

Abstract—In communication system especially in wireless

communication system generating size constrained frames with
different format header and different size of packet data
carried usually are the most common task handled by the data
path stimulus generator in a constrained random verification
system. The main challenge for generator is to solve out the well
distributed stimulus according to the complex constraint
relationship. R99’s CCTrCH frame’s building set an example
on such challenge. This paper presents a work around to handle
such challenge. By using a method like truck loading, the direct
stimulus solver problem is avoided. As complicated constraints
can be changed to the condition to stop loading more, no solver
failure is achieved. Leveraging the power of computer resource,
this work around can also make a good distribution about the
generated stimulus.

Index Terms— CCTrCH, constrained random verification,
solver, stimulus generation, complicate constraint

I. INTRODUCTION

ITH the development of deep sub-micrometer
fabrication technology, electronic designs have been

growing rapidly in both device count and functionality.
Verification complexity grows faster than the design
complexity. As one of remedies for verification complexity,
constrained random simulation with robust constraint solving
capability is proposed as the key to any practical testbench
automation tool [1] and become the main workhorse in
today's hardware verification flows. The efficiency of the
overall flow depends critically on (1) the performance of the
constraint solver and (2) the distribution of the generated
solutions [2]. There are quite a few general-purpose
constraint solvers available both from academia and industry.
However sometimes such constraint solver may not be
enough due to different design’s functionality.[3] In
communication systems especially in wireless
communication system, integrated circuit solutions have
been one of the enabling technologies, contributing to the
success of wireless communications [4]-[6]. Due to variety of
services are usually beard by radio data link whose rate is
stable in specified time slot, generating size constrained
frames with different format header and different size of
packet data carried usually are the most common task

Manuscript received May 15, 2013; revised November 10, 2013. This

work was supported by the National nature science foundation of China (No.
61103161) and the Program for New Century Excellent Talents in University
(No.NCET-12-0579).

Lirong Qiu is with the School of Information Engineering, Minzu
University of China, and Beijing, China. (E-mail: qiu_lirong@126.com).

handled by the data path stimulus generator in wireless
communication IC verification. The challenging part of such
stimulus generation is that it is hard for solver to figure out
what a packet data composition can be fit into the known
sized frame.

To generate MAC-e PDU [7] is an example. Figure 1
shows the format of MAC-e PDU.

Fig. 1 MAC-e PDU frame structure

The generated MAC-e PDU should meet following
constraint:
ሺܮூ ேܮ ௌேሻ்ܮ ൈ ݊௦ ݐܾ݅݀݊ܽݎ ൈ ூܮ

∑ ሺ݊௦௦ ൈ ݈௦௦ ሻ
ೞ
ୀ ݐܾ݅݀݊ܽݎ ൈ ௌூܮ 	 ݈ௗ ൌ ݈
In this formula, all capitals are known constant value and

all low-case letters represent random variable. Here ݈ is the
length of MAC-e PDU which is in a known set defined by
protocol and can’t be randomized freely. ݊௦ is the number
of MAC-es PDU and less than a constant value. ݊௦௦ is the
number of MAC-es SDU in ݅௧ MAC-es PDU and less
than a constant. ݈௦௦ is the length of MAC-es SDU in ݅௧
MAC-es PDU which is a multiple of 8. ݐܾ݅݀݊ܽݎ is a
randomized value in 0 and 1, as DDI0 and SI are optional.
Here the constraints that ݈ belongs to a known set and
݈௦௦ is a multiple of 8 bring great difficult to solve the
right stimulus. It will be even harder to generate the
MAC-e PDU without padding.

Another example is 3G general CCTrCH frame building
[8]-[9]. This multiplexing, channel coding and interleaving
procedure has similar constraint like MAC-e PDU: A couple
of transport blocks with known size should be mapped into

A Work Around for Communication Frame’s
Generation Solver Issue in Constrained Random

Verification

Lirong Qiu

W

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_03

(Advance online publication: 13 February 2014)

__

one CCTrCH frame; Total bits of one CCTrCH frame can
carried are constrained to a value in a known set according to
its mapped physical channels; Total bits for all transport
blocks is a constant value decided by user equipment
capability; Total transport block number is a constant value
decided by user equipment capability, etc. One of the
toughest constraints is rat matching. Due to rate matching, we
can’t put each bit in transport blocks CCTrCH frame. Some
bits need to be discarded or some redundant bits need to be
added. For the rate matching algorithm, the iteration, division
and floor operations are all hard to solve. Moreover
sometimes we can’t let the final puncture rate of transport
blocks be bigger than its coding rate as some of the original
transmitting bits of transport blocks can’t be recovered if
puncture rate is too big. That may lead to comparison failure
if testbench does a TX-RX transport block check. But the
puncture rate is an indirect constraint brought by the
complicated rate matching algorithm. So it is even harder for
solver to meet such constraint.

As the critical issue of constraint based verification,
solver’s ability has always been the focus in computer aided
verification. A lot of study has been made about the solver
algorithm [10]-[11]. Some methods to improve constraint
solving technique for specified verification language are also
proposed [12]-[13].

However, it is still hard to solve complicated constraint
directly. One solution proposed by [1] is to define
intermediate sub-formulas upon which the constraint formula
is defined. However sometimes to subtract the right
intermediate sub-formulas is also a challenging job. For
example to get the puncture rate for one transport blocks in
above radio frame composition procedure. This paper
provides its study on the special class solver issue of
generating size constrained frames with different packet and
header loaded for communication system. By using a method
like loading truck, the direct stimulus solver problem is
worked around. As complicated constraints can be changed
to the condition of stop loading, randomize engine don’t have
to analyze the complicated constraint and the system will
never have solver failure issue. The following part of this
paper includes:
 The method to work around the direct stimulus solver

problem.
 Several factors to optimize the work around method.
As the method changes the complicated constraint to the

condition of stop loading, the corner case can’t be achieved
by direct constraint. But as the inputs can be randomized
independently and there is no solver issue, they can be
constrained to the set which is easier to hit the expected
corner case. By leveraging the power of computer resource, it
is not hard to cover the corner cases.

II. WORK AROUND FOR SOLVER ISSUE OF GENERATING SIZE

CONSTRAINED FRAME

In previous chapter, we have pointed out that due to the
complicated constraint, it is hard for solver to figure out what
a packet data composition can be fit into the known sized
frame by analyzing the constraint directly. We can take 3G
TDD general downlink CCTrCH frame building as an
example and assume UE’s capability is 768kbps service
supported. According to the table 5.2.2.1 in [14], Constraint

which is relative to CCTrCH frame building can be
subtracted as following items. Here Number of bits in a radio
frame before rate matching on TrCH i with transport format
combination j is represented by ܰ ; Number of bits to be
punctured or repeated in each radio frame on TrCH i with
transport format combination j is represented by ∆ ܰ ;

Transport block number of TrCH i is represented by ܯ ;
Transport block size of TrCH i is represented by ܣ ; Attached
CRC bit size is represented by ܮ ; Coding scheme is
represented by ݊݅݀ܥ ݃; TTI length is represented by ܶܶܫ;
Number of TrCHs in a CCTrCH is represented by I; Total
maximum number of bits of one CCTrCH frame is
represented by ܰ݀ܽܽݐ௫.

a) Maximum sum of number of bits of all transport
blocks being received at an arbitrary time instant:
 ∑ ሺܣ ൈ ሻܯ

ூ
ୀଵ 10240.

b) Maximum sum of number of bits of all
convolutionally coded transport blocks being
received at an arbitrary time instant:
 ∑ ሺܣ ൈ ܯ ൈ ݊݅݀ܥሺݒ݊ܿݏ݅ܨ ݃ሻሻ

ூ
ୀଵ 640;

 ሻ is a function to check if coding݃݊݅݀ܥሺݒ݊ܿݏ݅ܨ
scheme is convolutionally coding for TrCH i. If it is,
it will return 1; or return 0.

c) Maximum sum of number of bits of all turbo coded
transport blocks being received at an arbitrary time
instant:
 ∑ ሺܣ ൈ ܯ ൈ ݊݅݀ܥሺܾݎݑݐݏ݅ܨ ݃ሻሻ

ூ
ୀଵ 10240 ;

݊݅݀ܥሺܾݎݑݐݏ݅ܨ ݃ሻ is a function to check if coding
scheme is Turbo coding for TrCH i. If it is, it will
return 1; or return 0.

d) Maximum number of simultaneous transport
channels:
ܫ 8.

e) Maximum total number of transport blocks received
within TTIs that end at the same time:
∑ ሺܯሻ
ூ
ୀଵ 64.

f) Maximum number of physical channels per subframe
is less than 64.

g) Total maximum number of bits of one CCTrCH
frame is ܰ݀ܽܽݐ௫ decided by its mapped physical
channels and timeslot format of each physical
channel.

h) Number of bits in a radio frame before rate matching
on TrCH i with transport format combination ܰ is
decided by transport block number, transport block,
attached CRC bit size, coding scheme and radio
frame segmentation. We use a simple function
symbol ݃݁ݏ_݁݀ܿ_ܿݎܿܨሺሻto represent the calculation
of ܰ:
 ܰ ൌ ,ܯ,ܣሺ݃݁ݏ_݁݀ܿ_ܿݎܿܨ ,ܮ ݊݅݀ܥ ݃ܶܶܫሻ.

i) If there is comparison between the decoded transport
blocks and the original transmitted transport blocks,
the puncture rate after rate matching should not be
bigger than the coding rate:
∆ேೕ
ேೕ

 .݁ݐܽݎ_݁݀ܿ

In fact 768kbps TDD can have maximum 4 of

simultaneous CCTrCHs. However, 3 of them are usually
used to carry BCH, FACH and/or PCH, DSCH respectively.
The constraints for CCTrCHs carrying BCH, FACH and/or
PCH are relatively easy as less physical channels are used
and TrCH is limited. CCTrCH for DSCH has been replaced

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_03

(Advance online publication: 13 February 2014)

__

by HSDPA service. So this paper just focuses on the solver
issue of the most complicated CCTrCH’s building with
dedicated type TrCH contained.

A. Constraint Analysis and Work around Method

To analyze the constraint lists above, we can see following
points:

 Item f and item g are quite independent constraints.

According to timeslot format of one physical channel,
total number of data bits in one physical channel
belongs to the set of {88, 86, 84, 80, 72, 84, 82, 80, 76,
68}. We randomize the assigned physical channel
first within 1 to 64 and then randomize the timeslot
format of each physical channel to work
out	ܰ݀ܽܽݐ௫.

 it is a little hard to solve constraints from item a to
item e as the constraint variables are relative with
each other and so many constraint items narrow the
variables’ random space.

 Item i is a complicated constraint as it depends on the
connection between TrCH transport blocks and total
number of bits of CCTrCH and such connection is not
a straightforward and clear one.

Strictly speaking item h and rate matching are not
constraints. But they build the connections between TrCH
transport blocks and CCTrCH frame. Item h is easier to use
intermediate variables in constraint expression because ܰ’s
calculation is single direction and only linear operation is
used. But rate matching algorithm like Figure 2 shows are
quite complicated and not straightforward and clear.
Constraint item i is buried in the connection. Normally we
can randomize some variables which are constrained to more
compact random space and infer other variables random
space to work around the hard solver issue. Here CCTrCH
frame bits and real rate matching rate are two variables need
to randomize in advance. But the iteration, division and floor
operations in rate matching algorithm prevent the inferring of
TrCH blocks with a known puncture rate and CCTrCH frame
bits.

Fig. 2 Rate matching algorithm

To work around this hard solver issue, let’s think about
how physical channel and transport channel are defined in 3G
system. A colorful metaphor is used to help with the
understanding of both different channels: physical frame
transferred on physical channel is a truck while transport
blocks in channel are packages with different size and carried

by this truck. Like figure 3 shows: when a truck is loading at
goods yard, the truck can always been fully loaded because
workers can check the space of the truck left and find the
right packages to fill it from thousand ones piled in goods
yard. If the left space is quite limited, workers can try to find
a small one.

Fig. 3 Diagram of Loading Last space of a truck

The main reason that the truck can be loaded compactly is
that there are so many of different size of package which can
be selected during truck loading that a fitful size package can
always be found to fill the left truck’s space. This truck
loading method brings a hint to the solver issue: we can
randomize abundant of all kinds of TrCH blocks and try to
fill them into CCTrCH frame. When one constraint is broken
by a new TrCH block, this block will be discarded.

B. Implementation about Work Around

The detail implementation about the work around
mentioned in previous chapter is shown in the flow chart of
Figure 4.

From the flow chart we can see that the assigned physical
channels and the timeslot format of each physical channel for
CCTrCH is randomized first. ܰ݀ܽܽݐ௫ is figured out.
 ௫ is also the initial “left space of Truck”. With thisܽݐܽ݀ܰ
space, a rough “maximum package size”, maximum total
block bits from one TrCH, can be inferred. We can set a little
larger than the inferred value because TrCH blocks are just
randomized in this range. If some TrCH blocks are too big for
CCTrCH frame, they will be discarded and new TrCH blocks
can be randomized. After blocks from TrCH are evaluated to
be fitful for CCTrCH frame, the maximum total block bits
can be re-figured based on left space. That can lead to a quick
convergence to the working around because new randomized
TrCH blocks can have less possibility to be discarded due to a
good randomization range adjustment based on the feedback
of left space. steps①②③④ are functions to check if TrCH
blocks are fitful for CCTrCH frame. Step⑤⑥⑦ are
functions to check if current filling process is done.
Obviously randomization for CCTrCH mapped physical
channel and their time slot are quite easy. So are TrCH blocks.
Complicated constraints are not considered any more during
their randomization because they are changed to checking
functions in step①②③④ and terminating function in step
⑤⑥⑦ . We set the maximum TrCH blocks number,
maximum TrCH channels etc according to UE ability in the
flow chart. In fact they can be randomized in advance for
expected test scenarios.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_03

(Advance online publication: 13 February 2014)

__

Fig. 4 Flow chart to randomize TrCH blocks for CCTrCH

However one thing we should worry about is that as the
constraints are not used anymore, we may face the issue of
creating test case with specified constraints such as the case
of total transport blocks number is 64, total bits of all
convolutional coded transport blocks is 640 and rate match
rate is coding rate. In fact getting the specify constrained case
hit directly is impossible for this work around. But by slicing
the random value range and adjusting the distribution, the
specify cases can be hit by leveraging the power of computer
resource. For example, if Trch block has high weight to
randomize into small size one, the case of total transport
blocks number is 64 can have high possibility to hit.

Fig. 5 a coverage report snapshot generated with 3000 test sets

With this method, we make a test program and run at VCS

simulation environment. According to the coverage report
showed in Fig 5, with 3000 test sets, 2 puncture limit cases
are hit. We also get maximum TrCH channel numbers and
maximum sum of all convolutionally coded transport blocks
bits. Following data is one TrCH block sets. We can see the
distribution is quite random and not restricted to one or two
blocks.

blknum[1] blksize[27] coding[2] crc[0] tti[1]

 punc_weight[143] coderate[3]
blknum[1] blksize[17] coding[0] crc[16] tti[1]

 punc_weight[258] coderate[1]
blknum[2] blksize[262] coding[1] crc[16] tti[2]

 punc_weight[124] coderate[2]
blknum[2] blksize[131] coding[0] crc[8] tti[1]

 punc_weight[282] coderate[1]
blknum[3] blksize[461] coding[2] crc[16] tti[4]

 punc_weight[145] coderate[3]
blknum[43] blksize[28] coding[2] crc[24] tti[1]

 punc_weight[127] coderate[3]
blknum[4] blksize[602] coding[2] crc[24] tti[2]

 punc_weight[125] coderate[3]

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_03

(Advance online publication: 13 February 2014)

__

blknum[1] blksize[293] coding[0] crc[0] tti[1]
 punc_weight[263] coderate[1]

blknum[2] blksize[28] coding[1] crc[8] tti[1]
 punc_weight[139] coderate[2]

blknum[3] blksize[37] coding[2] crc[24] tti[4]
 punc_weight[139] coderate[3]

blknum[1] blksize[44] coding[1] crc[0] tti[4]
 punc_weight[100] coderate[3]

blknum[1] blksize[5] coding[1] crc[24] tti[2]
 punc_weight[109] coderate[2]

blknum[40] blksize[113] coding[2] crc[0] tti[4]
 punc_weight[131] coderate[3]

blknum[11] blksize[2] coding[2] crc[0] tti[1]
 punc_weight[150] coderate[3]

III. FACTORS OF OPTIMIZING THE WORKING AROUND

As complicated constraints are changed to checking
functions and terminating functions in the work around in this
paper, the solver failure issue will be gone. However the
convergence time for stimuli generation and the stimuli’s
distribution are important concern about such solver method.
Here we will discuss several factors which affect the
performance of work around.

A. Priority of Loading Package at Different Position

Like trucking loading, sometime we need put some
packages in special position. Such packages should be placed
in high priority. Loading packet data into a frame has similar
issue. For example: when packet data has variable size and
the frame which has packets loaded has fix size, packet data
need to be assembled or segmented to get fit into destiny
frame and special header or padding may be attached to the
frame. Such variety of headers or paddings are quite
important the assembling/segmentation scenario. If they are
loading first, frame usually has enough space to carry them.
So they have less possibility to break the checking rule and
good stimuli distribution can be achieved.

B. Resize Packet’s Random Range According to Frame’s
Left Space

As the checking function can guarantee that packet with
too large size can be discarded, packet’s random range can be
set to a very large one. However this is not good for random
convergence time for stimuli generation because if current
packet is too large to be fit for the left space of frame, this
packet will be discarded and a new one needs to be
randomized out for next around try. More time has to be
taken to get the frame fully loaded. So it is better to check the
left space left in frame and figure out the maximum packet
size the left space can carry. Let new packet randomize in this
range. This method has been taken in the example discussed
in chapter 2.2.

C. Get the Generated Frame Refined

After the frame is generated, we may want to some post
processing. So it is better to have a callback after frame is
generated. Little turning on frame can be done at this stage
such as shrink or enlarge some fields, inject some exceptions,
information printing etc. Sometimes frame may have some
space left and padding is required. So we can pad the frame
with post processing. An example is MAC-e PDU’s

generation. MAC-e PDU may not load any more MAC-es
SDU due to the limitation of maximum number of MAC-es
SDU, but it still has space left. In such case, DDI0, SI and
padding can be selected to fill the rest of space. Although we
can regard DDI0, SI and padding as special field of MAC-e
PDU and randomize them during loading stage, it is better to
isolate them be processed at post processing stage. In this
way checking function and terminating function are concise
in functionality and easy to maintain.

IV. SUMMARY AND FUTURE WORK

The method presented by this paper to work around the
complicated constraints’ solver issue in communication
frame’s generation is an emulation of truck loading process.
The complicated constraints are changed to checking rules or
terminating rules. If source packets or fields are not fitful the
frame to be loaded according to the checking rules and
terminating rules, the packets or fields will be discarded and
another one will be randomized out for next try. So there is no
solver failure issue in this process as complicated constraints
are not considered during randomization.

This work around avoids to solve the complicated
constraints and is quite fitful for the case of communication
frame’s generation. But it should be fitful for other cases.
Future work can be done to model the constraint expressions
and subtract the common feature of these constraint
expressions. Then this work around can be applied to these
constraint expressions automatically and become one part of
the solver algorithm.

ACKNOWLEDGEMENT

Our work is supported by the National nature science
foundation of China (No. 61103161) and the Program for
New Century Excellent Talents in University
(NCET-12-0579).

REFERENCES
[1] J. Yuan, C. Pixley, A. Aziz. “Constraint-Based verification”, Springer,

2006
[2] N Kitchen, A Kuehlmann, “Stimulus generation for constrained

random simulation”, Proceedings of IEEE/ACM international
conference on Computer-aided design, 2007

[3] .Naveh, M.Rimon, I.Jaeger, Y.Katz, M.Vinov, “Constraint-Based
Random Stimuli Generation for Hardware Verification,” AI magazine,
vol. 28, no. 3, pp.13-29. 2007

[4] Soerensen, J., Birk, P., & Zvonar, Z. “New Challenges for Integrated
Circuit Solutions,” Wireless Personal Communications, vol. 17,
no.2-3, pp.291-302. 2001.

[5] Kim, J., Ha, D. S., & Reed, J. H. “A new reconfigurable modem
architecture for 3G multi-standard wireless communication systems,”
In Circuits and Systems, 2005. ISCAS 2005. pp. 1051-1054.

[6] Martelli, C., Reutemann, R., Benkeser, C., & Huang, Q. “A 50mW
HSDPA Baseband Receiver ASIC with Multimode Digital Front-End,”
In Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of
Technical Papers. San Francis, CA, 2007, pp. 260-601

[7] 3GPP, "3rd Generation Partnership Project; Technical Specification
Group Radio Access Network; MAC protocol specification (Release
7)", TS25.321 version 7.h.0 (Jun. 2010)

[8] 3GPP, "3rd Generation Partnership Project; Technical Specification
Group Radio Access Network; Multiplexing and channel coding
(FDD) (Release 1999)", TS25.212 version 3.4.0 (Sep. 2000)

[9] 3GPP, “3rd Generation Partnership Project;Technical Specification
Group Radio Access Network;Multiplexing and channel coding
(TDD)(Release 1999)”, TS25.222 version 3.4.0 (Sep. 2000)

[10] Chai, D., & Kuehlmann, A. “A fast pseudo-boolean constraint solver,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 24, no. 3, pp.305-317. 2005

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_03

(Advance online publication: 13 February 2014)

__

[11] Zeng, Zhihong, Maciej Ciesielski, and Bruno Rouzeyre. "Functional
test generation using constraint logic programming," SOC Design
Methodologies. Springer US, pp. 375-387. 2002.

[12] Ferrandi, F., Rendine, M., & Sciuto, D. “Functional verification for
SystemC descriptions using constraint solving,” In Proceedings of the
conference on Design, automation and test in Europe. pp. 744. IEEE
Computer Society.

[13] Große, D., Ebendt, R., & Drechsler, R. “Improvements for constraint
solving in the SystemC verification library,” In Proceedings of the 17th
ACM Great Lakes symposium on VLSI. 2007, pp. 493-496. ACM.

[14] 3GPP, “3rd Generation Partnership Project; Technical Specification
Group Radio Access Network; UE Radio Access Capabilities (Release
1999)”, TS25.306 V3.0.0 (Dec. 2000)

Lirong Qiu. She was born in Jinan City, Shandong Province, People’s
Republic in 1978. She received his M.Sc. in Computer Sciences (2004) and
PhD in Information Sciences (2007) from Chinese Academy of Science. Her
current research interests include different aspects of Artificial Intelligence
and Distributed Systems.

Now she is full professor of computer sciences at Information Engineering
Department, Minzu University of China.

Prof. Qiu is the member of artificial intelligence community of China.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_03

(Advance online publication: 13 February 2014)

__

