
Static and Dynamic JVM Operand Stack
Visualization And Verification

Sergej Alekseev, Andreas Karoly, Duc Thanh Nguyen and Sebastian Reschke

Abstract—The bytecode verification is an important task
of the Java architecture that the JVM specification suggests.
This paper presents graph theoretical algorithms and their
implementation for the data flow analysis of Java bytecode.
The algorithms mainly address the extended static visualization
and verification of the JVMs operand stack to allow a deeper
understanding in bytecode behavior. Compared to the well
known algorithms, the focus of our approach is the visualization
of the operand stack and a graph theoretical extension of the
verification algorithms. Additionally we present a method for
dynamic operand stack visualization and verification.

We also show some experimental results to illustrate the
effectiveness of our algorithms. All presented algorithms in this
paper have been implemented in the Dr. Garbage tool suite.
The Dr. Garbage project resulted from research work at the
University of Oldenburg and is now further maintained at the
University of Applied Sciences Frankfurt am Main. The tool
suite is available for download under the Apache Open Source
license.

Index Terms—java virtual machine, operand stack, verifica-
tion, visualization, data flow analysis.

I. INTRODUCTION

THE computational model of the Java Virtual Machine
(JVM) corresponds to a stack machine [4]. Some other

programming languages are also based on the computer
model of a stack machine, for example Forth [6] and
PostScript [5]. The algorithms and approaches presented
in this paper are applicable to any stack based language,
although we present our algorithms based on the JVM.

All bytecode instructions of the JVM take operands from
the stack, operate on them and return results to the stack.
Each method in a java class file has a stack frame. Each
frame contains a last-in-first-out (LIFO) stack known as its
operand stack [2, The Java R© Virtual Machine Specification].
The stack frame of a method in the JVM holds the method’s
local variables and the method’s operand stack. Although
the sizes of the local variables get predetermined at the
start of the method and always stay constant, the size of
the operand stack dynamically changes as the method’s
bytecode instructions are executed. The maximum depth of
a frame’s operand stack is determined at compile-time and
is supplied along with the code for the method associated
with the frame. Additionally, if a class is loaded by the
JVM, the JVM verifies its content and makes sure there is
no over- or underflow of the operand stack. But neither the
Java compiler nor the JVM verifier perform a deep content
analysis of the operand stack because such analyses are very

Sergej Alekseev, Andreas Karoly and Duc Thanh Nguyen are with the De-
partment of Computer Science, Fachhochschule Frankfurt am Main Uni-
versity of Applied Sciences, 60318 Frankfurt am Main, Germany,
e-mail: alekseev@fb2.fh-frankfurt.de, karoly@stud.fh-frankfurt.de,
thanh.nguyenduc1801@gmail.com.

Sebastian Reschke is with AVM GmbH, 10559 Berlin, Germany. e-mail:
sebastianreschke@yahoo.de

time consuming and usually unnecessary, because the Java
compiler generates reliable bytecode. Nevertheless, there are
many tools that modify bytecode at runtime or generate it
from different sources other than Java. In such cases, a more
precise and detailed analysis of the operand stack is needed
to localize potential runtime errors. The operand stack errors
are very hard to track and most of them do not arise until
many bytecode instructions have already been executed.

In this paper we present graph theoretical algorithms for
extended static verification and visualization of the operand
stack. The algorithm ASSIGN OPSTACK STATES (section
III-A) computes all possible contents of a method’s operand
stack. The following sections describe possible methods
of analysis (size, type and content based) which can be
performed on the calculated operand stack contents.

Section III-E describes a LOOP ANALYSIS algorithm to
handle the operand stacks of methods which contain cycles.

In section IV we propose a graph theoretical transforma-
tion algorithm to represent the operand stack structure and
define a very simple grammar which includes the mathemat-
ical and logical operations in java similar syntax to visualize
the contents and conditions of operand stacks based on the
operand stack computation algorithm in section III-A.

The section V presents an approach for the dynamic
operand stack visualization and verification.

All presented algorithms have been implemented in the
context of the Dr. Garbage tool suite project [8] and we
present some experimental results in section VI which can
be obtained from the Dr. Garbage tool suite project [8].

Furthermore, these algorithms are suitable as an extension
of the Java compiler and JVM verifier.

II. RELATED WORK

Klein and Wildmoser explain improvements of Java byte-
code verification in their papers [14, Verified lightweight
bytecode verification], [16, Verified Bytecode Subroutines]
and [15, Verified bytecode verifiers]. There the purpose of
a verifier for bytecode regarding the Java operand stack and
the possible misbehaviour like underflow and overflow are
mentioned. The operand stack is shown as an array of types
(e.g. int) per bytecode instruction. The described verification
includes the type checking of operand stack entries. Stephen
N. Freund and John C. Mitchell present in their paper [13, A
Type System for the Java Bytecode Language and Verifier]
a specification in the form of a type system for a subset of
the bytecode language. And they developed a type checking
algorithm and prototype bytecode verifier implementation.

The approach of Klein and Wildmoser, as well as the
approach of Freund and Mitchell are partially related to our
algorithm for the type based analysis in section III-C. But in
addition to these algorithms we present a graph theoretical
extension of the type based analysis.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

Some other papers that deal with this subject are [19,
Simple verification technique for complex Java bytecode
subroutine], [20, Java and the Java Virtual Machine - Def-
inition, Verification, Validation], [21, A type system for
Java bytecode subroutines] and [22, Subroutines and java
bytecode verification].

Eva Rose deals in her paper [17, Lightweight Bytecode
Verification] with the verification algorithms on embedded
computing devices. Xavier Leroy’s papers [11, Java bytecode
verification: an overview] and [12, Java bytecode verification:
algorithms and formalizations] review the various bytecode
verification algorithms for crucial security Java components
on the Web. The application field of our algorithm is not
limited, but in view of the memory consumption (section
III-A Algorithm) our approach in its pure form is not suitable
for using on embedded devices.

In the paper [18, Analyzing Stack Flows to Compare Java
Programs] of Lim and Han the Java operand stack is used by
algorithms to identify clones of Java programs. They describe
how the JVM specification defines the operand stack before
and after each bytecode of a Java program. For visualization
of the stack an array of dots with one dot per entry of
the operand stack is used. Our approach provides a more
versatile form of the operand stack representation.

III. STATIC OPERAND STACK ANALYSIS

An essential idea behind the static operand stack analysis
is to identify a set of potential control flow paths in a
method, to calculate all possible operand stack states by
interpreting the bytecode instructions for each path and to
identify inconsistencies of the operand stack by comparing
these states.

In the next subsection a graph theoretical algorithm is
presented which traverses all control flow paths of a method
and assigns the calculated operand stack states to each
bytecode instruction in each control flow path.

The control flow path analysis is based on a control
flow graph (CFG) of a method. The CFG is defined
as a tuple G = (V,A), where V is a nonempty set of
vertices representing bytecode instructions of a method, A
is a (possibly empty) set of arcs (or edges) representing
transitions between the bytecode instructions. Formally, A
is the finite set of ordered pairs of vertices (a, b), where
a, b ∈ V .

As a CFG containing loops has unlimited numbers of
potential paths, the CFG has to be transformed into a
directed acyclic graph (DAG) with a limited number of paths
by removing loop backedges (as identified by a depth-first
search of the CFG). The number of operand stack states in
each acyclic path always equals the number of vertices (or
number of corresponding bytecode instructions) in this path.

The subsections III-B, III-C and III-D present techniques
for a static operand stack analysis in acyclic graphs based on
the operand stack size, type of stack variables and operand
stack content. The subsection III-E extends operand stack
analysis to arbitrary control flow graphs that contain cycles.

A. Algorithm for assigning stack states to vertices in a DAG

The algorithm ASSIGN OPSTACK STATES in fig. 1 iden-
tifies all possible control flow paths by visiting vertices of

'

&

$

%

/* G is a directed acyclic graph G = (V,E) */
ASSIGN OPSTACK STATES (G)
1 for (each vertex v ∈ V in topological order){
2 S[] = NULL;
3 for (all incoming edges l of v){
4 v′ = otherend(l, v);
5 S = S ∪ v′.stack;
6 }
7 for (each stack state s ∈ S){
8 updateStack(s, v);
9 }
10 v.stack = S;
11 }

Fig. 1. Algorithm for assigning stack states to vertices in a DAG

the DAG in topological order. This order ensures that all the
predecessors of a vertex v are visited before v itself.

The algorithm calculates a list of all possible operand stack
states for the current vertex v (fig. 1: lines 2-6) by iterating
all the predecessors of the vertex v and building the set of
stack states S as a disjunct union of all predecessors operand
stack lists.

All stack states of the list S are updated by pop or push
operations corresponding to the byte code instruction of the
vertex v (fig. 1: lines 7-9).

After execution of the algorithm a list of all possible
operand stack states is assigned to each vertex of the DAG.

Stack Stack states
operation

- -

push a; a

push b; b

- a | b

push c; a, c | b, c

push d; a, d | b, d

- a, c | a, d
| b, c | b, d

nv0

� J

J

?

nv1
J
Ĵ

nv2

�nv3

� J
J

?

nv4
J
Ĵ

nv5

�nv6

Fig. 2. CFG with operand stack states computed by the algorithm.

Theorem 3.1: (Operand Stack Algorithm) Given a di-
rected acyclic graph G = (V,E), after the algorithm AS-
SIGN OPSTACK STATES in fig. 1 visits a vertex v ∈ V , the
property variable stack of v contains a list of all possible
operand stack states in the vertex v.

Proof: By induction on the depth of a vertex v ∈ V and
paths from the START vertex to v.

Base Case: v depth is 0 (v = START). The theorem is
trivially satisfied.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

Bytecode Stack size List of variable List of variables
types on the stack

0 iload_1; 1 I a

1 iload_2; 2 I,I a, b

2 if_icmple 7; 0 - -

5 iload_1; 1 I a

6 goto 4; 1 I a

9 iload_2; 1 I b

10 iconst_2; 2 I,I a, 2 | b, 2

11 invokestatic 16; 0 - -

nv0
?nv1
?nv2
?nv5
?

��

QQs

nv6
QQ

��+

nv9
?nv10
?nv11

Fig. 3. CFG, corresponding bytecode and the operand stack representation.

Induction Step: The list of all possible operand stack states
S for the vertex v with d > 0 is calculated by updating
all elements of the list S = {∀s ∈ S|update(s)} (lines
7-9). The list S is a set of all operand stack states of all
immediate predecessors v0...vn of v with the depth d − 1,
so
⋃n

i=0 vi.stack (lines 3-5). By induction hypothesis, each
path section from the START to vi must be visited and
all operand stack states are assigned to the property variable
vi.stack.

All successors v0...vn of v must have a depth greater than
d, because the graph is a DAG. So the theorem holds for
all v ∈ V with depth d > 0.

Fig. 2 illustrates how the algorithm operates on the ex-
ample CFG. The vertices in this example are labeled in
topological order. The following control paths exist:

• p1 = {..., v0, v1, v3, v4, v6, ...}
• p2 = {..., v0, v1, v3, v5, v6, ...}
• p3 = {..., v0, v2, v3, v4, v6, ...}
• p4 = {..., v0, v2, v3, v5, v6, ...}

In path p1 the vertex v1 pushes the variable a and the
vertex v4 pushes the variable c onto the stack. The operand
stack states can be assigned to each vertex of path p1 as
follows: p1 = {..., v0(−), v1(a), v3(a), v4(a, c), v6(a, c), ...}.
According to these steps, the stack states in all paths can be
calculated and assigned to the vertices in the DAG. But this
procedure is not efficiently in terms of runtime complexity.
To calculate all possible stack states in each vertex of a DAG
it is not necessary to traverse each control path separately.
Instead our algorithm calculates the stack states step by step
for all paths by visiting the vertices of a DAG in topological
order.

Generally, the runtime complexity of a topological search
algorithm for the given directed acyclic graph G with n
vertices and m arcs can be found in O(n +m) (see [9] or
[10]). The memory allocation complexity to store all possible
operand stack combinations in our algorithm grows exponen-
tially. As you can see from the example in fig. 2 the number
of combinations N depends on the number of sequential
branches in the DAG and equals the multiplication of the

number of branches in each branch. In this case:

N = 2× 2 = 4 (1)

So the complexity of the memory allocation can be calculated
as O(nn). To solve this problem a pragmatic approach
is used in our implementation. We define the maximum
number of combinations which have to be calculated by the
algorithm to limit the memory allocation. The number of
maximum combinations is variable and can be redefined for
each operand stack.

The algorithm ASSIGN OPSTACK STATES in fig. 1 can
be easily adapted to calculate the stack depth (used for size
based analysis) and the list of variable types (used for type
based analysis) in each node. Instead of the operand stack
state combinations, a single value is stored in the property
variable stack of each vertex. In this case, both the runtime
O(n + m) and the memory allocation O(n) have linear
complexity. An example of the operand stack representation
is illustrated in the fig. 3.

B. Size based operand stack analysis

A size based analysis can be achieved by simply altering
the algorithm ASSIGN OPSTACK STATES in fig. 1 to calcu-
late the operand stack depth value and store it in the property
variable for each vertex in the corresponding CFG. By trivial
comparison of the operand stack depth values assigned to the
CFG’s vertices, the following types of inconsistencies can be
determined:
• Stack over or underflow: The max operand stack

size is calculated as the algorithm visits the vertices
of the corresponding CFG in topological order. By
comparing the calculated max size with the max stack
size, stored in the class file, over- or underflow stack
errors can be determined. The overflow verification is
generally available in the JVM as specified in [2, The
Java R© Virtual Machine Specification]. Our approach
also allows to determine the bytecode addresses of the
instructions which cause the stack overflow.

• Leaving objects on stack:

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

The stack size of each end vertex (e.g. return byte in-
struction) in the CFG is verified. Herewith is determined
if any objects remain on the stack. By the reference
to the bytecode instructions of the remained objects a
warning is generated about possibly unused bytecode
instructions (instructions which push these objects onto
the stack).
In fig. 4 one of the three instructions, that pushes
an integer value on the stack is obsolete. After the
last instruction, the stack should be empty but in the
example one unused integer value is left on the stack.

Bytecode Stack size

0 iload_1; 1

1 iload_2; 2

3 iconst_1; 3

4 iadd; 2

5 ireturn; 1

nv0
?nv2
?nv3
?nv4
?nv5

Fig. 4. Unused objects left on stack

• Asymmetrical operand stack sizes: An error in one
branch of the CFG could lead to asymmetrical operand
stack sizes on the incoming edges of a vertex as
illustrated in fig. 5. A simple backtrace algorithm to find
unused instructions, is applied in our implementation.
A more complex analysis algorithm and a backtrace
implementation is planned for the future.

Bytecode Stack size

2 if_icmple 7; 0

5 iload_1; 1

6 iconst_1; 2

7 goto 4; 2

10 iload_2; 1

11 iconst_2; 2 | 3

nv2
?nv5
?

��

QQs

nv6
?nv7
QQ

��+

nv10
?nv11

Fig. 5. Asymmetrical operand stack size inconsistency

The runtime complexity for this analysis is in O(n+m)
and the memory allocation complexity is in O(n), where n
is the number of vertices and m number of arcs in the CFG.

C. Type based operand stack analysis

According to the Java R© Virtual Machine Specification
[2] the JVM supports the operand stack type verification
in general. Gerwin Klein and Tobias Nipkow formalize and
describe algorithms for an iterative data flow analysis that
statically predicts the types of values on the operand stack

and in the register set [16], [14], [15] as mentioned in section
II. In this section we present a graph-theoretical approach in
addition to the well known verification techniques.

A type based analysis is realized by adaptation of the
algorithm ASSIGN OPSTACK STATES in fig. 1 to calculate
a list of variable types on the stack and store it in the
property variable for each vertex in the corresponding CFG.
By comparison of the values assigned to the CFG’s vertices
the following types of inconsistencies can be determined:
• Expected type: To ensure proper code execution at

runtime, all operands on the stack have to be type
correct in terms of what operand type the bytecode
instruction expects. For example an istore instruction
can not handle a float operand. Another example, as
visualized in fig. 6 an iadd instruction can not operate
on integer and double operands on the stack.

Bytecode Stack size

0 iload_1; 1

1 dload_2; 2

2 iadd; ERROR

nv0
?nv1
?nv2

Fig. 6. Wrong type for instruction

• Asymmetrical type lists: The types of operands on a
stack can differ on the incoming edges of a vertex. The
backtrace algorithm allows to reference the bytecode
instructions which pushed operands with different types
onto the stack.

The runtime complexity for this analysis is in O(n+m)
and the memory allocation complexity is in O(n), where n
is the number of vertices and m number of arcs in the CFG.

D. Content based operand stack analysis

The algorithm ASSIGN OPSTACK STATES in fig. 1 cal-
culates a list of variables on the stack for each bytecode
instruction and stores it in the property variable of the vertex
in the corresponding CFG. In a certain vertex several variable
combinations on the stack are possible.

This analysis allows to figure out unnecessary branches
in the bytecode. The bytecode example in fig. 7 contains
an if-branch. The bytecode instructions (offset 5 and 9)
in both branches push the same variable b onto the stack.
A backtrace algorithm prints the bytecode addresses of
instructions which lead to the duplicated operand stack states.

This kind of analysis is related to compiler optimization
techniques, but in our approach the operand stack analysis is
used to localize unused instructions. Our approach is partially
comparable to the method of Lim and Han described in
their paper [18, Analyzing Stack Flows to Compare Java
Programs]. Although the goal of their paper is to identify
clones of Java programs, the approach is absolutely different.

The runtime complexity for this analysis is in O(n+m),
where n is the number of vertices and m number of arcs in
the CFG. The memory allocation complexity is in O(nn) as
mentioned in the section III-A.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

Bytecode List of variables
on the stack

2 if_icmple 7; -

5 iload_2; b

6 goto 4;

9 iload_2; b

10 iconst_2; b, 2 | b, 2

nv2
?nv5
?

��

QQs

nv6
QQ

��+

nv9
?nv10

Fig. 7. Operand Stack with the same content in two branches

E. Loop based operand stack analysis

This section extends the analysis algorithms to arbitrary
control flow graphs that can contain cycles. The algorithm
fig. 1 in section III-A only works for acyclic paths, which
correspond to back edge free paths. The main idea of the loop
based analysis is that the operand stack states before entering
and after leaving a loop have to be equal. Otherwise, each
iteration of the loop would push objects onto the stack or
pop them from the stack and the state of the stack would be
undefined.

A depth-first search algorithm identifies a set of back edges
B ⊂ E in a graph G = (V,E), that contains cycles. The
graph G is transformed into a directed acyclic graph (DAG)
by removing the back edges D = (V,E′), where E′ = E\B.
Each back edge b ∈ B lies on a loop.

Theorem 3.2: (Loop Analysis Algorithm) The operand
stack of a method represented by a control flow graph G
that contains cycles is consistent if:

1) Size based analysis (section III-B) and type based
analysis (section III-C) have been performed without
any error on the directed acyclic graph D transformed
from the graph G.

2) and for each back edge b ∈ B with the start vertex vs ∈
V and the end vertex ve ∈ V : the operand stack state
assigned to the start vertex vs and the states assigned
to the start vertices v0, ...vn of all incoming edges of
the end vertex ve are equal in size and type.

Proof: The point 1 of the theorem does not need to
be proofed, because in case of any errors the stack is
inconsistent. The point 2 can be proofed by the contradiction
of the operand stack states.

nv0
��	 ...nvn@@I

nvs
@@R
b nve
��	

-

Fig. 8. Loop based analysis

Let us consider the directed acyclic graph D produced by
removing the back edges and the set of back edges B. For
each b ∈ B holds:
• Each back edge b ∈ B lies on one loop.

• There are possibly several forward paths ve → ... →
vs → ve in the loop.

Each forward path must have the same operand stack state
in the last vertex, because all paths are acyclic and they pass
the back edge b. All acyclic paths have already been verified
by the point 1 of the theorem.

The back edge b is a single back edge of the vertex vs,
because all other edges are outside the loop and must belong
to the DAG. So all states of other incoming edges have been
already verified by the point 1 of the theorem.

If the state of the vertex ve would not be equal to the states
of vertices v0...vn then the stack would be inconsistent.

The following algorithm for the loop based analysis is
derived from the theorem 3.2. The algorithm executes the'

&

$

%

/* D = (V,E′) is a directed acyclic graph. B is a */
/* set of back edges, B * E′. The back edge b ∈ B, */
/* b = {vs, ve}, where vs, ve ∈ V . */
LOOP ANALYSIS (D, B)
1 for (each back edge b ∈ B){
2 for (all incoming edges l of ve){
3 v = otherend(l, ve);
4 if(v.stack 6= vs.stack) {
5 print ERROR;
6 } } }

Fig. 9. Loop based analysis algorithm

operand stack comparison for all back edges b ∈ B identified
in the previous step of the analysis. The runtime complexity
for this analysis is in O(n +m) where n is the number of
vertices and m number of arcs in the CFG.

Bytecode Stack size

0 iload_1; 1

1 iload_2; 2

2 iconst_1; 3

3 iadd; 1

4 goto -4; 1

nv0
?nv1
?

��3

QQ

nv2
?nv3
?nv4

Fig. 10. Loop based analysis example

Fig. 10 shows an example where the loop based analysis
tracks down the error in the loop in which a new integer
stays on the stack after each loop execution.

IV. VISUALIZATION OF THE OPERAND STACK

The simplest way to visualize the operand stack is to cal-
culate the state of the operand stack in each instruction of a
method and display the complete list of instructions with cor-
responding states. The calculation of the operand stack states
is performed by the algorithm ASSIGN OPSTACK STATES
in section III-A fig. 1. The simple representation of the
operand stack is shown in fig. 3, section III-A. To make the

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

operand stack content more comprehensible we have defined
a grammar (see appendix A) which includes variable types
and names, logical combination and arithmetical operations
and developed an algorithm to transform the control flow
graph of a method to a tree representation.

'

&

$

%

/* G is a control flow graph, G = (V,E). */
TRANSFORM GRAPH (G)
1 Gb = createBasicBlockGraph(G);
2 removeBackEdges(Gb);
3 T = createTree(); /* T is an empty tree. */
4 for (all start basic blocks B ∈ Vb)
5 CREATE TREE(B, T);
6 };

CREATE TREE (B, T)
1 add a new tree node n for B to T ;
2 for (all vertices v ∈ B){
3 add v as child of n to the tree T ;
4 }
5 for (all outgoing args l of B){
6 CREATE TREE(otherend(l, B), T);
7 }

Fig. 11. Transformation algorithm for the operand stack representation

The algorithm TRANSFORM GRAPH in fig. 11 creates
a basic block graph Gb for the given control flow graph G
(line 1), removes the back edges in Gb (line 2) and starts
a Depth First Search from each start basic block B, where
indegree(B) = 0 (line 4). For each basic block B a new tree
node n is created (Routine CREATE TREE: line 1) and all
vertices of a basic block B (each vertex represents a bytecode
instruction) are added as children of B to the tree T (Routine
CREATE TREE: lines 2-4). The bytecode instruction tree T
is used to represent the operand stack structure in a view.

Fig. 12. Operand stack representation

An example representation of a Java bytecode is shown in
fig. 12.

V. DYNAMIC OPERAND STACK VISUALIZATION AND
VERIFICATION

The static representation of the operand stack can be
extended by the dynamic visualization. The dynamic rep-
resentation can only be created during the execution of the
program, usually during a debugging session. If the operand
stack state at the certain point of the execution has to be
analyzed, the task to represent the operand stack is trivial.
For this purpose the values on the stack just have to be read
from the execution environment, if the runtime environment
supports the access to the operand stack. Unfortunately, the
JVM-implementation, based on the JVM-specification [2],
does not provide any access to the operand stack via debug-
ging interface [3]. Nevertheless, it is possible to visualize the
operand stack values by using the local variables.

Let us consider the line a = b + c; from the following
Java source code example and the corresponding bytecode:

int a, b, c;
... ...
a = b + c; iload_2;

iload_3;
iadd;
istore_1;

... ...

LocalVariableTable:
Slot Name Signature
1 a I
2 b I
3 c I

Fig. 13. Source code example and the corresponding bytecode

The iadd instruction adds two int values together.
It requires that the int values to be added be the top
two values of the operand stack, pushed there by previous
instructions iload_2 and iload_3. Since the instructions
iload_2 and iload_3 are linked to the variables b and c,
their values can be obtained via debugging interface. Both
of the int values are popped from the operand stack by
executing the iadd instruction and their sum is pushed back
onto the operand stack. For visualization purposes the result
can be calculated or represented as an arithmetic chain.

Bytecode Stack
...
iload_2; b = 3
iload_3; b = 3, c = 1
iadd; b + c = 4
istore_1;
...

Fig. 14. Dynamic operand stack visualization

The operand stack visualization task becomes more com-
plicated if the complete stack history has to be visualized.
To record the complete history the operand stack states
after execution of each instruction have to be stored. If the
bytecode contains loops, the data record can be very large.
On the other hand if the bytecode is not executed step by step,

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

a part of the operand stack history is missing. The operand
stack state in this case can not be represented. The next sub-
sections describe how to record and verify the operand stack
history efficiently.

A. Operand Stack Visualization of Loops

We assume that the bytecode is executed step by step, and
the state of the operand stack is logged for each instruction.
Let be V the set of bytecode instructions of a method and
R the set of the operand stack records. In order to keep the
memory allocation linear, the number of records have to be
less than or equal to the number of instructions.

|R| ≤ |V | (2)

Let be V ′ ⊆ V the set of loop instructions. So the number
of the operand stack records can be calculated as

|R| = n× |V ′|, (3)

where n the number of the loop iterations. As the number of
iterations cannot be predicted, the length of the stack history
may be very large.

Our proposed solution is to store the state of the stack only
once per instruction to satisfy the condition of the equation
2. An additional counter stores information how often an
instruction has been executed. According to the theorem 3.2

Bytecode Iterations Stack Stack
size

0: iload_1 10 1 a
1: iload_2 10 2 a, b
2: if_icmpge 11 10 0 -
5: iinc 1, 1 9 0 -
8: goto 0 9 0 -

11: return 1 0 -

Fig. 15. Example of the operand stack representation with a loop.

(subsection III-E), the state of the operand stack in each
iteration must be the same with the prerequisite that the
bytecode is free of errors. To visualize potential errors the
stored operand stack state is compared with the current state
in the next iteration. If the states are not equal in terms of
size and content, an error is reported. This makes it possible

Bytecode Iterations Stack Stack
size

0: iload_1 1 1 a
2 ERROR 1 | 2

ERROR a | a, a
1: iload_2 1 2 a, b
2: if_icmpge 11 1 0 -
5: iload_1 1 1 a
8: goto 0 1 1 a

11: return - - -

Fig. 16. Example of the operand stack representation with a loop.

to determine which iteration of the loop has caused the
error. In fig. 16 an example of an error is presented. After
the first iteration the variable a, pushed by the instruction
5: iload_1, remain on the stack. The comparison of

the states during the second iteration detects a difference.
Such an error can of course be found with the static loop
analysis. However, if the bytecode is generated at runtime,
such errors can be only found by dynamic stack analysis.

B. Breakpoint Handling

For debugging purposes, the program is not always exe-
cuted step by step. The developer sets a breakpoint, at which
the program execution will be stopped. If the runtime envi-
ronment, such as JVM [2], [3], allows only limited access to
the operand stack, it is not possible to represent the complete
content of the operand stack. Our proposed solution is to
combine the static representation of the operand stack with
the available and accessible operands. The reconstruction
algorithm is represented in fig. 17. The input of the algorithm'

&

$

%

/* G is a control flow graph, G = (V,E). */
DYN OPSTACK REPRESENTATION (G, vs)
1 removeBackEdges(G);
2 V ′ = backwardsDFS(v); /* V ′ ∈ V */
3 G′ = createSubgraph(G,V ′);
4 ASSIGN OPSTACK STATES(G′);
5 DYN OPSTACK(G′, v);

DYN OPSTACK (G, v)
1 if (dynamic opstack state of v not available){
2 return;
3 }
4 replace static by dynamic values;
5 for (all incoming args l of v){
6 v′ = otherend(l, v);
7 DYN OPSTACK(G, v′);
8 }

Fig. 17. Algorithm for the dynamic operand stack representation

DYN OPSTACK REPRESENTATION is a control flow graph
G representing a method and a vertex vs ∈ V representing
the instruction, where the execution of the code has been
stopped.

The algorithm removes the back edges in the graph G (line
1) to create a DAG. The routine backwardsDFS (line 2) is
a backward Depth First Search which returns the set of all
vertices V ′ (bytecode instructions) reachable via backward
paths from the vertex v. In the line 3 a subgraph of G
containing the vertices from V ′ is created. The algorithm AS-
SIGN OPSTACK STATES (fig. 1 from the subsection III-A)
assigns the static operand stack states to all vertices from the
set V ′. The routine DYN OPSTACK starts the replacement
of statically calculated operand stack states by the available
dynamic values as described at the beginning of the section
V. The routine is called recursively and it stops as soon as
the dynamic value of the operand stack is not available or
can not be calculated.

Let us consider the Java source code example in fig. 18.
The corresponding bytecode is presented in fig. 19. The
bytecode contains three operands representing the variables
a, b and c. Lets us assume that a breakpoint is set in line
return c;. The program stops at he bytecode address 15

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

int c = a < b ? a + b : b - a;
return c;

Fig. 18. Source code example.

and we are able to read the current values of the operands
a, b and c via Java debugging interface.

int c = a < b ? 0 iload_0; /* a */
a + b : 1 iload_1; /* b */

2 if_icmpge 9;
5 iload_0; /* a */
6 iload_1; /* b */
7 iadd;
8 goto 6;

b - a; 11 iload_1; /* b */
12 iload_0; /* a */
13 isub;
14 istore_2; /* c */

return c; 15 iload_2; /* c */
16 ireturn;

Fig. 19. Bytecode to source code example in fig. 18.

To visualize the operand stack the algorithm
DYN OPSTACK REPRESENTATION in fig. 17 executes
following steps. The input is a Graph G containing all
instructions of the bytecode V and the instruction vs with
the bytecode address 15 at which the program has been
stopped. The line 1 is ignored because for simplicity our
example does not contain any loops. The backwardsDFS
procedure collects backwards all from vs reachable
instructions and stores them in V ′. The set V ′ includes all
instructions of V accept the last one with bytecode address
16. Based on V ′ a subgraph G′ is generated. The algorithm
ASSIGN OPSTACK STATES from the subsection III-A, fig.
1, will assign statically the following operand stack states
(fig. 20). The column Stack before represents the state of

Bytecode Stack Stack
before after

0 iload_0; <empty> a
1 iload_1; a a, b
2 if_icmpge 9; a, b <empty>
5 iload_0; <empty> a
6 iload_1; a a, b
7 iadd; a, b <a + b>
8 goto 6; <a + b> <a + b>

11 iload_1; <empty> b
12 iload_0; b b, a
13 isub; b, a <b - a>
14 istore_2; <a + b> <empty>

| <b - a>
15 iload_2; <empty> c

Fig. 20. Static operand stack visualization of the bytecode in fig. 19.

the operand stack before the bytecode instruction has been
executed and the column Stack after the state of the operand
stack after the execution of the bytecode instruction. The
recursive routine DYN OPSTACK starts from the vertex vs

representing the bytecode instruction 15 iload_2 and
visualize following values. For example the obtained values
of the operands a, b and c are: a = 3, b = 2 and c = 5.
The dynamic visualization of the operand stack is presented
in fig. 21. The value of the operand c is obtained from the

Bytecode Stack Stack
before after

0 iload_0; <empty> a=3
1 iload_1; a=3 a=3, b=2
2 if_icmpge 9; a=3, b=2 <empty>
5 iload_0; <empty> a=3
6 iload_1; a=3 a=3, b=2
7 iadd; a=3, b=2 <a + b>=5
8 goto 6; 5 5

11 iload_1; - -
12 iload_0; - -
13 isub; - -
14 istore_2; 5 <empty>
15 iload_2; <empty> c=5

Fig. 21. Dynamic operand stack visualization of the bytecode in fig. 19.

execution environment. So the stack of the instruction with
the address 15 and 14 is visualized. To visualize the stack
states in the if branches the arithmetic operation has to be
interpreted and two equations have to be solved.

a+ b = c
b− a = c

}
3 + 2 = 5 true
3− 2 = 1 false

After solving the equations we can exclude one branch and
replace the mathematical operations by the calculated values
as presented in fig. 21.

If not all operand stack states can be dynamically visual-
ized the mix of the static and dynamically calculated states
can be represented.

VI. EXPERIMENTAL RESULTS

As stated in section III-A the more combinations of se-
quential branches are contained in the bytecode of a method,
the more memory needs to be allocated. In practice, excessive
memory allocation happens very rarely. We analyzed over
500 methods from different Java classes of the Standard Java
Library with the implementation based on the Dr. Garbage
tools [8], [7]. The most representative methods are listed in
the table I which have been selected by the following criteria:
• methods with a large number of bytecode instructions
• methods that contain a large number of if or switch

instructions
• methods with a large stack size
• methods that hold a decent amount of stacks

The column NS in the table I represents the number of stack
objects generated for a method. Each stack object is assigned
to a bytecode instruction and represents the current state of
the stack in this instruction. The memory consumption would
stay linear if the number of stack objects NS is less or equal
the number of bytecode instructions NI in a method.

NS ≤ NI (4)

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

TABLE I
EXPERIMENTAL RESULTS: MS - MAX STACK SIZE, MC - MAX NUMBER OF STACK COMBINATIONS, NS - NUMBER OF STACKS, NE - TOTAL NUMBER

OF STACK ENTRIES, NI - NUMBER OF BYTECODE INSTRUCTIONS, IF/S - NUMBER OF IF/SWITCH INSTRUCTIONS

No. Library Package Class Name Method Name MS MC NS NE NI IF/S

01 classes.jar sun.awt.geom Curve compareTo() 31 1 412 913 508 25/0

02 classes.jar com.sun.imageio.metadata XmlChars isCompatibilityChar() 2 2 210 297 309 85/1

03 j3dcore.jar javax.media.j3d Font3D triangulateGlyphs() 6 2 1847 3509 2462 84/0

04 classes.jar java.util SimpleTimeZone makeRulesCompatible() 4 1 153 332 198 8/4

05 vecmath.jar javax.vecmath Matrix3d compute svd() 10 1 153 332 1558 19/0

06 j3dcore.jar javax.media.j3d Alpha value() 5 1 660 1413 775 39/0

07 classes.jar sun.tools.tree BinaryExpression costInline() 5 4 40 88 26 2/0

08 classes.jar sun.io ByteToCharUTF8 convert() 7 1 427 975 522 21/0

09 classes.jar javax.print ServiceUI printDialog() 10 1 149 344 199 19/0

The number of generated stacks could be less than the
number of bytecode instructions in the method, because
not all instructions operate with the stack or greater
if the stack combinations according the algorithm AS-
SIGN OPSTACK STATES in fig. 1, section III-A have to be
calculated.

The column NE in the table I represents the total number
of stack entries calculated as defined in equation 5, where
BI the list of bytecode instructions.

NE =
∑
e∈BI

e.stack.size() (5)

To make the collected results relative and to show how
the number of generated stacks and stack entries depend on
the number of instructions we calculate for each method the
relative value Rns as a ration of the number of stacks NS
to the number of bytecode instructions NI (equation 6)

Rns =
NS

NI
100% (6)

and the relative value Rne as a ration of the number o
stack entries NE to the number of bytecode instructions NI
(equation 7).

Rne =
NS

NI
100% (7)

The calculated values are summarized in the table II and
presented in the chart in fig. 22. The ration of the number

TABLE II
EXPERIMENTAL RESULTS: RELATIVE VALUES

No. NS NE NI Rns Rne

1 412 913 508 81% 178%
2 210 297 309 68% 96%
3 1847 3509 2462 75% 143%
4 153 332 198 77% 130%
5 1318 3642 1558 85% 234%
6 660 1413 775 85% 155%
7 40 88 26 154% 338%
8 427 975 522 82% 187%
9 149 344 199 75% 173%

of generated stacks to the number of bytecode instructions
Rns is under 100% for all methods except the method
BinaryExpression.costInline(). According the table I the max
number of stack combinations for this method is 4 and this

is the reason why the Rns value is higher. Nevertheless the
value of 154% is acceptable. The memory consumption is
still linear, because O(2n)⇒ O(n), where n the number of
bytecode instructions.

m1 m2 m3 m4 m5 m6 m7 m8 m9
0

100

200

300

Rns Rni

Fig. 22. Ration of the number of stacks NS to the number of bytecode
instructions NI

The ration of the number of generated stack entries to the
number of bytecode instructions Rne is much more higher
than the Rns value, because stack objects may contain more
than one entry. The number of stack entries NE depends on
the max stack size of a method. Although the Rns value for
the method BinaryExpression.costInline() is about 350% the
memory allocation stays linear. In our implementation the
stack entries are reused and only the references are stored
in stack objects. In this way the number of allocated stack
entries is always equal or less the number of stack objects.
The fig. 23 presents an example of the stack allocation.

S1 SE1

S2 SE1, SE2

S3 SE1, SE2, SE3

S4 SE1, SE2

S5 SE1

Fig. 23. Stack allocation

The number of stack objects in this example is five and
the number of stack entries is three. The developer have to
spend attention on implementation details because in case if
all stack entries are stored as separate objects the memory
allocation would grow. The number of stack entries fro

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

the example above would get the value nine, according the
equation 5.

NE = S1.size+...+S5.size = 1+2+2+3+2+1 = 9 (8)

The absolute runtime time and memory allocation values
of the implemented algorithms are presented in table III.

TABLE III
EXPERIMENTAL RESULTS: TIME AND MEMORY ANALYSIS

No. Time in ms Memory in byte

1 524 1280416
2 534 953152
3 821 6265320
4 550 730304
5 742 4100952
6 598 2261472
7 622 399048
8 629 1636984
9 615 835880

The experimental results have shown that despite a number
of conditional branch operators or stack entries along with
method instructions, the amount of stack combinations stay
in limit. The run time and memory allocation measurements
shows as well that the implemented algorithms are suitable
for usage in developer environments.

VII. CONCLUSION

This paper describes new algorithms for operand stack
analysis and visualization based on graph theoretical meth-
ods. Although the algorithms partially execute trivial operand
stack verifications, they can be obtained as a supplement to
the well known algorithms. The operand stack visualization
algorithms presented in this paper are the first that can
represent the operand stack in such a comprehensive way.

Experimental results showed that the performance and
memory consumption do never deviate from linearity, al-
though the theoretical memory consumption has exponential
complexity. It is obviously possible with the synthetically
generated code to reach the limits, but such code constructs
do not occur in practice. We are convinced that a lot of
new tools can be designed and implemented based on these
algorithms and results

APPENDIX A
OPERAND STACK CONTENT GRAMMAR

<Stack> ::= <StackEntry>{"," <StackEntry>}{"|" <Stack>}
<StackEntry> ::= <type> <value>
<type> ::= "B" | "C" | "D" | "F" | "I" | "J" | "S" | "Z"

| "L" | <array type>
<array type> ::= "[" { "[" } <type>
<value> ::= <variable name> | <constant> | <array name>

| <math operation>
<variable name> ::= <char>{<char>}
<char>::= any one of the 128 ASCII characters, but not
any of special characters [,], (,), \, /, ;, ... or
the space character
<constant> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

<float_constant> {<constant>}
<array name> ::= <variable name> [<numeric> |

<variable name>]
<float_constant> ::= <constant> "." <constant>
<math operation> ::="("<value> <operation> <value>")"
<operation> ::= "+" | "-" | "*" | "/" | "%" | "ˆ" | "|"

| "<<" | ">>"

ACKNOWLEDGMENT

The authors would like to thank the Dr. Garbage Project
Community for supporting the implementation of proposed
algorithms and tools [7].

REFERENCES

[1] Sergej Alekseev, Andreas Karoly, Duc Thanh Nguyen and Sebastian
Reschke, Graph Theoretical Algorithms For JVM Operand Stack Visu-
alization And Bytecode Verification, Lecture Notes in Engineering and
Computer Science: Proceedings of The World Congress on Engineering
and Computer Science 2013, WCECS 2013, 23-25 October, 2013, San
Francisco, USA, pp12-17

[2] Tim Lindholm, Frank Yellin, Gilad Bracha and Alex Buckley,
The Java R© Virtual Machine Specification, Java SE 7 ed., 2013,
http://docs.oracle.com/javase/specs/jvms/se7/html/

[3] Oracle and/or its affiliates, The Java R© Platform
Debugger Architecture (JPDA), Java SE 7 ed., 2013,
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/

[4] Bruce Ian Mills, Theoretical Introduction to Programming, Springer
2006, ISBN 978-1-84628-263-8

[5] Adobe Systems, PostScript language reference. 3.Edition , Addison-
Wesley 1999, ISBN 0-201-37922-8

[6] Leo Brodie, Starting FORTH: an introduction to the FORTH language
and operating system for beginners and professionals, Prentice-Hall
1987, ISBN 0-201-37922-8

[7] Sergej Alekseev, Peter Palaga and Sebastian Reschke, The Dr. Garbage
Tools Project, 2013, http://www.drgarbage.com

[8] Sergej Alekseev, Victor Dhanraj, Sebastian Reschke, and
Peter Palaga, Tools for Control Flow Analysis of Java
Code, Proceedings of the 16th IASTED International
Conference on Software Engineering and Applications, 2012,
http://www.actapress.com/PaperInfo.aspx?paperId=454811

[9] Günther Stiege, Graphen und Graphalgorithmen, Shaker; Auflage: 1,
2006, ISBN 3832251138

[10] Donald E. Knuth, The Art of Computer Programming, Addison Wesley,
1997, ISBN 0201896834

[11] Xavier Leroy, Java bytecode verification: an overview, Computer
Aided Verification, CAV 2001, Vol. 2102 of Lecture Notes in Computer
Science, pages 265-285. Springer, 2001.

[12] Xavier Leroy, Java bytecode verification: algorithms and formaliza-
tions, Journal of Automated Reasoning, Vol. 30 Issue 3-4, Pages 235
- 269, 2003, http://gallium.inria.fr/ xleroy/publi/bytecode-verification-
JAR.pdf

[13] Stephen N. Freund, John C. Mitchell, A Type System for
the Java Bytecode Language and Verifier, Journal of Auto-
mated Reasoning, Vol. 30 Issue 3-4, Pages 271 - 321, 2003,
http://theory.stanford.edu/people/jcm/papers/03-jar.pdf

[14] Gerwin Klein, Tobias Nipkow, Verified lightweight bytecode verifica-
tion, Concurrency and Computation: Practice and Experience, Vol. 13,
Pages 1133-1151, 2001

[15] Gerwin Klein, Tobias Nipkow, Verified bytecode verifiers, Journal
Theoretical Computer Science, Vol. 298, Issue 3, Pages 583 - 626,
2003, http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2003/klein.pdf

[16] Gerwin Klein, Martin Wildmoser, Verified Bytecode Subroutines, Jour-
nal of Automated Reasoning, Vol. 30 Issue 3-4, Pages 363 - 398, 2003,
http://www.cse.unsw.edu.au/ kleing/papers/KleinW-TPHOLS03.pdf

[17] Eva Rose, Lightweight Bytecode Verification, Journal of Automated
Reasoning, Vol. 31, Issue 3-4, Pages 303-334, 2003

[18] Hyun-il Lim, Taisook Han, Analyzing Stack Flows to Compare Java
Programs, EICE Transactions 95-D(2), Pages 565-576, 2012

[19] Alessandro Coglio, Simple verification technique for complex Java
bytecode subroutine, In Proc. 4th ECOOP Workshop on Formal Tech-
niques for Java-like Programs, 2002

[20] Robert Stärk, Joachim Schmid, and Egon Börger, Java and the Java
Virtual Machine - Definition, Verification, Validation, Springer, 2001.

[21] R. Stata and M. Abadi, A type system for Java bytecode subroutines, In
Proc. 25th ACM Symp. Principles of Programming Languages, Pages
149–161. ACM Press, 1998.

[22] Martin Wildmoser, Subroutines and java bytecode verification, Mas-
ter’s thesis, Technische Universität München, 2002.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_06

(Advance online publication: 13 February 2014)

__

