates = Candidates ⋂ all

members of the “branch-affect” groups of the branch bi,j

where Outcome(gk(bi,j)) == Outcome(r, bi,j)

 3.2.3 Select one “execution-variant” from Candidates

and add it to TestCases.

3.2.4 If step 3.2.3 does not produce any test cases.

Then choose a member from an untested

“branch-affect” group and add it to the TestCases.

Step 4. Test cases execution.

4.1 Execute the “execution-variants” from the

TestCases using deterministic testing with tracing.

 4.2 Check the execution trace from step 4.1 using an

existing race detector and report any errors.

4.3 Derive new “execution-variants” from the execution

trace in step 4.1, update the variant graph and

“branch-condition” table.

4.4 Classify the new “execution-variants” into

“branch-affect” groups.

Step 5. Repeat from step 2.

“Race-equivalent” means two concurrent execution paths of

a concurrent program have the same consistent locking for

accessing shared variables, and also share the same

proper/improper lock-unlock sequences. When a variant

graph produces “execution-variants”, our algorithm groups

them into “race-equivalent” groups. Our method achieves

test case reduction by testing only one member of each

TABLE II

EXAMPLE OF A “BRANCH-AFFECT” TABLE.

Branch

Members of

“branch-affect”

groups

Order of operations from

BranchRelOP(b1,1)

b1,1 g1(b1,1) = {V1} 1:read x → 1:read y

g2(b1,1) = {V2} 1:read x → 10:write x → 1:read y

g3(b1,1) = {V3, V4} 1:read x → 10:write x → 11:write

y → 1:read y

g4(b1,1) = {V5}
10:write x → 1:read x

g5(b1,1) = {V6, V7} 10:write x → 11:write y → 1:read

x

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

“race-equivalent” group.

Step-by-step Example of Algorithm 4

A step-by–step example of Algorithm 4 is shown in Tables

III and IV. We assume that there is a concurrent program

with two threads T1 and T2. Thread T1 has one branch b1,1

and thread T2 has one branch b2,1. The branches b1,1 and b2,1

are if-statements The steps in Table III are deduced from the

analysis shown in Fig. 11. The steps in Table IV are deduced

from the analysis shown in Fig. 12.

There is no need to test the “branch-affect” group g3(b1,1)

because all the rows in the “branch-condition” table in Fig.

12 have been completed. Our algorithm only requires the

testing of four “execution-variants” from the total of six

“execution-variants”.

C. Extension of a Variant Graph for Handling

Synchronization

We extend the existing variant graph [11] by considering

synchronization dependencies to eliminate redundancy and

to avoid false negatives. The extended model for variant

graphs utilizes trace information about lock-unlock and

wait-notify operations. For wait-notify, we assume a simple

model in which a thread that is waiting can receive a

notification from any thread and a notification is sent to all

threads. Only waiting threads can accept the notification,

otherwise the incoming notification will be lost. We extend

the node in a variant graph to include flags for “lock” and

“wait” besides the existing “index” and “version”. “Index”

will also be incremented for lock-unlock and wait-notify

operations. In this way, different orders of wait-notify will be

considered in test case generation, thus avoiding false

negatives. We add the following rules in the extended variant

graph for handling lock-unlock and wait-notify operations:

 Lock-unlock:

- If the operation is “lock”, set the lock flag for the

corresponding lock to 1.

- If the operation is “unlock”, reset the lock flag for

the corresponding lock to 0.

0,0

0,0

1, 0

0, 0
0, 1

1,0

0, 2

1,1

T2:10 write x
T1:1 read x

1, 1

1,0

T2:10 write x

2, 0

0, 0

3, 0

0,0

T1:1 read y

2, 1

1,0

T1:1 read y

3, 1

1,0

T2:11 write y

1, 2

1, 1

T1:1 read x

T1:7 read y

T1 T2

x y

0, 3

1,1

T2:12 read x

Note:

1,3

1,1

T1:1 read x
T1:7 read y

1, 1

1,0

T1:1 read x

T2:11 write y

1, 2

1,1

T2:11 write y

2, 2

1,1
V3

V5

V6

V7

index

version

V1

V2

1, 3

1,1

T2:12 read x

2, 3

1,1
V4

T2:10 write x

T1:1 read y

T1:1 read y

Group 1

Group 2

Group 3

Group 4

Group 5

Fig. 10. Examples of “branch-affect” groups for the variant graph in Figure 4.

TABLE IV

STEP-BY-STEP EXAMPLE OF ALGORITHM 4 (CONTINUED).

Step Description

2 Not all rows in the branch-condition table have been tested,

so proceed to Step 3.

3 TestCases = { Ø }, for each untested row r in the

“branch-condition” table

The 2nd row: Candidates = {V1, V2, V3 } ⋂ {V3, V5} =

V3.

The 3rd row: Candidates = {V5, V6} ⋂ {V1, V2, V4, V6} =

V6.

The 4th row: Candidates = {V5, V6} ⋂ {V3, V5} = V5.

TestCases = { V3, V6, V5}

4 No need to do step 4 because there are some test cases from

step 3.

5.1 Execute the members of TestCases.

5.2 No new “execution-variants” can be derived from the trace

in step 5.1.

2 All rows in the “branch-condition” table have been tested,

so the algorithm terminates.

TABLE III

STEP-BY-STEP EXAMPLE OF ALGORITHM 4.

Step Description

1 Let us assume that step 1 results a variant graph with five

“execution-variants”. The execution for the first test case is

V1 which makes b1,1 and b2,1 True. Assume that the

“branch-affect” group has been calculated using Algorithm

3 and the “branch-condition” table is as exemplified in Fig.

11.

2 Not all rows in the branch-condition table have been tested,

so proceed to Step 3.

3 Step 3.2.3 does not produce any test cases.

3.2.4 Since Step 3.2.3 does not find any test cases, V5 is chosen

as a test case from untested branch affect group g2(b1,1).

4.1 Execute V5 using deterministic testing and obtain

execution trace.

4.3 When we derive the execution trace from step 4.1, we find

new “execution-variant” V6

4.4 The new “execution-variant” V6 is classified into g2(b1,1)

and g1(b2,1), see Fig. 12.

5 Repeat from step 2

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

Fig. 13. Example of the extension of a variant graph.

Fig. 12. “Branch-affect” group table and “branch-condition” table when Algorithm 4 terminates.

Fig. 11. “Branch-affect” group table and “branch-condition” table for the first test case

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

 Wait-notify:

- If the operation is “wait”, set the wait flag for the

corresponding thread to 1.

- If the operation is “notify”, reset the wait flags for

all threads to 0.

When expanding an extended variant graph, a node is

infeasible if any one of the following conditions holds:

 The wait flag for the corresponding thread is 1.

 The operation is lock and the lock flag is 1.

Fig. 13 shows an extension of a variant graph which adds

lock-unlock and wait-notify operations for the concurrent

program in Fig. 3(a). The extended variant graph in Fig. 13

identifies some infeasible interleavings caused by the

lock-unlock and wait-notify operations.

D. Correctness

Theorem 1: Given a particular input, Algorithm 4

guarantees that any error caused by inconsistent locking in an

execution of a concurrent program will be detected.

Proof: Let us assume that a concurrent program has an

“execution-variant” Verror that contains an error with its

concurrent set of “access-manners” MANNERSerror. We need

to show that our algorithm will detect an “execution-variant”

V in the test cases that has the same concurrent set of

“access-manners” as MANNERSerror. Since Verror and V are in

the same “race-equivalent” group, the same inconsistent

locking and improper lock sequence will be reproduced

when the algorithm terminates.

There are two conditions for termination in the Algorithm

4 step 2:

The first condition for termination ensures that all possible

concurrent execution paths have been tested, so it is certain

that one set of concurrent execution paths will be the same as

PATHSerror. Since two concurrent executions with the same

set of concurrent execution paths will certainly have the same

MANNERSerror, the same inconsistent locking will be

reproduced. In the case of loops, it is ensured that all

equivalent iterations in terms of race condition have been

tested.

The second condition for termination ensures that all

“branch-affect” groups have been tested, but not all possible

concurrent execution paths are tested because some might be

infeasible. When Algorithm 4 iterates, it chooses an

“execution-variant” as a test case from an untested

“branch-affect” group in step 4. The same

“execution-variant” as Verror or an “execution-variant” with

the same PATHSerror or MANNERSerror might be chosen, so

the same cause of error will be detected. Otherwise the

algorithm keeps iterating from step 2 to step 5. It updates the

“branch-affect” groups in step 5.4 until all are created and

tested; hence we know the condition value or the number of

iterations for all the “branch-affect” groups. The intersection

of Candidates in step 3.2.2.1.1 will produce a non-empty

feasible set of concurrent execution paths. If Verror exists,

then PATHSerror would also certainly be feasible, so the

Candidates will contain some members. Step 3.2 will select

an untested row r in the “branch-condition” table for which

the outcomes for each branch will be the same as in Verror. For

this row r, branches for the members in Candidates will have

the same condition values for if-statements as in Verror and

equivalent iterations for loops in terms of “access-manners”.

Therefore, they will have the same concurrent set of

“access-manners” as MANNERSerror, and thus the same

inconsistent locking will be detected. QED.

E. False Alarms

False Positives

The occurrence of false positives depends on the precision

of the information from the execution trace. In the proposed

method, we use an execution trace that contains information

about access to shared variables, lock acquisition, and

branches, but we currently do not consider indexes of arrays

or commands to “wait” for a fixed period of time. We explore

some of the possibilities for the occurrence of false positives.

Arrays: when an array is shared, the actual element that is

shared depends on the index of the array. The index could be

specified by a variable whose value can depend on input and

interleaving. Since our method currently does not consider

the value of the index variable in test case generation, we

cannot guarantee whether two or more threads are always

accessing the same or a different element of the array. To be

safe, we take a conservative approach by considering all

elements in an array to be shared when we are checking for

race conditions. Unfortunately, locking all elements in an

array would decrease concurrency because other threads

have to wait to access different elements. To increase

concurrency, sometimes programmers divide the values of

the index into several groups and use separate locks for each

group consistently during programming. In this situation, our

proposed method results in false positives.

Wait: using commands to “wait” for a fixed period of time,

for example wait(100ms), will cause some interleavings to

become infeasible. Some commands in the same thread after

a “wait” command would not be interleaved with other

threads because the thread is suspended for a period of time.

For example, in an extreme situation, other threads might

have finished, so the waiting thread continues its own

execution without interleaving with any other threads. Since

our current method does not consider the usage of “wait”

command for a fixed period of time, our algorithm might

generate some interleavings that are infeasible. However, we

consider using a command to “wait” for a fixed period of

time to be a bad programming practice.

False Negatives

The basic premise suggested in this method is that

covering an execution path is sufficient to detect a race or

no-race condition by checking consistent locking in that

concurrent execution path, independent of variable values. In

some cases, this might not be sufficient, since the value of the

lock object itself may depend on the data flow and,

theoretically, on the interleaving. Similar problems may also

arise when different shared reference variables (a pointer in

C or an object reference in Java) actually refer to the same

data. Threads acquire a consistent lock for accessing

different reference variables, but actually they are referring

to the same data. On the other hand, even when the same

reference variable is shared between threads, the actual data

referred to may not necessarily be shared. This situation may

be considered to be a race condition, but currently it is

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

beyond the scope of our proposed method, so our algorithm

might produce false negatives. However, such a situation is

rare in programming practice and is not recommended

because it can confuse programmers about the usage of

object locks.

V. EXPERIMENTS

A. Lock Mechanism and Tracing in Java

Lock Mechanism in Java

In Java, the lock mechanism is implemented as follows:

1. Lock object: an actual object that represents a lock. One

example of an implementation class is ReentrantLock. A

lock is acquired by calling the lock() method and

released by calling the unlock() method.

2. Synchronized method: a method which has a

“synchronized” keyword in its method declaration. A

synchronized method uses the object instance (i.e., this)

as the lock object, unless it is a static method, in which

case the lock is the class lock. A thread that wants to

execute a synchronized method must first obtain the lock.

The lock is released after it returns from the

synchronized method.

3. Synchronized statement: similar to synchronized

method, but an object that provides the lock must be

specified.

For the three mechanisms above, a lock is being acquired

irrespective of which syntactic approach is used.

Tracing

We use AspectJ [25] for tracing Java multi-threaded

concurrent programs. AspectJ was chosen because of its

ability to trace the necessary data from an execution of a

program. Other means of tracing can also be used as long as

they can capture the necessary information about lock

sequences, access to shared variables, and branches. We

capture the necessary information from an execution of a

program using the concept of “pointcut”, “advice”, and

“reflection” in AspectJ. Note that “pointcut”, “advice”, and

“reflection” are specific terms for AspectJ. Here, we only

describe the general idea of tracing using AspectJ.

We wrote “pointcut” to specify locations within an

execution of a program where necessary information needs

to be captured. We do not explicitly specify the locations;

instead we specify wildcards so AspectJ will take a trace

when any locks are acquired or released, or any shared

variables are accessed. For each lock acquisition and access

to a shared variable, we write a corresponding additional

piece of code to be executed, called “advice”. Within the

“advice”, we use “reflection” to get the necessary

information for tracing, such as the shared variable’s name.

For detecting branches, the line of code in the source code is

recorded when a variable is accessed, and then later

compared to the source code to determine whether it is in an

if-statement or a loop. The AspectJ codes necessary for

tracing are written in AspectJ files, which are separated from

the target programs. The target source code must then be

weaved with AspectJ codes.

B. Experiment Results

We use some Java open source programs in network

control and database management for the experiments,

because these programs are usually designed to be

multithread. The objective of the experiments is to show the

effectiveness of the proposed method for reducing the

number of test cases in detecting race conditions. Later we

will compare the number of test cases against an existing test

case reduction method based on the Thread-Pair-Interleaving

(TPAIR) criterion [47]. The results are summarized in Table

V. For a fair comparison, we allow only the same input for

both methods. In these experiments, we measure the

reduction in the number of different interleavings used for

test case generation. We ignore different orders of

read-shared variables. A read-shared variable is a variable

that it is written during initialization only and becomes

read-only thereafter [1]. Its value is determined only by the

input and it does not change during an execution of a

program. As such, it can be ignored during test case

generation because different interleavings do not affect its

value.

Experiment 1: Apache Commons Pool [46]

In Experiment 1, we use a generic object-pooling library

called Apache Commons Pool. Some race conditions have

been reported in related work [26] [48]. Most of the race

conditions are easy to detect in that they can be found by

simply re-executing the program and using an existing

dynamic race detector. Our proposed method is intended to

find race conditions that are difficult to detect. This is

because such race conditions are affected by branches and

different interleavings. There are 160 race conditions

reported at [26]. We observed 15% of them as being difficult

to detect. One possible example is shown in Fig. 14.

There is a race condition in Fig. 14 between thread T1 and

thread T2 when accessing the shared variable _factory,

TABLE V

SUMMARY OF EXPERIMENTAL RESULTS

Apache

Commons Pool

Jtelnet jNetMap JoBo Apache Derby

Program size (Kloc) 123 5 3 45 292

Trace size (KB) 35 1638 201 87500 72800

Number of threads 3 3 6 4 5

Number of shared variables 33 7 10 4 33

Number of branches executed from trace 17 329 31 121665 14164

Number of branches affected by interleaving 1 0 1 1 29

Number of test cases in TPAIR 23 66 Infinite Infinite 1453539

Number of test cases in proposed method 2 0 5 2 58

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

because thread T1 does not acquire any locks. However, it

happens only when the conditional statement for the branch

in thread T2 is false. Furthermore, the conditional statement

depends on the value of shared variable _numActive which is

affected by interleaving with thread T3. Fig. 15 shows read

and write accesses to the shared variables for the execution of

the first test case, in which the race condition is not

reproduced. Using Algorithm 2, we calculate the following:

BranchRelUD(b) = { (_numActive, 906, 765) }.

BranchRelOP(b) = { 906: read _numActive, 765: write

_numActive }

Our proposed method generates two test cases based on

Table VI. Group g2(b) will cause the conditional statement

to become false, so the error will be reproduced.

We compare our proposed method against an existing test

case reduction method based on the Thread-Pair-Interleaving

(TPAIR) criteria [47]. Instead of generating different

interleavings among all threads, TPAIR only generates

different interleavings for every pair of threads to reduce the

number of test cases. This reduction is based on the fact that

most concurrency bugs are caused by the interaction between

Note:

variables:

: _factory

: _pool

: _numActive

T1 T2 T3

r

r

w

r

w

r

w

r

T1 T2 T3

r

r

w

r

w

r

w

r

T1 T2 T3

r

r

w

r

w

r

w

r

(a) (b) (c)

Reachability test TPAIR Proposed method

pair between T1 and T2

pair between T2 and T3

pair between T1 and T3

operations:

r : read

w: write

branch
branch

branch

r
r

r

w w
w

Only

interleavings

affecting

branch.

Fig. 15. A comparison of reachability testing, TPAIR, and the proposed method.

904: public synchronized void

setFactory(PoolableObjectFactor

y factory) throws

IllegalStateException {

906: if (0 < _numActive) {

907: throw new

IllegalStateException("Objects

are already active");

908: } else {

:

910: _factory = factory;

911: }

912:}

:

_numActive--;

:

_numActive--;

:

_pool = null;

995: public void

addObject() {

996: Object obj =

_factory.makeObject();

:

}

:

1025: Iterator it =

_pool.iterator();

Thread T1 Thread T2

Access to a shared

variable only if conditional

statement is false

A shared variable affecting

conditional statement in a

branch. Hence, it can be

affected by different

interleaving.

Access to a shared

variable without

acquiring any locks.

715: public Object

borrowObject() {

:

765: _numActive++;

}

Thread T3

The interleavings affect

conditional statement in

the branch.

race

condition

branch

The interleavings do not affect

conditional statement in the branch.

Fig. 14. Example of a race condition that is difficult to detect.

TABLE VI

TEST CASES FOR EXPERIMENT 1.

Groups Order of operations from BranchRelOP(b)

g1(b) 765: write _numActive → 906: read _numActive

g2(b) 906: read _numActive → 765: write _numActive

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

two threads, instead of all threads, as explained in the

previous error detection work [1] [24]. This also happens for

the race condition between thread T1 and thread T2 when

accessing shared variable _factory in Fig. 14. Its

reproduction depends on the branch in thread T2 whose

conditional statement is affected by the interleaving between

thread T2 and thread T3. However, not all different

interleavings between those two threads will affect the

reproduction of the race condition. For example, shared

variable _pool is affected by the interleaving between thread

T1 and thread T2, but the race condition when accessing the

shared variable _pool will always be reproduced. Hence, it

can always be detected by a race detector independent of the

interleaving between those two threads. In this experiment,

the reachability testing method produces 147 test cases, the

TPAIR method produces 23 test cases, and our proposed

method produces only 2 test cases for detecting the race

condition.

In order to evaluate the feasibility, we performed several

experiments by increasing the number of shared variables

accesses for the same target program. Fig. 16 indicates the

increase in the number of test cases when the number of

accesses to shared variables is increased. In order to

reproduce the race condition, Fig. 16 shows that our

proposed method produces fewer test cases than test

generation based on the existing TPAIR. In addition, error

detection by TPAIR can be guaranteed only if the errors are

caused by interteaving between two threads. In contrast, our

proposed method can reproduce errors caused by

interleaving from any number of threads, precisely because it

takes into consideration data flow that affects the conditional

statement in the branch.

Experiment 2: JTelnet [29]

The JTelnet is a telnet client written in Java. Among the 7

shared variables, 6 of them are read-shared. Based on the

data flow analysis, one branch is affected by a shared

variable. This experiment shows that some interleaving will

change the values of shared variables, but they might not

affect the reproduction of race conditions. In such

circumstances, the existing reachability testing and TPAIR

methods will generate test cases, while our proposed method

generates no test case. The results are summarized as

follows:

 TPAIR (66 test cases): Test cases generated by TPAIR

will affect only the values of shared variables in thread

AWT-EventQueue-0, but will not affect any conditional

statements for branches in thread T2 (Fig. 17).

 Our proposed method (0 test cases): Branches in thread T2

are only affected by operations in the same thread.

Therefore, the proposed method does not produce any test

cases because their outcomes will not be affected by a

different interleaving.

Experiment 3: jNetMap [28]

The jNetMap program is a network client to monitor devices

in a network. This program detects PCs and a router in a

network. Among the 10 shared variables, 9 of them are

read-shared variables. Based on data flow analysis, the one

non read-shared variable affects one branch. The source code

and its execution trace are shown in Fig. 18 and Fig. 19. The

results are summarized as follows:

 TPAIR (infinite test cases): There is an infinite loop

affecting the read and write sequence which causes

infinite test case generation because it considers different

values of shared variables as different test cases.

 Our proposed method (5 test cases): There are two test

cases from the “branch-affect” group for branch b2,1 and

three test cases from the “branch-affect” group for branch

b2,2. All these groups are listed in Table VII. The same set

of operations BranchRelOP(b) affects branches b2,2, b2,3,

b2,4 and the rest of the branches within the loop 1 for

iteration 2, 3, 4, and so on. In this example, the test cases

for the branch b2,2 do not change the branch outcomes, i.e.,

they are always false. Therefore, branches within the loop

1 will always have the same outcome, so there is no need

to test for infinite iterations in loop 1.

Experiment 4: JoBo [37]

JoBo is similar to jNetMap. Experiment 4 shows that our

proposed method generates a finite number of test cases,

while existing methods generate an infinite number of test

cases.

Experiment 5: Apache Derby [42]

Apache Derby is a database written in Java. It has a higher

degree of concurrency because it has more non read-shared

variables. In such a program, our proposed method proves its

significance because there are more potential concurrent

Fig. 16. Comparison of numbers of test cases.

TABLE VII

“BRANCH- AFFECT” GROUPS FOR JNETMAP

“Branch- affect” groups Order of operations from BranchRelOP(b)

g1(b2,1) T2:279: read pingInterval → T-AWT:112: write pingInterval

g2(b2,1) T-AWT:112: write pingInterval, T2:279: read pingInterval

g1(b2,2) T2:286: write pingInterval → T2:279: read pingInterval → T-AWT:112: write pingInterval

g2(b2,2) T2:286: write pingInterval → T-AWT:112: write pingInterval → T2:279: read pingInterval

g3(b2,2) T-AWT:112: write pingInterval → T2:286: write pingInterval → T2:279: read pingInterval

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

Execution trace for the first re-execution:

T2:279: read pingInterval

T2:284: read pingInterval

T2:286: write pingInterval

T-AWT:112: write pingInterval

T-AWT:123: read pingInterval

T2:279: read pingInterval

T2:284: read pingInterval

T2:285: write pingInterval

T2:279: read pingInterval

T2:284: read pingInterval

T2:286: write pingInterval

loop 1

first

iteration

loop 1

second

iteration

loop 1

third

iteration

branch b2,1 False

branch b2,2 False

branch b2,3 False

Affect(b2,1) = {2:279: read pingInterval,

T-AWT:112: write pingInterval }

Affect(b2,2) = {T2:286: write pingInterval,

T2:279: read pingInterval,

T-AWT:112: write pingInterval }

Affect(b2,3) = {T2:286: write pingInterval,

T2:279: read pingInterval,

T-AWT:112: write pingInterval }

Time

:

:
loop 1

fourth

iteration

Same set of

operations

Fig. 19. Execution trace for jNetMap.

276: while (true) {

:

279: if (pingInterval <= 0) {

280: synchronized (t) {

t.wait();

}

283: } else {

284: Thread.sleep((int)

(60000*pingInterval));

285: }

286: pingInterval =

parseFloat(interval.getText());

:

:

}

108: FileOutputStream out = null;

109: ObjectOutputStream obj = null;

:

112: pingInterval =

parseFloat(interval.getText());

:

114: File conf = new

File(System.getProperty("user.home")+"

/.jNetMap.conf");

115: out = new FileOutputStream(conf);

116: obj =new ObjectOutputStream(out);

:

:

123: obj.writeFloat(pingInterval);

:

224: notifyAll();

:

Thread T-AWT-EventQueue-0Thread T2

shared variable: pingInterval

Fig. 18. The source code of the jNetMap.

public void paint(Graphics g) {

:
317: g.setColor(new Color(screenbg[yloc][xloc].

getRGB()^ 0xFFFFFF));

318: g.fillRect(3+xloc*charOffset, 2+yloc*

lineOffset, charOffset, lineOffset);

319: g.setColor(new Color(screenfg[yloc][xloc].

getRGB() ^ 0xFFFFFF));

320: g.drawChars(screen[yloc], xloc, 1, 3+xloc*

charOffset, topOffset+yloc*lineOffset);

:

shared variable: xloc

Thread T-AWT-EventQueue-0 Updating GUI

Receiving input from socket

while (true) {

try {

if ((read=sIn.read(buf))>= 0){

71: if (xloc >= columns) {

:

}

:

114: screen[yloc][xloc] = (char) c;

115: screenfg[yloc][xloc] = fgcolor;

116: screenbg[yloc][xloc] = bgcolor;

117: xloc++;

:

Thread T2

T-AWT:317: read xloc

T-AWT:318: read xloc

T-AWT:319: read xloc

T-AWT:320: read xloc

T-AWT:320: read xloc

:

T2:71: read xloc

T2:114: read xloc

T2:115: read xloc

T2:116: read xloc

T2:117: read xloc

T2:117: write xloc

:

operations

affecting

branch b2,1branch

b2,1

T-AWT:317: read xloc

T-AWT:318: read xloc

T-AWT:319: read xloc

T-AWT:320: read xloc

T-AWT:320: read xloc

:

T2:71: read xloc

T2:114: read xloc

T2:115: read xloc

T2:116: read xloc

T2:117: read xloc

T2:117: write xloc

:

time

branch

b2,2

operations

affecting

branch b2,2

Affect(b2,1) =

{T2:71: read xloc }

Affect(b2,2) =

{ T2:117: write xloc,

T2:71: read xloc }

Fig. 17. The source code of the JTelnet and its execution trace.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

errors that are difficult to reproduce.

VI. DISCUSSION

The usefulness of the proposed method depends on the

structure of the target programs. The proposed method is

useful for reproducing errors efficiently in a concurrent

program which has complex lock sequences in branches. Such

complex structures often make it difficult to reproduce

concurrent errors because different execution paths caused by

different interleavings often execute different lock sequences

and accesses to shared variables. Our proposed method

significantly reduces the number of test cases, first by

grouping together different interleavings that do not affect

consistent locking using the concept of “race-equivalence”,

and then by testing only one member of each group. Some

concurrent programs only have read-shared variables [1], for

example BlueJ [31] and Baralga [32]. The values of

read-shared variables are only assigned once during

initialization and they are not affected by different

interleavings. Hence, they also do not have branches that are

affected by different interleavings. We do not include them in

our case studies because debugging such programs is

relatively easy by treating them as similar to sequential

programs.

Currently, our proposed method is applied to the actual

target program written in Java language. Another existing

work from [41] proposed prototyping for software testing and

showed its benefits. Applying our method to a prototyping

language could be the direction for further research.

VII. CONCLUSION

In this paper, we proposed an efficient algorithm for

generating test cases for detecting concurrent program errors,

particularly race conditions. The proposed method is intended

as a complement for dynamic race detector tools. We

extended past work, in particular [11] which concerned

reachability testing, to improve efficiency for detecting race

conditions by reducing the number of required test cases. The

originality of our proposed method represents an

improvement in efficiency in the following ways:

1. Reduction of test cases that do not affect consistent

locking for accessing shared variables. The existence of

race conditions in concurrent programs is detected by

checking the consistent locking for access to shared

variables among threads. In this sense, interleavings that

do not change the concurrent execution path in a thread

produce redundancy with respect to checking race

conditions because they will have the same consistent

locking. Therefore, for the detection of race conditions

we can classify them into the same “race-equivalent”

group and check only one from each group. Since a

concurrent execution path in a thread is affected by

branches, our proposed method identifies only those

interleavings that affect branch outcomes, whereas the

existing methods try to identify all interleavings which

may affect shared variables. Our proposed method

identifies only those interleavings that affect branch

outcomes by utilizing data flow from the trace

information to identify redundancy. For identifying data

flow, we use an extension of the notation “use-define” to

cover the usage and definition of shared variables in

multi-thread programs. We first identify the set of

operations that affect the conditional statements of

branches. Based on this analysis, we can determine which

interleavings affect the branches’ outcomes. This

significantly reduces the number of different

interleavings needed for testing.

2. Reduction of test cases by eliminating infeasible

interleavings. Our method extends the existing model of

variant graphs to identify infeasible interleavings caused

by lock-unlock and wait-notify operations.

We conducted some experiments with several existing Java

concurrent programs and demonstrated the effectiveness of

our proposed method. The experiments’ results suggest that

redundant interleaving can be identified and removed and that

our method leads to a significant reduction in the number of

test cases.

REFERENCES

[1] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: a dynamic data race detector for multithreaded programs,”

ACM Transactions on Computer Systems. 1997.

[2] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G, Ratsaby, and S. Ur,

“Framework for testing multi-threaded Java programs,” Concurrency

and Computation: Practice and Experience. John Wiley & Sons,

2003; 15(3-5): pp. 485-499.

[3] Digital Equipment. AltaVista Search. Available:

http:/altavista.digital.com/, 1996.

[4] Digital Equipment. Vesta Home Page.

http:/www.research.digital.com/SRC/vesta/, 1996.

[5] E. K. Lee, C. Thekkath, and A. Petal, “Distributed virtual disks,”

Proceedings of the Seventh International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS-VII), 1996.

[6] J.D. Choi and H. Srinivasan, “Deterministic Replay of Multithreaded

Java Applications,” ACM SIGMETRICS SPDT98, Oregon, August

1998.

[7] M.C. Baur, “Instrumenting Java bytecode to replay execution traces of

multithreaded programs,” Formal Methods Group, Computer Systems

Institute, Swiss Federal Institute of Technology (ETH Zurich). 2003.

[8] R.E. Prather and J. P. Myers Jr, "The path prefix software testing

strategy," IEEE Transactions on Software Engineering. vol. SE-13,

issue: 7. July 1987.

[9] A. Bron, E. Farchi, Y. Magid, Y. Nir, S. Ur, "Applications of

Synchronization Coverage,” Principles and Practice of Parallel

Programming, Proceedings of the tenth ACM SIGPLAN symposium

TABLE VII

“BRANCH- AFFECT” GROUPS FOR JNETMAP

“Branch- affect” groups Order of operations from BranchRelOP(b)

g1(b2,1) T2:279: read pingInterval → T-AWT:112: write pingInterval

g2(b2,1) T-AWT:112: write pingInterval, T2:279: read pingInterval

g1(b2,2) T2:286: write pingInterval → T2:279: read pingInterval → T-AWT:112: write pingInterval

g2(b2,2) T2:286: write pingInterval → T-AWT:112: write pingInterval → T2:279: read pingInterval

g3(b2,2) T-AWT:112: write pingInterval → T2:286: write pingInterval → T2:279: read pingInterval

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

on Principles and practice of parallel programming. Chicago, IL,

USA, 2005; pp. 206 - 212.

[10] C. Yang, A.L. Souter, L.L. Pollock, "All-du-path coverage for parallel

programs," International Symposium on Software Testing and

Analysis, 1998; pp. 153-162.

[11] G. Hwang, K. Tai, T. Huang, "Reachability Testing: An approach to

testing concurrent software," International Journal of Software

Engineering and Knowledge Engineering. 1995.

[12] P. Godefroid, "Partial-order methods for the verification of concurrent

systems - an approach to the state-explosion problem," Lecture Notes

in Computer Science. Springer-Verlag, vol. 1032, January 1996.

[13] E.M. Clarke, O. Grumberg, A.P. Doron, Model checking. The MIT

Press. January 2000.

[14] P. Godefroid, "Model checking for programming languages using

VeriSoft," Proceedings of the 24th ACM Symposium on Principles of

Programming Languages, Paris. January 1997.

[15] H. Nishiyama, "Detecting data races using dynamic escape analysis

based on read barrier," In Proceedings of the 3rd Virtual Machine

Research and Technology Symposium (VM), May 2004.

[16] C. Praun and T. Gross, "Object race detection," Proceedings of the

16th ACM SIGPLAN conference on Object oriented programming,

systems, languages, and applications (OOPSLA), 2001; pp. 70–82.
[17] M. Christiaens, K. De. Bosschere, "TRaDe, a topological approach to

on-the-fly race detection in Java programs," Proceedings of the Java

Virtual Machine Research and Technology Symposium (JVM), April

2001.

[18] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, S. Ur, "Testing

multi-threaded Java programs," IBM System Journal, Special Issue on

Software Testing, February 2002.

[19] M. Musuvathi,S. Qadeer, and T. Ball, "CHESS: A systematic testing

tool for concurrent software," Microsoft Research Technical Report.

MSR-TR-2007-149, 2007.

[20] B. Lindstrom, P. Pettersson, J. Offutt, "Generating trace-sets for

model-based testing," The 18th IEEE International Symposium on

Software Reliability (ISSRE '07), 2007; pp. 171-180.

[21] R. Carver and Y. Lei, "A general model for reachability testing of

concurrent programs," International Conference on Formal

Engineering Methods, November 2004; pp. 76-98.

[22] Y. Lei and R.H. Carver, "Reachability testing of concurrent programs,"

IEEE Transactions on Software Engineering, vol. 32, issue 6, June

2006; pp. 382 - 403.

[23] R. Caballero, C. Hermanns, H. Kuchen, "Algorithmic debugging of

Java programs," Electronic Notes in Theoretical Computer Science

177. 2007; pp. 75-89.

[24] S. Lu, J. Tucek, F. Qin, and Y. Zhou, "Avio: Detecting atomicity

violations via access interleaving invariants," In ASPLOS, 2006.

[25] J.D. Gradecki and N. Lesiecki, Mastering AspectJ: Aspect-Oriented

Programming in Java. John Willey & Sons (Asia) Pte Ltd. 2003.

[26] PLDI Experimental Results. 2006. Available:

http://www.cc.gatech.edu/~mnaik7/research/pldi06_results.html

[27] TotalView Technologies. Getting Started with Replay Engine. 2010.

Available: http://www.totalviewtech.com/support/documentation/

pdf/ReplayEngine1-7_GettingStarted.pdf

[28] jNetMap. June 2009. Available: http://www.rakudave.ch/?q=jnetmap

[29] Daniel Kristjansson. JTelnet. 2003. Available:

http://mrl.nyu.edu/~kristja/jtelnet.html

[30] J.D. Choi, B.P. Miller, R.H.B Netzer, "Techniques for debugging

parallel programs with flowback analysis," ACM Transactions on

Programming Languages and Systems, 1991; 13(4) pp. 491–530.

[31] BlueJ - The interactive Java environment. 2009. Available:

http://www.bluej.org/

[32] Baralga. 2010. Available: http://baralga.origo.ethz.ch/

[33] F. Sebek, "Instruction cache memory issues in real-time systems,"

Technology Licentiate Thesis. Computer Architecture Lab.

Department of Computer Science and Engineering. Malardalen

University. Vasteras, Sweden, ISBN 97-88834-38-7, October 2002.

[34] C.S. Yang, L. Pollock, "An algorithm for all-du-path testing coverage

of shared memory parallel programs," Asian Test Symposium, 1997; pp.

263-268.

[35] L. Wang L and S.D. Stoller, "Runtime analysis of atomicity for

multi-threaded programs," IEEE Transactions on Software

Engineering, vol. 32, issue 2, ISSN 0098-5589, February 2006; pp.

93-110.

[36] W. Pugh and N. Ayewah, "Unit testing concurrent software,"

Proceedings of the twenty-second IEEE/ACM international

conference on Automated Software Engineering, Atlanta, November

5-9, 2007; pp. 513-516.

[37] D. Matuschek, JoBo: web spider. Dec 2006. Available at:

http://www.matuschek.net/jobo-menu/

[38] J. Huang, J. Zhou, and C. Zhang, “Scaling Predictive Analysis of

Concurrent Programs by Removing Trace Redundancy,” ACM

Transactions on Software Engineering and Methodology, vol. 22,

issue 1. 2011.

[39] Y. Yu, T. Rodeheffer, W. Chen, "RaceTrack: efficient detection of data

race conditions via adaptive tracking," ACM Symposium on Operating

Systems Principles (SOSP), 2005.

[40] C. Park, K. Sen, P. Hargrove, and C. Iancu, “Efficient Data Race

Detection for Distributed Memory Parallel Programs,” SC11,

November 12-18, 2011, Seattle, Washington, USA Copyright 2011

ACM 978-1-4503-0771-0/11/11

[41] L. Yu, “Prototyping, Domain Specific Language, and Testing,”

Engineering Letters, International Association of Engineers (IAENG),

vol. 16 issue 1. 19 February 2008.

[42] Apache Derby. Available: http://db.apache.org/derby/

[43] R.H.B. Netzer and B.P. Miller, "Improving the accuracy of data race

detection," In Proceedings of the Conference on the Principles and

Practice of Parallel Programming, 1991.

[44] K. Sen and G. Agha, "Concolic Testing of Multithreaded Programs and

Its Application to Testing Security Protocols," UIUC Technical Report.

Department of Computer Science, January 2006.

[45] K. Sen and G. Agha, "CUTE and jCUTE: Concolic unit testing and

explicit path model-checking tools," In CAV. Springer, 2006; pp.

419-423.

[46] Apache Common Pool. 2006. Available:

http://jakarta.apache.org/commons/pool/

[47] S. Lu, W. Jiang, Y. Zhou, "A study of interleaving coverage criteria,"

Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The

foundations of software, 2007.

[48] M .Naik, A. Aiken, and J. Whaley, "Effective static race detection for

Java," Proceeding PLDI '06 Proceedings of the 2006 ACM SIGPLAN

conference on Programming language design and implementation,

vol. 41 issue 6, ISBN:1-59593-320-4, June 2006.

Theodorus Eric Setiadi. He received his Engineering Degree in Electrical

Engineering and a Masters Degree in Computer System Engineering from

the Institute of Technology, Bandung, Indonesia, in 2000 and 2002,

respectively. He is pursuing his PhD degree at the Graduate School of

Information Systems, University of Electro-Communications, Tokyo, Japan.

His research interests are debugging systems and execution trace analysis.

Akihiko Ohsuga. He received a B.S. degree in mathematics from Sophia

University in 1981 and a Ph.D. Degree in Electrical Engineering from

Waseda University in 1995. From 1981 to 2007, he worked with the Toshiba

Corporation. Since April 2007, he has been a professor in the Graduate

School of Information Systems, University of Electro-Communications. His

research interests include agent technologies, formal specification &

verification, and automated theorem proving. He is a member of the IEEE

Computer Society (IEEE CS), the Information Processing Society of Japan

(IPSJ), the Institute of Electronics, Information and Communication

Engineers, and the Japan Society for Software Science and Technology. He

is currently a vice chair of the IEEE CS Japan Chapter. He received the 1986

Paper Award from the IPSJ.

Mamoru Maekawa. He pursued his university education at Kyoto

University (BS) and the University of Minnesota (MS and PhD). He has vast

experience in both the research and development of operating systems (with

Toshiba, Japan and also with an American software company), as well as in

teaching computer and information science to both undergraduate and

graduate levels at several universities (University of Iowa, University of

Texas at Austin, University of Tokyo, University of

Electro-Communications). He has published more than 30 books including

"Operating Systems: Advanced Concepts" (Benjamin/Cummings/Addison

Wesley) and many titles in areas covering operating systems, software design

and development, multimedia and artificial intelligence in the Iwanami book

series.

IAENG International Journal of Computer Science, 40:3, IJCS_40_3_02

(Advance online publication: 19 August 2013)

__

