
An Approach to Software Selection Using
Semantic Web

Elena Daehnhardt and Yanguo Jing

Abstract—For a selection of software applications well-fitting
to business needs, accurate knowledge of the needs and avail-
able technical skills are required. In a survey we conducted,
most of the participants indicated that they consult industry
solutions and employ Internet search engines to find suitable
software products. However, since a keyword search does not
consider semantics of terms describing software characteristics,
pertinent search results might not be retrieved. We made a
hypothesis that the addition of semantics describing software
characteristics could assist in finding software-related infor-
mation in a more structural way, which would improve such
a search. In order to support the software selection decision
we investigated the application of semantic web technology.
In addition, we proposed a new approach for an information
exchange between software providers and consumers, with the
aim of a platform-independent information management. For
the description of software products we employed a Resource
Description Framework and SPARQL for further querying
their descriptions. Our prototype, assisting in cross-platform
information exchange and structured search, demonstrated an
information exchange between software vendors and customers.
This allows users who purchase software to be supported in
their decision, and software developers to receive feedback for
further software improvement. Experiments with the prototype
revealed a performance overhead of SPARQL queries when
compared to MySQL database queries. It is proposed that
further optimization for SPARQL queries is needed in order to
improve the response time of working with triple store. Overall,
the test outcomes demonstrated that the proposed solution
supports the process of selecting software and has the potential
of improving IT infrastructure management practices.

Index Terms—semantic web, knowledge management, soft-
ware selection, decision-making support.

I. INTRODUCTION

IT has been recognized that a well organized IT infras-
tructure has a positive impact on business performance

[1]. This is why IT assets should be properly chosen,
particularly when they are of importance for an organization
[2]. However, software acquisition is a complex process,
requiring an understanding of technical and business issues
involved [3]. When business processes depend on relevant
technologies, system and resource requirements which are
not well defined can lead to deployment failures. Ill-suited
or low quality solutions can be devastating for businesses.
Software faults can lead to significant financial losses and
even bankruptcy [4]. Some companies try to minimize risks
of software development. For this, improving communication
between stakeholders such as software developers and their
customers is paramount [4].

Manuscript received April 04, 2013; revised December 5, 2013.
Elena Daehnhardt is a PhD student in Computer Science at Heriot-Watt

University, Edinburgh. E-mail: elena@daehnhardt.com.
Dr. Yanguo Jing is an Associate Professor in Computer Science at Faculty

of Life Science and Computing, London Metropolitan University. E-mail:
y.jing@londonmet.ac.uk

On the other hand, software management policies by
Dell [5], Distributed Management Task Force Standard [6],
Microsoft guidelines [7], and ISO/IEC 19770 regulations
[8] can be employed while managing and acquiring IT
assets. The applied system approach helps to minimize the
risks of project failure. However, regulations become quickly
obsolete and often fail to provide information on how and
where from software can be purchased [9].

Moreover, Information Technology (IT) is developing
rapidly and constantly new solutions appear. To cope with
this, search engines and web directories can be employed
to gather software-related information. However, a keyword-
based search does not reflect the meaning contained behind
keywords used for defining software characteristics. Here,
semantic web technologies such as Resource Description
Framework (RDF), SPARQL Protocol and RDF Query Lan-
guage (SPARQL) can assist in the communication between
software providers and consumers [10]. A structured search
having semantics in mind can help in retrieving software
products fitting user needs. This is why semantic-based de-
cision support systems could be considered for managing and
analyzing information regarding available software solutions.

In this context, are semantic technology and supporting
tools mature enough to facilitate decision support in real
time? Would an open world approach be feasible to realize
and yet comparable with the traditional approach in which
information on software products is stored in relational
databases? These questions motivated us to compare these
two approaches for the purpose of decision making support
in the software selection process. The main purpose of the
investigation was to understand software selection issues in
depth and learn how semantic web technologies might help
in selecting software which is well-suited to business needs.
The main research questions included:

1) Which issues are paramount in the software selection
process and how is it performed in practice?

2) Which tools are used for supporting decisions in soft-
ware acquisition?

3) How can web technologies help in the decision making
process concerning software selection?

In order to understand software selection problems, an
online survey was conducted, which revealed opinions of IT
managers and professionals. The online survey helped to find
out the main sources of information on software products and
the most important factors to consider for software selection.
Having these factors as selection parameters, we realized a
multi-criteria decision making algorithm with the aim of sup-
porting software selection. The prototype used semantically
enriched software descriptions for finding software products
which match user queries. The prototype was tested and its
performance compared with the relational database approach

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

to check the feasibility of the proposed semantic approach.
Our main contributions include:
• An analysis of important software characteristics to

be considered in the software selection process and
information sources used for decision support;

• The development of a semantic web based application
to assist in software selection decisions;

• A comparison of relational and semantic approaches to
software information storage and query.

In the next section we outline previous research and
related background information. In section 3 we describe
our research methodology. Section 4 presents the survey
results, prototype implementation details and experimental
results. In section 5, we discuss questions on semantic
web adoption, possible implications for IT management and
suggest prototype improvements. Finally, we present our
main findings on the basis of the survey results and prototype
test and conclude by outlining future research directions.

II. RELATED WORK

When selecting software for an organization, various soft-
ware products and their characteristics are analyzed to find
out the solution which matches best to business needs. This is
a typical task for decision making when considering a set of
alternatives based on a set of criteria. Various Multi-criteria
Decision Making (MDCM) techniques, optimization meth-
ods, neural networks, rule-based decision support systems
and their variations can practically be applied for software
selection [10], or other tasks when the selection is performed
amongst alternatives. For selecting geographic information
systems, [11] use a rule-based expert system and Analytic
Hierarchy Process (AHP) MDCM approach. They employ
software evaluation quality traits as software selection at-
tributes. However, their approach is database-based and
requires regular database updates with new information on
the software [11].

Some of the MCDM methods are more accurate then oth-
ers, and other methods also consider uncertainty and employ
fuzzy logics [12]. For instance, [13] use fuzzy logic and
AHP for enterprise software selection. [14] employed fuzzy
AHP for decision support in selecting software developers
and used software quality criteria as selection attributes.
Analytic Network Process (ANP) technique is used in [15]
for selecting simulation software packages. In accord to [12]
(cited in [10]), ANP is more precise then AHP, since ANP
considers also interdependence between different attributes
on various levels of hierarchy, which is used to describe
software products or other alternatives.

Furthermore, the various methods of decision making,
their requirements and suitability for a particular decision
making task requires certain decision making skills and
knowledge on how to select an appropriate method [16].
For adapting to different skill levels of decision makers
and their requirements, [16] proposed the intelligent decision
support system working with the rule-based knowledge base,
describing various multicriteria decision making methods and
providing assistance for the decision maker in accordance
with her requirements.

As stated in [16], the selection process for information
systems involves many professionals having knowledge on

organisational needs assisting in the selection process. When
the software products are acquired from external vendors,
the software acquisition process [17] comprises typically the
steps of communicating with software providers, analyzing
outstanding financial issues and determining the system
requirements of software products fitting to the IT infras-
tructures at place. Many software developers market their
products globally. Since their customers might not be able to
communicate with software providers face-to-face, software
products are advertised online and can often be delivered
immediately over the Network. The Internet provides a very
natural e-commerce platform for marketing and supporting
software products.

As stated in [18], software deployment success depends
largely on the suitability of software according to user needs.
In order to analyze the fitness of software products to busi-
ness needs, various decision tools are available on the World
Wide Web. Online software demonstrations such as provided
by Runaware [19], Tucows [20] for software downloads,
and platforms such as Technology Evaluation Centers [21]
can thereby assist in selecting software solutions. However,
existing web marketing tools are not seamlessly integrated
into IT infrastructures and normally do not consider infor-
mation on particular hardware and software installations at
customer places. In the absence of this information, it cannot
be guaranteed that a selected solution fits best to user needs
[22].

Furthermore, information on the Web is not well struc-
tured. Search engines and indexes working with keywords
that do not consider semantics might output too many irrel-
evant results. Meta-tags used for matching search keywords
do not possess information on the meaning of the objects
described. In order to add semantics to web resources,
semantic web languages such as RDF and Web Ontology
Language (OWL) can be applied. While OWL provides more
powerful reasoning capabilities, it is more complex and less
efficient when processing large data volumes [23]. RDF can
also be used for describing abstract and real-life concepts,
their properties and relationships [24]. RDF provides a
means of information representation in a platform and user-
independent format, which can further be queried using
computer languages such as SPARQL [25]. SPARQL queries
can be compared with SQL queries which are performed on
relational database records.

One of the principal differences between Semantic Web
(SW) and relational approaches is that SW complies with
Open World Assumption, and allows working with the dis-
tributed over the Network resources rather than being only
limited to closed relational storages [10]. SW was already
used in applications such as information management in
a software development process [26], products information
management [23], online education [27] and matchmaking
services [28]. In this work, SW was applied to the task
of software selection decision support, enabling not only
a flexible construction of the software selection queries,
but also a platform-independent communication between
software providers and their customers.

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

III. METHODOLOGY

A. Survey

For a better understanding of the software selection pro-
cess, an online survey was conducted. This included open-
end questions, which were analyzed with the help of content
analysis, and closed questions analyzed using descriptive
statistics. All codes and procedures were described, results
triangulated and reviewed by survey participants provided
with the report [29], as advised in [30]. The focus of the
investigation was to identify factors having an impact on
software acquisition and whether automated tools can be
employed to support decisions in software selection.

As reported in [10], an online questionnaire [31] was filled
out by 56 professionals, 39% and 32% of them coming from
Asia and Europe respectively, as seen from Figure 1. About
45% of respondents worked in the Communications and IT
industry, Table I.

Table II shows that more than 70% of participants had ten
or more years of experience in the IT sector and a quarter
of respondents were responsible for IT decisions in their
organizations, as seen from Table III.

About half of all respondents indicated that their compa-
nies follow a systematic approach while selecting software.
As seen from Table IV, the majority of survey partici-
pants, 77% and 61% respectively, stated that they learn
about software solutions used in their industry and with
the help of Internet search agents. According to 60% of
participants, software selection would benefit from decision
support software, which would help to take on technology-
related decisions faster and possibly decrease related costs.

Moreover, survey results provided an outlook on par-
ticipants’ opinions on the software selection process and
important software characteristics to be considered. Table V
shows important software properties for consideration in
the software acquisition process. As derived from results of
content analysis and descriptive statistics, fitness to business
needs, suitability of software functionality, standards compli-
ance and IT infrastructure integration easiness were the most
critical factors for survey respondents.

Oceania:2%

Africa:9%

North
America:

18%

Europe:32%

Asia:39%

Fig. 1: Survey Participants’ Locations

TABLE I: Industries

Industry sector Respondents
Communications and IT 44.6%
Finance and accounting 8.9%
Healthcare 8.9%
Public sector and education 7.1%
High Tech 5.4%
Manufacturing 3.6%
Trade and marketing 3.6%
Utilities 1.8%
Aerospace and Defense 1.8%
Law and professional services 1.8%
Other 12.5%

TABLE II: IT Experience

IT Experience Respondents
More than 9 years 73%
From 3 to 9 years 22%
Less than 3 years 5%

TABLE III: IT Decision Roles

IT Role Respondents
IT Development and Support 32%
Responsible for IT Decisions 25%
Taking Part in IT Decisions 20%
Use IT Systems 11%
IT Consultancy 7%
Marketing and Other 5%

TABLE IV: Information Sources

Sources Respondents
Industry Solutions’ Analysis 77%
Internet Search Engines 61%
Publications and White Papers 54%
Other Businesses, Competitors 52%
Business Partners and Networking 41%
Trade Shows 39%
Consultancies 27%
Vendor Directories, Web Resources 21%
Other 9%

TABLE V: Software Characteristics

Software Trait Respondents
Fitness to Business Needs 41%
Sufficient Functionality 12%
Standards Compliance 11%
Integration Easiness 11%
Affordable Costs 7%
Ease of Customization 7%
Ease of Maintenance 5%
Performance 4%
User-friendliness 2%

B. Conceptual Framework

Based on conceptual framework outlined from the lit-
erature survey and in [18], a model describing software
products and their properties was created [10]. The meta-
model proposed in [18] was designed to describe software

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

products and their properties based on the software quality
traits defined in the ISO framework. For establishing a set
of attributes and metrics, we adopted the general principles
outlined in [18]. However, we did not strictly follow the
ISO standard and metrics as in [18]. We also did not
consider possible dependencies between software charac-
teristics. Instead, based on the survey results and insights
described in [10], we proposed to employ software traits
such as integration easiness, usability, efficiency, deployment
costs and functionality sets with properties such as listed in
Table VI for creating our ontology.

TABLE VI: Software Characteristics

Characteristics
1. Usability
2. Maintainability
3. Performance
4. Integration Easiness
5. Functionality
6. Costs Associated
7. Usage Industry
8. Developer

C. Ontology and Data Structures
Our reasoning was, that the set of software traits should

be flexible for easy adaptation to any software and user re-
quirements. This way the ontology can be further tailored to
a specific usage domain. For instance, an antivirus software
was described by a graph such as shown in Figure 2.

Thing

Software

Is a

Application

Sub - class of

Antivirus

Type of

Online
Security

Has
Functionality

Developer

Developed By

Figure 3. Software Product’s Description
Fig. 2: RDF graph

The ontology was a basis for the creation of a RDF
structure used for storing software products information,
which example is presented in Figure 3. The description
provided can be effortlessly extended with new parameters
including software price, usability and performance ratings.
Similarly to [18], we defined a set of metrics for assessing
the parameters related to user requirements. Sometimes these
metrics can be defined as sets of strings (“labels” in [18]).

Conveniently, SPARQL can be used to match the strings
using simple string comparisons or regular expressions. For
instance, a SPARQL query shown in Figure 4 helps to filter
out entities which are not developed by “Developer”.

<soft:Application_Software rdf:about="6"
software:hasFunctionality="Online security

"
dc:description="Antivirus software"
software:developedBy="Developer"
software:hasURL="/prototype/products/6" />

Fig. 3: An Example of a Software Description

PREFIX software: <http://example.com/rdf/
soft/>

SELECT * WHERE {
?s software:developedBy "Developer" .}
GROUP BY ?s

Fig. 4: Retrieving Software Developed by “Developer”

Figure 5 shows a template which we used for dynamically
generating SPARQL queries in accord with the user request
coming from the web interface. We used numerical values
to define scores for the relevant attributes such as integration
and maintainability easiness. As seen from Figure 5, our
SPARQL queries can be quite versatile when compared with
the SQL queries. We can define not only fixed parameters,
but also include optional parameters, which are not so easy
to implement in SQL when working with non-available data,
in which case SQL left joins might be considered [32].

PREFIX software: <http://example.com/rdf/
soft/>

PREFIX dc: <http://purl.org/dc/elements
/1.1/>

SELECT DISTINCT SelectParameters
WHERE {
?s dc:title ?title .
?s software:hasURL ?url .
?s software:hasCosts ?hasCosts .
?s dc:description ?description .
RequiredParameters
OptionalParameters
RegexParameters
FilterParameter
}

GROUP BY ?title
ORDER BY ASC(?hasCosts)
LIMIT 10

Fig. 5: Query Template (SPARQL Query Can be Extended
with Other Mandatory and Optional Parameters)

Moreover, we can exploit regular expressions when deal-
ing with strings, for instance when matching software vendor
names. The FILTER statement is used for filtering out
software products which do not correspond to price limits
imposed by the user. It is important to mention that other
properties such as deployment platform requirements and
other quality characteristics could also be used for describing
software characteristics. Compared to the relational database
schema, the flexibility of RDF schema alteration is advanta-
geous when underlying data structures are likely to change.
Therefore, new software properties can be added to the
software descriptions with minimal code alterations.

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

D. Prototype

Figure 6 shows the main components of the prototype.
From an user point of view, the prototype consists of
two main modules for software providers and their poten-
tial customers. These modules were created with the help
of CakePHP framework enabling interface generation and
database connectivity. Software providers first describe their
software products using web interface for capturing software
properties and calling procedures for storing data in the data-
base. Software purchasers are then able to query the database
for finding software products matching their requirements as
shown in Figure 6. For testing, we implemented “Testing
module” and “RDF Generator” to simulate users’ work with
the prototype.

We employed the ARC2 [33] library realizing RDF pro-
cessing functionality and triple storage. MySQL relational
database was used for storing RDF triples describing soft-
ware products. RDF descriptions helped to abstract from the
underlying platform. It is important to mention that RDF
language does not enable sophisticated inference capabilities
when compared to OWL; however, RDF is more efficient for
larger data volumes [34]. Since the aim of the project was to
enable platform-independent data integration, RDF format
was used for publishing information on software products
accompanied with meta-data. Moreover, a structured search
over RDF triple stores helped to restrict search results and
take into account semantics of the concepts involved.

Software
Selection

MySQL

Providers
Module

Testing
Module

Customers
Module

User
Interface

ARC2 library
by Semsol

CakePHP
framework

Settings

RDF
Generator

Figure 4. Prototype ComponentsFig. 6: Prototype Components

For querying RDF records, we employed SPARQL. RDF
descriptions help to abstract from the underlying platform
of the data storage, while SPARQL end points or specialized
web interfaces can be used for querying data stores. Software
properties such as functionality traits, deployment costs,
integration easiness, maintainability and developers’ infor-
mation were defined as properties of the software product
to be selected. The selection requirements are passed for
creating SPARQL query such as described above, including
essential and optional parameters such as cost limitations
when defined by the user.

Since Multi-Criteria Decision Making (MCDM) methods
are often practically applied for selecting software within
available alternatives [12], for instance, when selecting en-
terprise information systems [35], the software selection
algorithm was programmed using MCDM approach and with
the following additive scoring function for rating software

Login

Exit Define Selection
Criteria

Browse Software
Catalogue

Submit Selection
Request

Items
Found?

Show
selected item

Action Selected

Software Selection Function

List
Items

no

yes

Fig. 7: Software Selection Workflow

alternatives [36] (cited in [10]):

R = maxi

∑
j=1 pij∑
j=1 wj

In the formula above, a software product i is denoted
by its j (attributes) performance parameters pij , which are
weighted as wj in accord with user requirements [10]. The
performance parameters were calculated as products of utility
scores and their weights wj . The software characteristics’
scores were defined in the software descriptions to enable
their comparison. In case, that an obligatory selection criteria
does not match the product descriptions and associated
scores, the product is excluded from the result set. When
products satisfied the essential selection parameters, non-
essential parameters were further considered. In result, in-
formation on selected software products and their rating
was stored into the decision matrix, in which each row
represented one software product and each column one
selection criterion.

Figure 7 shows the software selection workflow as realized
in our prototype. The main user activities include creating
and executing software selection requests, and further brows-
ing software selection results. Filling out the web form, users
define the selection criteria consisting of the software traits
and their importance ranking. The most important software
selection factors mentioned by our survey participants were
adopted as software selection parameters in our software
selection algorithm.

Overall, we implemented our prototype to facilitate
information exchange between software providers and
customers. This is achieved using RDF and SPARQL
computer languages enabling to realize open-world and
platform-independent storage. Next, we tested our prototype
in order to compare its performance with the relational

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

database approach. Based on the results of prototype testing,
we discuss possible improvement options while considering
user demands investigated in the online survey.

IV. ANALYSIS OF RESULTS

A. Experimental Setup and Results

In our experiments, we identified differences in the con-
sumption of computer resources for different prototype usage
scenarios. The usage scenarios included creation of software
descriptions, creation and execution of the software selection
queries, performed using relational (MySQL) and triple store
storages. It is important to mention, that we employed ARC2
triple store built on the MySQL storage and we expected
related overheads. Our particular interest was to understand
the feasibility of exploitation of the triple store for building
solutions working under “Open-World” assumption, which
is deployed on the existing and well tested “Linux-Apache-
MySQL-PHP” platform.

We performed a set of tests for assessing the performance
of the prototype. Our test environment was organized on Mac
OS X with 32 GB memory and 3.4 GHz Intel processor.
We installed PHP and MySQL version 5. For evaluating
our test results, we established a set of baseline values
including memory consumption of 8Mb, Central Processing
Unit (CPU) usage of 4 waiting processes and an execution
time boundary of 5 seconds.

Our main goal was to compare prototype behavior in
different test settings and usage scenarios. Our tests differed
only in their load setup and followed the same algorithm:

• STEP 1. Define number of prototype users, number of
added software descriptions and average delay for one
user session.

• STEP 2. Emulate users’ work for the six scenarios men-
tioned below in accordance with the settings provided
in the first step.

• STEP 3. After running tests, analyse test logs with the
help of descriptive statistics.

The testing module emulated work of prototype users
creating software selection requests and loading software
information into the database. RDF Generator randomly
generated RDF structures describing software products. The
tests performed included scenarios of Relational Database
(RD) queries and queries on the RDF triple store, as follows:

• Scenario A randomly created a software description
record stored into the MySQL table. Scenario A was
used for filling out the database with software descrip-
tions, simulating the work of software providers.

• Scenario B converted the output of test A into RDF
format, which was further stored into the triple store.

• Scenario C generated software selection queries, which
were then stored into the relational database.

• Scenario D used the output of test C, which provided
the software selection request, and was then transformed
into the SPARQL query. Next, SPARQL query was used
for filtering software alternatives found to be compliant
with the obligatory search requirements. The products
selected were then rated applying the MCDM approach
algorithm.

• Scenario E emulated the customer searching a soft-
ware product containing a required functionality, using
MySQL query.

• Scenario F was similar to scenario E, using however
SPARQL queries performed in ARC2 data store.

We simulated user input by adding software descriptions
and performing software selection requests. In our two tests,
on each execution cycle we perform all scenarios for all users
(5 users for Test 1, and 50 for Test 2) as follows:

• Test 1 measured prototype performance for scenarios
A to F in 3000 observations (500 cycles for executing
all scenarios), with 5 software products and selection
requests added to the database on each cycle and a
predefined user delay ranging from 0 to 45 seconds.
In total, we added 50 software product descriptions.

• Test 2 measured prototype performance in 1200300
observations (4000 cycles), with 200000 software prod-
ucts and selection requests added to the database and a
predefined user delay of 0 seconds.

B. Datasets

Table VII presents two datasets used for performing our
experiments. Datasets D1 and D2 were used for performing
Tests 1 and 2 to analyze prototype performance on different
user delays and load levels, respectively. Each observation
corresponds to the execution of one of the user scenarios
(from A to E), performed in one cycle.

TABLE VII: Datasets

Dataset/
Test

Observations Cycles Total
products
(queries)
added

Number
of
users

User
delay

D1/T1 3000 500 50 5 varied
from 0 to 45
milliseconds

D1/T1 1200300 4000 200000 50 0 milliseconds

Finally, data on response times, central processor usage
and memory consumption were collected.

C. Test Results

As seen from Figure 8, with user delays of 5 and 10
seconds, respectively, we achieve minimal average values
of CPU (0.45 waiting processes) and memory (5.5MB)
consumption. However, in our next test we defined a user
delay of zero seconds to assess prototype behavior under
heavier load with more products added to the database.

As seen from Table VIII (Test 1), showing mean values of
response time, the number of queued processes and memory
usage were within predefined upper boundaries of 5 seconds,
four waiting processes and 8Mb of memory, respectively.
Moreover, Figure 9 and Table VIII show that scenario D
(software selection function) takes in average the largest
amount of CPU resources, followed by scenarios E, F, B, A
and C. Scenario D also takes more time to execute, followed
by scenarios B, F and the rest. In contrast, as Table VIII
shows, A and E scenarios take less than a millisecond in
average to execute operations on the MySQL database.

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

0 10 20 30 40
0

0.5

1

1.5

2

N
u
m

b
e
r

o
f
W

a
it
in

g
 P

ro
c
e
s
s
e
s

User Delay
(a) CPU (Number of Waiting Processes)

0 10 20 30 40
5.27

5.28

5.29

5.3

5.31

5.32

M
e
m

o
ry

 (
M

e
g
a
 b

y
te

s
)

User Delay
(b) Memory (Bytes)

0 10 20 30 40
250

300

350

400

450

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

User Delay
(c) Duration (Milliseconds)

Fig. 8: Average Resource Consumption per Observation
in Test 1 (Dotted Lines Represent Error Curves for the
Respective Trending Line Shown in Black Line)

0 10 20 30 40
0.4

0.6

0.8

1

1.2

1.4

User Delay in Seconds

N
u
m

b
e
r

o
f
W

a
it
in

g
 P

ro
c
e
s
s
e
s

A
B
C
D

(a) CPU (Number of Waiting Processes)

0 10 20 30 40
5.22

5.24

5.26

5.28

5.3

5.32

User Delay in Seconds

M
e
m

o
ry

 (
b
y
te

s
)

A
B,C
D

(b) Memory (Bytes)

0 10 20 30 40
0

100

200

300

400

User Delay in Seconds

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

A,C
B
D

(c) Duration (Milliseconds)

Fig. 9: Average Resource Consumption for Scenarios A-D
(Test1)

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

TABLE VIII: Test 1 Results (Time in Milliseconds, CPU Us-
age in Number of Waiting Processes, Memory Consumption
in MB)

Scenario Metric Min. Max. µ σ 95%ile 99%ile

A cpu 0.1 2.7 0.88 0.41 1.65 2.1
memory 2.52 5.34 5.23 0.39 5.32 5.33
duration 0.10 1.42 0.22 0.08 0.28 0.35

B cpu 0.1 2.2 0.88 0.41 1.65 2.1
memory 4.43 5.34 5.27 0.12 5.32 5.33
duration 17.8 73.6 23.3 6.63 30 61.8

C cpu 0.1 2.7 0.88 0.42 1.7 2.25
memory 4.43 5.34 5.27 0.12 5.32 5.33
duration 0.11 1.55 0.27 0.12 0.47 0.59

D cpu 0.2 3.4 0.95 0.43 1.7 2.25
memory 5.27 5.35 5.29 0.01 5.32 5.34
duration 199 593 342 60 429 521

One cpu 0.1 2.8 0.90 0.42 1.6 2.2
cycle memory 5.28 5.35 5.29 0.01 5.32 5.34
(A-D) duration 224 618 366 59.6 453 546
E cpu 0.2 3.1 0.92 0.43 1.7 2.3

memory 5.27 5.35 5.29 0.01 5.32 5.34
duration 0.09 0.39 0.21 0.05 0.29 0.32

F cpu 0.2 2.8 0.92 0.43 1.7 2.2
memory 5.28 5.35 5.29 0.01 5.32 5.34
duration 8.74 81.9 13.4 9.33 14.7 65.6

1) Memory consumption: In both tests, memory consump-
tion was about 5MB, which was within the predefined base-
line of 8 MB. This might indicate that memory consumption
was limited for PHP script execution.

2) CPU consumption (measured as number of waiting
processes): Table IX shows that maximum CPU usage was
slightly over the baseline when performing our tests on the
larger dataset D2. The result of more than four waiting
processes was achieved in scenario D after adding 28029
software products to our data store. However, in 99 percent of
all experiments, CPU usage was below 4 waiting processes.

3) Response time (duration): Figure 10 and Table VIII
demonstrate that scenario F (SPARQL queries) takes in
average more than 10 milliseconds when compared with
scenario E (MySQL queries). It is important to note that the
duration values in the Scenario F are less than 1 millisecond,
which is reflected in the graph in Figure 10(c), which is
almost overlapping with the X axis for all user delays tested.
Moreover, when adding more software products in Test 2,
duration was constantly increasing for scenarios B (storing
product description into the triple store) and D (executing
the software selection function), as seen in Figure 12.

As seen in Figure 11 the duration time increased as we
added more products into the database. As seen in Table IX,
while using triple store database, the test results showed a
greater response time compared to MySQL transactions.

In Test 2, response times for scenarios B and D were in
average about 491 and 2820 milliseconds, while scenarios
A and C showed response times below one millisecond in
average.

Test 2 showed that the overall duration of one cycle
became more than 5 seconds, due to the addition of around
26342 software descriptions into the data storage.

As seen from the 85th percentile statistics in scenario
D, duration time is below the baseline value of 5 seconds
in 85/cases. When looking at the 99th percentile statistics,
duration of scenario D increased up to 5.5 seconds, above
the baseline value and resulting in longer execution cycles of
more than 10 seconds in some observations. Similarly, 85th

0 10 20 30 40
0.4

0.6

0.8

1

1.2

1.4

User Delay in Seconds

N
u
m

b
e
r

o
f
W

a
it
in

g
 P

ro
c
e
s
s
e
s

E
F

(a) CPU (Number of Waiting Processes)

0 10 20 30 40
5.28

5.285

5.29

5.295

5.3

User Delay in Seconds

M
e
m

o
ry

 (
b
y
te

s
)

E
F

(b) Memory (Bytes)

0 10 20 30 40
0

5

10

15

20

25

30

User Delay in Seconds

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

E
F

(c) Duration (Milliseconds)

Fig. 10: Average Resource Consumption in E and F Scenar-
ios (Test 1)

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

0 0.5 1 1.5 2

x 10
5

1

2

3

4

5

N
u

m
b

e
r

o
f

W
a

it
in

g
 P

ro
c
e

s
s
e

s

Number of Added Products
(a) CPU (Number of Waiting Processes)

0 0.5 1 1.5 2

x 10
5

5.25

5.3

5.35

5.4

5.45

5.5

M
e

m
o

ry
 (

M
e

g
a

 b
y
te

s
)

Number of Added Products
(b) Memory (Bytes)

0 0.5 1 1.5 2

x 10
5

−5000

0

5000

10000

15000

20000

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of Added Products
(c) Duration (Milliseconds)

Fig. 11: System Resources Consumption While Adding
Products, in 100 Randomly Selected Observations (Test 2)

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2
x 10

4

Number of Added Products

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

A

B

(a) A and B Scenarios)

0 0.5 1 1.5 2

x 10
4

0

200

400

600

800

1000

Number of Added Products

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

C

D

(b) C and D Scenarios

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

Number of Added Products

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

E

F

(c) E and F Scenarios

Fig. 12: Execution Time While Adding Products, in 100
Randomly Selected Observations (Test 2)

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

TABLE IX: Test 2 Results for All User Delays (Time in
Milliseconds, CPU Usage in Number of Waiting Processes,
Memory Consumption in MB)

Scenario Metric Min. Max. µ σ 85%ile 99%ile

A cpu 0.7 4.6 1.91 0.41 2.3 3.3
memory 2.52 5.35 5.33 0.03 5.35 5.35
duration 0.08 132 0.14 0.52 0.153 0.23

B cpu 0.7 4.6 1.91 0.41 2.3 3.3
memory 4.43 5.35 5.33 0.03 5.35 5.35
duration 18.2 19300 491 1270 821 6290

C cpu 0.7 4.6 1.91 0.409 2.3 3.3
memory 4.43 5.35 5.33 0.03 5.35 5.35
duration 0.10 195 0.22 1.33 0.2 0.73

D cpu 0.7 4.6 1.92 0.41 2.3 3.3
memory 5.27 5.35 5.33 0.03 5.35 5.35
duration 222 23400 2820 1780 4800 7370

One cpu 0.7 4.6 1.91 0.41 2.3 3.3
cycle memory 5.28 5.35 5.33 0.03 5.35 5.35
(A-D)) duration 244 25000 3320 2370 5570 11100
E cpu 0.7 4.6 1.92 0.41 2.3 3.3

memory 5.28 5.35 5.33 0.03 5.35 5.35
duration 0.08 113 37.3 21.5 63.3 75.9

F cpu 0.7 4.6 1.91 0.41 2.3 3.3
memory 5.28 5.35 5.33 0.03 5.35 5.3
duration 8.79 1190 40.4 74.6 77.3 349

percentile of duration is less than one second, while 99th
percentile is about 6 seconds in scenario B.

In both tests we reported that minimum duration time in
Scenario F more than 8 milliseconds compared to Scenario
E. In Test 1, average values of Scenario E and F were around
0.2 and 13.4 milliseconds respectively, while in majority
(99/Scenario F was less than 65.7 milliseconds, and duration
in Scenario E was less than 0.33 milliseconds. In Test 2 we
observed that the 99th percentile of duration in Scenario F is
higher than the similar value in Scenario E, and, maximum
duration time in Scenario F was more than 10 times longer
than the maximum duration time in scenario E, indicating
that MySQL queries outperform SPARQL queries.

Overall, Table IX shows that the maximum response time
for scenarios B and D could reach up to more than 19 and 23
seconds respectively, while memory and CPU consumption
are within the predefined baseline for all scenarios. There-
fore, we might suggest that using RDF triple store requires
more processing power compared with MySQL storage when
adding large amounts of data and the software selection
algorithm requires further optimization.

V. DISCUSSION

A. Semantic Web adoption

The Semantic Web application was created to demonstrate
the proposed approach using Semantic Web tools. However,
difficulties in applying new technologies uncovered a new
problem area. There are not yet well-tested and robust best-
practices for Semantic Web development. This might have
an influence on the development of Semantic Web solutions
and as a consequence restrict the adoption of semantic
technologies in practice.

Moreover, the most noticeable advantages provided by
the Semantic Web are cross-platform data integration and
knowledge management. A machine-readable format could
be used for data processing, and external web resources
could be used for enriching the available data. This was the
reason of choosing SW tools for describing and managing

information on software products. However, performance
limitations of the SW tools employed should be considered
and optimized in case of large datasets. When SW stor-
ages are built on relational databases, semantic queries are
transformed into relational queries, leading to performance
penalties [37]. As was demonstrated by our tests, the imposed
overheads of working with triple store requires additional
processing power and might require more execution time.
List sorting [38], optimization methods [39] and SPARQL-
to-SQL transformation [40] can be applied for improving the
efficiency of information retrieval. Underlying RD tables can
also be restructured in order to improve query performance
[40]. Alternatively, we might suggest to employ this approach
for selecting specialised software in certain domains. This
would result in smaller data storage and quicker response
times when dealing with triple store.

Furthermore, semantic capabilities can help in the in-
formation exchange between software providers and their
customers working with different machines. Applying open
formats such as Extensible Markup Language and RDF,
rather than being dependable on particular proprietary for-
mats can assist in a more efficient communication. Platform-
independent and semantically tagged information provided
in a well-structured form can help in integrating data from
different sources. Further, it could be interesting to extend
our prototype’s knowledge base with information on the
purpose of software products, their application area and
customer satisfaction. OWL capabilities for building such
a knowledge base, enriching it with new information from
external web databases, and machine inference are to be
further investigated for creating a more intelligent software
selection.

B. Implications on IT infrastructure management

Software products’ descriptions provided in a machine-
readable format can be semantically queried. With access
to a distributed database with software product information,
for instance over an easy-to-use interface, software customers
would be more independent from third-party advice which is
unfortunately not always objective. Overall, IT environments
can benefit from decision support when information on pre-
installed software products and IT requirements at place is
available. This way, solutions which are well-suited to IT
infrastructures can be chosen, such that deployment costs
and efforts can be minimized.

Moreover, feedback on the performance of purchased so-
lutions can also be considered as providing response to soft-
ware providers [10]. Such feedback on software applications
can be used for improving the product quality and customer
satisfaction, while returning customers benefit to business
earnings [41]. It seems therefore also rational to suggest
a close integration of Internet resources providing software
information with IT infrastructures, sharing information on
IT assets at place and required software products.

Implications for business security however are to be in-
vestigated when dealing with sensitive information.

C. Human involvement and Feedback

Nevertheless, the investigation showed that modern se-
mantic tools can be applied for searching software and

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

its selection. However, the decision making on software
acquisition should be done with caution. As some of the
questionnaire participants stated, the responsibility of taking
decisions should not be taken away from human users.

Furthermore, attributes of software ontology include func-
tionality and characteristics for assessing software quality.
Software quality characteristics can be used for assessing
customer satisfaction and assessing software alternatives
[42]. It might be reasonable to use simple metrics and
graphs, since weighted index values can be influenced by
contrasting groups of assessors [42]. The prototype could be
further extended to collect user satisfaction. For instance,
user feedback can be derived from social media services
such as Twitter. in this context, sentiment analysis could be
exploited to mine user satisfaction with software products.

D. Interdependencies between selection criteria

For the prototype, the software product scoring algorithm
working with software quality characteristics did not con-
sider possible interrelations between software traits, such
as dependence between usability and efficiency [43]. For
dealing with interdependence between various attributes, we
might consider MCDM methods such as ANP as described in
[12]. Further research may investigate possible relationships
between software quality traits. A better knowledge of soft-
ware quality traits would help in establishing more accurate
weights for the quality criteria used in rating software
products.

E. Flexibility of adding new selection attributes

One of the benefits of the proposed approach is the
flexibility of adding new selection attributes. This comes
from the RDF structure, which allows easy changes in
records describing software products as mentioned above.
For instance, we might consider to add platform-related
system requirements or other software deployment-related
information into the set of attributes proposed in [11].

Furthermore, as was suggested in [44], semantic web
solutions can be used for developing a collaboratively-shared
common domain ontology, which is machine-readable and
has reasoning capabilities. As we pointed out above and
in [10], OWL could be employed when more sophisticated
reasoning is needed. Software selection rules described in
OWL could enable an expert-system functionality as in
[11]. Moreover, for creating a shared domain ontology, we
could help in the information exchange between software
purchasers and developers.

VI. CONCLUSIONS

In the foregoing, we analyzed factors playing an important
role in the software selection process. Fitness to business
needs, easiness of integration into existing infrastructures and
a well-matching functionality are the most prominent factors
to consider while selecting software products, in accord with
the survey results. A majority of survey participants agreed
in that an automated solution of software selection support
is needed. Decision support software could thereby help in
the analysis of software characteristics and thus potentially
decrease deployment costs and efforts.

To facilitate software traits/requirements exchange be-
tween different consumers and platforms, we proposed to
employ semantic tools. The developed prototype demon-
strated a possible solution using RDF for representing soft-
ware information, SPARQL for querying stored data, and a
multi-criteria decision algorithm for scoring software prod-
ucts in accord to user requirements. Since the semantics’
addition resulted in an overhead in terms of resource con-
sumption, we suggested to further optimize operations for
storing and querying the database. Nevertheless, the proposed
approach requires further analysis due to the undeniable
benefits of platform independence, flexibility of storage
structures and locations. The proposed approach opens new
horizons for improving IT infrastructures in practice and
helping software development businesses to market and
deliver their products.

In future work, we will investigate query/data source
optimization options, possible web sources to be used for
mining software-related information and automatically cre-
ating software product descriptions. We aim at exploiting
web content and social media streams to gather information
on software products, their properties, requirements and user
feedback.

REFERENCES

[1] J. Dedrick, V. Gurbaxani, and K. Kraemer, “Information technology
and economic performance: A critical review of the empirical evi-
dence,” ACM Computing Surveys, vol. 35, no. 1, 2003, pp. 1–28.

[2] J. Benamati, A. Lederer et al., “An empirical study of it management
and rapid it change,” in Proceedings of the 1999 ACM SIGCPR
conference on Computer personnel research. ACM, 1999, pp. 144–
153.

[3] W. Novak, J. Cohen, A. Lattanze, L. Levine, P. Place, R. Williams,
and C. Woody, “Software acquisition planning guidelines,” 2005.

[4] R. N. Charette, “Why software fails [software failure],” Spectrum,
IEEE, vol. 42, no. 9, 2005, pp. 42–49.

[5] Dell (2008, June). Essentials of software asset management.
policies for software evaluation, purchasing, usage a& compliance
monitoring. [Online]. Available: https://portal.asap.com/en-CA/
Documents/Essential Elements of SAM 200806.pdf

[6] Distributed Management Task Force (2009, May). Common informa-
tion model (cim) infrastructure. [Online] Available: http://www.dmtf.
org/sites/default/files/standards/documents/DSP0004 2.5.0.pdf

[7] Microsoft Corporation (2009, May). Microsoft operations
frameworkmicrosoft operations framework. cross reference itil
v3 and mof 4.0. [Online] Available: http://goo.gl/M7PL1N

[8] International Organization for Standardization (2012, June June).
Iso/iec 19770-1:2012 information technology – software asset
management – part 1: Processes and tiered assessment of conformance.
[Online] Available: http://goo.gl/qjxXoF

[9] P. Ulkuniemi and V. Seppanen, “Cots component acquisition in an
emerging market,” Software, IEEE, vol. 21, no. 6, 2004, pp. 76–82.

[10] E. Ilina, “A new approach of software asset acquisition using semantic
web,” Master’s thesis, University of Liverpool, 2010.

[11] K. Eldrandaly and S. Naguib, “A knowledge-based system for gis soft-
ware selection.” International Arab Journal of Information Technology,
vol. 10, no. 2, 2013, pp. 152–159.

[12] Z. Ayağ and R. Özdemir, “An intelligent approach to erp software
selection through fuzzy anp,” International Journal of Production
Research, vol. 45, no. 10, pp. 2169–2194, 2007.

[13] S. Onut and T. Efendigil, “A theorical model design for erp software
selection process under the constraints of cost and quality: A fuzzy
approach,” Journal of Intelligent and Fuzzy Systems, vol. 21, no. 6,
2010, pp. 365–378.

[14] K. Yuen and H. Lau, “Software vendor selection using fuzzy analytic
hierarchy process with iso/iec9126,” IAENG International journal of
computer science, vol. 35, no. 3, 2008, pp. 267–274.

[15] Z. Ayağ, “Evaluating simulation software alternatives through anp,”
in Proceedings of the 2011 International Conference on Industrial
Engineering and Operations Management, Kuala Lumpur, Malaysia,
2011.

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

https://portal.asap.com/en-CA/Documents/Essential_Elements_of_SAM_200806.pdf
https://portal.asap.com/en-CA/Documents/Essential_Elements_of_SAM_200806.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0004_2.5.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0004_2.5.0.pdf
http://goo.gl/M7PL1N
http://goo.gl/qjxXoF

[16] H. Deng and S. Wibowo, “Intelligent decision support for evaluating
and selecting information systems projects.” Engineering Letters,
vol. 16, no. 3, pp. 412–418, 2008.

[17] Carnegie Mellon University (2002, March). Software acquisition
capability maturity model (sa-cmm) version 1.03. [Online] Available:
http://www.sei.cmu.edu/reports/02tr010.pdf

[18] X. Franch and J. Carvallo, “A quality-model-based approach for
describing and evaluating software packages,” in Requirements Engi-
neering, 2002. Proceedings. IEEE Joint International Conference on.
IEEE, 2002, pp. 104–111.

[19] Runaware Inc. (2013). Runaware — On-demand Demos Of Your
Software. [Online] Available: http://main.boston.runaware.com/

[20] Tucows Downloads (2013). About tucows downloads. [Online]
Available: http://www.tucows.com/about.html

[21] Technology Evaluation Centers Inc. (2013). Tec helps you choose
the best enterprise software solutions for your organization. [Online]
Available: http://www.technologyevaluation.com/

[22] O. Hauge, T. Osterlie, C. Sorensen, and M. Gerea, “An empirical
study on selection of open source software-preliminary results,” in
Emerging Trends in Free/Libre/Open Source Software Research and
Development, 2009. FLOSS’09. ICSE Workshop on. IEEE, 2009, pp.
42–47.

[23] J. Brunner, L. Ma, C. Wang, L. Zhang, D. Wolfson, Y. Pan, and
K. Srinivas, “Explorations in the use of semantic web technologies
for product information management,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 747–
756.

[24] M. Grobe, “Rdf, jena, sparql and the’semantic web’,” in Proceedings
of the 37th annual ACM SIGUCCS fall conference. ACM, 2009, pp.
131–138.

[25] S. Kulkarni and D. Caragea, “Towards bridging the web and the
semantic web,” in Proceedings of the 2009 IEEE/WIC/ACM Inter-
national Joint Conference on Web Intelligence and Intelligent Agent
Technology-Volume 01. IEEE Computer Society, 2009, pp. 667–674.

[26] B. Antunes, N. Seco, and P. Gomes, “Knowledge management using
semantic web technologies: An application in software development,”
in Proceedings of the 4th international conference on Knowledge
capture. ACM, 2007, pp. 187–188.

[27] J. Tane, C. Schmitz, and G. Stumme, “Semantic resource management
for the web: an e-learning application,” in Proceedings of the 13th
international World Wide Web conference on Alternate track papers
& posters. ACM, 2004, pp. 1–10.

[28] L. Li and I. Horrocks, “A software framework for matchmaking based
on semantic web technology.” New York, USA: ME Sharpe, 2003,
pp. 331–339.

[29] E. Ilina (2010, August). Feedback to the software selection survey’s
report. [Online] Available: http://goo.gl/Y4h7rt

[30] W. Orlikowski and J. Baroudi, “Is research paradigms: method versus
substance,” 1989.

[31] E. Ilina. (2010, August). Software selection process: survey. [Online]
Available: http://softologics.com/survey/report/index.htm

[32] E. Prud’hommeaux (2013). Sparql vs. sql - intro. [Online]
Available: http://www.cambridgesemantics.com/semantic-university/
sparql-vs-sql-intro

[33] semsol (2013, July). semsol/arc2 github. [Online] Available:
https://github.com/semsol/arc2

[34] P. Hitzler, S. Rudolph, and M. Krötzsch, Foundations of semantic web
technologies. Chapman & Hall/CRC, 2009.

[35] D. L. Olson, B. Johansson, and R. A. Carvalho, “A combined method
for evaluating criteria when selecting erp systems,” Re-conceptualizing
Enterprise Information Systems, 2012, pp. 64–74.

[36] M. Alkhawlani and A. Ayesh, “Access network selection based on
fuzzy logic and genetic algorithms,” Advances in Artificial Intelligence,
vol. 8, no. 1, p. 1, 2008.

[37] D. Abadi, A. Marcus, S. Madden, and K. Hollenbach, “Sw-store: a
vertically partitioned dbms for semantic web data management,” The
VLDB JournalThe International Journal on Very Large Data Bases,
vol. 18, no. 2, 2009, pp. 385–406.

[38] S. Groppe and J. Groppe, “External sorting for index construction
of large semantic web databases,” in Proceedings of the 2010 ACM
Symposium on Applied Computing. ACM, 2010, pp. 1373–1380.

[39] J. Groppe, S. Groppe, S. Ebers, and V. Linnemann, “Efficient pro-
cessing of sparql joins in memory by dynamically restricting triple
patterns,” in ACM SAC, 2009.

[40] B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z. Ozsoyoglu, “A com-
plete translation from sparql into efficient sql,” in Proceedings of the
2009 International Database Engineering & Applications Symposium.
ACM, 2009, pp. 31–42.

[41] S. Jansen and S. Brinkkemper, “Evaluating the release, delivery, and
deployment processes of eight large product software vendors applying
the customer configuration update model,” in Proceedings of the 2006

international workshop on Workshop on interdisciplinary software
engineering research. ACM, 2006, pp. 65–68.

[42] S. Kan, Metrics and models in software quality engineering. Addison-
Wesley, London., 2002.

[43] B. Jayaswal and P. Patton (2006). Software quality
metrics. [Online] Available: http://www.developer.com/tech/article.
php/3644656/Software-Quality-Metrics.htm

[44] J. Malczewski and M. Jelokhani-Niaraki, “A web 3.0-driven collabora-
tive multicriteria spatial decision support system,” Cybergeo: European
Journal of Geography, 2012.

1) Date of modification: 5th December 2013
2) Minor changes in Table I and added reference to the

table V, page 3.

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_03

(Revised on 16 December 2013)

__

http://www.sei.cmu.edu/reports/02tr010.pdf
http://main.boston.runaware.com/
http://www.tucows.com/about.html
http://www.technologyevaluation.com/
http://goo.gl/Y4h7rt
http://softologics.com/survey/report/index.htm
http://www.cambridgesemantics.com/semantic-university/sparql-vs-sql-intro
http://www.cambridgesemantics.com/semantic-university/sparql-vs-sql-intro
https://github.com/semsol/arc2
http://www.developer.com/tech/article.php/ 3644656/Software-Quality-Metrics.htm
http://www.developer.com/tech/article.php/ 3644656/Software-Quality-Metrics.htm

	Introduction
	Related Work
	Methodology
	Survey
	Conceptual Framework
	Ontology and Data Structures
	Prototype

	Analysis of Results
	Experimental Setup and Results
	Datasets
	Test Results
	Memory consumption
	CPU consumption (measured as number of waiting processes)
	Response time (duration)

	Discussion
	Semantic Web adoption
	Implications on IT infrastructure management
	Human involvement and Feedback
	Interdependencies between selection criteria
	Flexibility of adding new selection attributes

	Conclusions
	References

