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Abstract—Mashup platforms are popular because they pro-
vide end-users with a powerful tool to query the Web. The
majority of these platforms are designed using centralized archi-
tectures or loosely coupled distributed architectures. The lack
of structure in these platforms makes searching for mashups an
expensive task. In this paper we present two structured peer-to-
peer architectures for mashup platforms, namely, MashChord
and MashCAN. These platforms increase the efficiency of
searching for mashups. In addition, our design makes sure
a mashup is hosted at several peers which strengthens the
reliability of the system. Moreover, execution offloading feature
is added to our design to support the functionality of each peer
in the system.

Index Terms—mashups, peer-to-peer, Web-2.0, structured,
search, Chord, CAN.

I. INTRODUCTION

TODAY’S Web focuses on topics such as semantic
web [1], [2] and social networks [3]. In these types

of applications, one of the most important features is per-
sonalization which is the hype of Web 2.0. One of Web 2.0
applications that offers personalization is mashup platforms.
Mashup platforms empower end-users with a useful tool to
search the Web in a personalized manner. They provide end-
users with an interface to design data mashups. A mashup
is basically a tree hierarchy that starts by fetching data from
several data sources across the Web and proceeds by refining
this data by using operators such as filter and truncate and
ends by dispatching final result to end-user. One of the most
popular mashup platforms is Yahoo Pipes [4]. An example
of a mashup is shown in Figure 1 which fetches data from
sport feeds, then filters the data based on containment of the
term ’Rafa Nadal’.

Mashup platforms support personalization because they
enable each end-user to create his own mashups. This is
unlike web services which are designed for groups of people.
Therefore, the number of mashups that a mashup platform
hosts is expected to be very high. As a consequence, scalabil-
ity issues arise for mashup platforms which requires careful
attention.

Two existing architectures for mashup platforms are
loosely distributed architecture and centralized architecture.
Both architectures suffer from few drawbacks. In a loosely
distributed architecture, peers of the network provide capa-
bility of designing and executing mashups. End-user uses
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this capability to design mashups of his own need. The
advantage of using such an architecture is distributing load
between network peers which increases the scalability of
the system. However, the way communication takes place in
loosely distributed architecture is by exchanging messages
using flooding or some sort of random walks. This is an
inefficient way of communication because if a user at one end
of the network is looking for a mashup that exists at far end
of the network, then messages have to be exchanged between
neighbors gradually until the whole network is covered and
the mashup is found. This is huge amount of messages
needed for one search attempt. The problem exacerbates if
the network is facing high traffic of search attempts.

Centralized architectures consist of one server which has
the capability of designing and executing mashups. So, end-
users use their machines to connect to this server, design
and execute their mashups. The positive points of using
this architecture is simplicity and a direct communication
between client and server which results in a cheap search
process. But, the system might fail if something wrong
happens to the centralized server. In addition, the server
might not be able to handle large number of users connecting
to it. As a consequence, this architecture suffers from low
reliability and scalability.

To overcome these problems, we extend our work in [5] by
providing MashChord and MashCAN which are two designs
for mashup platforms based on two popular peer-to-peer
architectures, namely, Chord and CAN. Adding structure to
a mashup platform increases its reliability and scalability. In
addition, we add mashup execution offloading as a mean of
relieving load on each peer in the network.

II. LITERATURE REVIEW

Our system represents mashup platforms over structured
peer-to-peer topology. Therefore, our literature review will
discuss the two aspects of mashup platforms and structured
peer-to-peer networks.

A. Mashup Platforms

Mashup platforms are becoming very popular Web 2.0
applications. They have been investigated in literature. One
famous mashup platform is Yahoo Pipes [4]. It is a platform
that enables end-user to build mashups by providing a set
of operators such as fetch, filter, and sort operators. The
mashups built using Yahoo Pipes extract data from several
types of data sources such as RSS and Atom feeds. Mash-
Maker [6] is a mashup platform that enables end-users to
extract data sources and populate them in a visual manner.
Marmite [7] is a tool that helps end-users to aggregate several
data sources and direct the end result to other files. This tool
is implemented as a Firefox plug-in. MARIO [8] enables
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Fig. 1. Example of a mashup that which includes fetch, union, and filter
operators

end-users to build mashups via choosing combination of
tags from a cloud. In addition, MARIO executes mashups
using an efficient execution plan. Karma [9] is a mashup
platform that provides end-user with examples of mashups
which he can alter to create his own mashups. Presto [10]
provides a visual interface that facilitates the creation of
secure enterprise mashups. DAMIA [11] discusses data ag-
gregation for situational application. Jung [12] enables end-
users to collaborate in order to build mashups. Di Lorenzo et
al. [13] design a scheme that can be used to compare mashup
platforms. The previous platforms rely on a centralized
server architecture which makes them vulnerable against high
workloads and that causes scalability issues. On the contrary,
our system adopts a distributed model which avoids the
single point of failure issue.

B. Structured Peer-to-Peer Networks

Peer-to-peer network is a well established area in lit-
erature. The main two types of them are Structured and
Unstructured peer-to-peer networks. We refrain from using
the unstructured topology because it uses flooding techniques
as a search mechanism. Although the search process has
been improved using for example random walks; this type
of a topology still requires expensive search process. We
use structured peer-to-peer topology in MashChord. Some
of the most popular structured peer-to-peer platforms are
Chord [14], CAN [15], and Pastry [16]. Chord [14] is a key
lookup protocol that works by having a logical structured
arrangement of peers and resources on a virtual ring topol-
ogy. A hash function(SHA1) is used to generate identifiers
for peers and resources. More information about Chord is
provided in the next section because we adopt its topology
and protocol in our work. CAN [15] is another structured
peer-to-peer key lookup system. CAN arranges peers and
resources in a virtual dimensional coordinate space such that
each peer resides in a zone specific to it. Therefore, when a
resource is mapped to a given zone, the peer responsible of
that zone is the one that hosts and maintains that resource.
Pastry [16] is a similar work to Chord where each peer
is assigned a unique identifier from 128 bit space and
Pastry protocol routes each message and key to the nodeID
numerically closer to the given message key. Structured peer-
to-peer networks can be used in different domains such as
in [17] which surveys simulators built on top of structured
and unstructured peer-to-peer networks. Another work [18]
proposes a scheme that converts static network topology
into a dynamic one built on top of structured peer-to-peer
network. OE-P2RSP [19] is a structured peer-to-peer system
built on top of Pastry. It adds enhancements over Pastry

such as avoiding centralized object ID generation. It also
uses objects group to make sure that objects that belong to
the same group reside on the same node. The work in [20]
targets the problem of free riding which happens when users
make use of the peer-to-peer network without contributing
with resources to the network.

Our work combines mashup platforms with structured
peer-to-peer networks in order to come up with mashup plat-
forms that benefit from efficient search process of structured
peer-to-peer network and also benefit from distributed struc-
ture that avoids single point of failure in the system. These
features fit well with the stringent scalability requirements
of mashup platforms.

III. MASHUP REPRESENTATION

Each mashup is considered a tree of operator execution.
This tree starts by fetch operators that fetch data from data
sources distributed over the web. Then other operators such
as filter, truncate, and sort operators process and refine the
fetched data. After that, the final result is provided to the
end-user.

Each mashup has a string representation in the system.
This representation results from concatenating the repre-
sentation of the operators that constitute the mashup. For
example, the mashup in Figure 1 consists of 4 operators.
The fetch operator to the left is represented as ’11’ where
’11’ is the ID of the data source ’Google News’. The fetch
operator to the right is represented as ’10’ where ’10’ is
the ID of ’Yahoo Sports’ data source. The fetched data are
combined using a union operator which has the representa-
tion ’SU |11|MU |10|EU ’ where SU,MU,EU are separators
between the two combined data sources ’11’ and ’10’. The
combined data is fed to a filter operator that filters data based
on title containing keyword ’Rafa Nadal’. The filter operator
is represented as ’15|07|30|Rafa Nadal’ where ’15’ is the
ID of the filter operator, ’07’ is the ID of ’title’ property, ’30’
is the ID of ’contains’ operation, and ’Rafa Nadal’ is the
keyword on which filtering is executed. The representation
of the operators in this example is shown in Figure 2. We
also assign a representation for each subtree in mashups.
This representation is the concatenation of representation of
operators that are part of the subtree. In our example we have
two subtrees. The first one consists of the two fetch operators
in addition to the union operator. The second subtree is
the whole mashup. The representation of the first subtree is
’SU |11|MU |10|EU ’. The representation of the second sub-
tree is ’SU |11|MU |10|EU#15|07|30|Rafa Nadal’ where
the # symbol is used as a separator between the union and
the filter operator representations. The representation of each
subtree is shown in Figure 3.

IV. STRUCTURED P2P MASHUP ARCHITECTURES

In this section, we explain how to design MashChord and
MashCAN which are mashup platforms that we build on top
of two types of peer-to-peer architectures, namely, Chord and
CAN (Content Addressable Network).

A. MashChord

In this subsection, we show the design of our mashup
platform over Chord structured peer-to-peer network. First,
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Fig. 2. Representation of each operator of the mashup in Figure 1

Fig. 3. Representation of each subtree of the mashup in Figure 1

we discuss the key features of Chord topology and protocol.
Second, we provide the details of MashChord platform and
how mashups are mapped to peers.

1) Chord: The first mashup platform we present is based
on Chord [14]. Chord protocol arranges peers and resources
on a virtual ring. The arrangement occurs by using SHA1
hash function. The hash function receives peer IP address
as an input and it produces an identifier for that peer.
Similarly, the hash function takes resource key as an input
and it generates an identifier for that resource. The resulting
identifier of a peer represents its location on the virtual ring.
The concept ’successor’ is important in Chord. The successor
of an identifier ’k’ is the peer with identifier ’k’ or the peer
that immediately follows ’k’ on the ring (clockwise). For
example, in Figure 4 successor(2)=2 because there is a peer
with identifier 2. Also, successor(6)=0 because there is no
peer with identifier 6 and the peer that immediately follows
identifier 6 on the ring (clockwise) is 0. Given the concept
of ’successor’, the way resources are assigned to peers is
simple. A resource ’k’ is assigned to a peer successor(k).
For example, resource with identifier 3 is hosted at peer 4
because successor(3)=4.

Searching for a given resource happens in the following
way. Each peer has a finger table which contains several
entries of the form {peer, peer interval, successor of peer}.
Each entry simply specify three things for a given peer. First,
a peer identifier. Second, what interval this peer covers of the
ring. Third, what is the successor of that peer. In Figure 4,
suppose peer 2 is looking for resource 5. Using its finger
table, peer 2 tries to find out successor(5). Unfortunately,
the successor of identifier 5 is not found among finger table
entries. Therefore, peer 2 finds the interval that contains 5
in the finger table. This interval is [4,6) and it is found in
the second entry of the finger table. Based on that entry we
see that successor(4)=4. Since 4 precedes 5, peer 2 contacts
peer 4 asking for successor(5). Now, finger table of peer 4
indicates that successor(5)=0. Therefore, peer 4 informs peer
2 that peer 0 is the peer that is supposed to host resource

5 if it exists. As a result, peer 2 contacts peer 0 to find out
whether it hosts resource 5. Accordingly, peer 0 returns the
answer of the search query (Yes/No) to peer 2.

This is a brief description of Chord protocol that we adopt
in our work. More details about Chord can be found in [14].

2) MashChord Mechanism: Our system consists of sev-
eral peers. These peers are logically connected via a Chord
ring as described in subsection IV-A1. In our platform, each
peer has mashup components that enable the peer end-users
to fully design, execute, and host mashups. The mashup
execution component is responsible of executing mashups.
The mashup user interface component is used by end-users
to design new mashups and see the result of executing
mashups. The offloading component coordinates with the
mashup execution component to manage executing part of
mashups on other peers. The search component is responsible
of following the structure of the network to find mashups that
satisfy end-users criterion.

The resources of our system are mashups. As explained
in section III each operator/subtree of a mashup has a
string representation. We start by explaining how a string
representation is converted to a Chord identifier. The rep-
resentations of operators/subtrees of mashup in Figure 1
are shown in Figures 2 and 3. First, a string representa-
tion is passed as an input to SHA1 hash function which
results in a hexadecimal representation. Second, we supply
the hexadecimal representation to a simple function which
converts it to a decimal number. Third, the decimal number
is divided by 2m where m is the number of bits used to
represent Chord identifiers. The remainder of the division
process would be a Chord identifier. For example, the string
representation of subtree1 is found in Figure 3. Supplying
this representation to SHA1 function results in a hexadecimal
number which is then converted to a decimal number. In our
Chord example, we have 8-identifier Chord ring (0–7) which
can be represented by at most 3 bits (000–111). Therefore,
in our case m = 3. When the decimal number of subtree1
is divided by 23. The remainder of the division process is 6.
Accordingly, subtree1 is assigned the identifier 6. Calculating
the identifier of subtree1 is illustrated in Figure 5. Based
on the previous discussion, the identifier is generated based
on Equation 1 where ’R’ is the string representation of the
operator or subtree. The same process is repeated for each
operator/subtree of the mashup which results in identifiers
shown in the second column of Figure 6.

identifier = To Decimal(SHA1(R)) mod 2m (1)

Now, we describe the mechanism to host resources
(mashups) on peers of Chord ring. Regardless of Chord, the
first peer responsible of hosting a mashup is the same peer
at which the mashup is created. So, if an end-user at peer 0
created a mashup, that mashup would be hosted at the same
peer. As an initial solution, that mashup is hosted on another
peer in the network. This peer is decided as follows. As we
previously mentioned, the mashup string representation is
converted to a Chord identifier. Assume the resulting identi-
fier is ’k’. So, successor(k) gives us the identifier of the peer
responsible of hosting that mashup. This initial solution has a
major drawback which is the inability of our system to satisfy
partial matching queries. Usually, when an end-user executes
a search query, he issues a search query that finds mashups
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Fig. 4. A 8-identifier Chord ring with 3 peers

Fig. 5. Generating identifier 6 for subtrees1

containing certain subtree (Partial Matching). For example,
the mashup illustrated in Figure 1 has string representation
’SU |11|MU |10|EU#15|07|30|Rafa Nadal’. When this
representation is converted to a Chord key, the identifier 4 is
the result. Accordingly, successor(4)=4 which indicates that
peer 4 is going to host that mashup. Now suppose the end-
user at peer 2 is looking to find mashups containing subtree1
indicated in Figure 3. Clearly, the mashup in conversation
contains the desired subtree. So, this mashup is supposed to
be returned as a result of the search query. Unfortunately,
Chord protocol supports only exact matching queries. So,
when the mashup representation of the subtree1 is converted
to a Chord identifier, the resulting identifier is 6 and succes-
sor(6)=0 which indicates peer 0 (not peer 4 which actually
hosts the mashup).

This leads us to think of a variation of this scheme
which supports the partial matching operation. In the updated
scheme, we state that a mashup is hosted on the following
peers.

• The peer that is initially used to create the mashup.
• Each peer indicated by Chord protocol resulting from

mapping all operators/subtrees of the mashup.

We explain this in the following example. First, assume
the mashup in Figure 1 is created by peer 0 which in
turn hosts that mashup. In addition, that mashup contains 6
operators/subtrees shown in Figures 2 and 3. The mashup
representation for each operator/subtree is shown in the
same figures. We convert the string representation for each
operator/subtree to its corresponding Chord identifier. The
result is identifiers 3,4,5,5,6 and 6 shown in the first column
of Figure 6. Accordingly, successor(3)=4, successor(4)=4,
successor(5)=0, and successor(6)=0 which indicates that the

Fig. 6. Operators and Subtrees mapped to Chord identifiers

mashup in conversation is also going to be hosted at peers 0
and 4. The successor for each identifier of operators/subtrees
is found in the third column of Figure 6. Clearly, peer 0
is the peer on which the mashup is originally created, so,
the mashup is not going to be duplicated on the same peer.
Figure 7 shows that the mashup is hosted at peers 0 and 4.

Now, suppose the end-user at peer 2 issues a search
query looking for mashups that contain the filter operator
in Figure 1. The search process is performed as follows.

• The filter operator representation is converted to a Chord
identifier which is 5.

• Peer 2 searches its finger table looking for successor(5).
This information is not found in the finger table.

• Peer 2 finds that 5 falls in the interval [4,6) which is in
the second entry of its finger table.

• The second entry of the finger table shows that succes-
sor(4)=4. Since 4 precedes 5 on the Chord ring, peer 4
is contacted looking for successor(5).

• Peer 4 finger table shows that successor(5)=0. So, Peer
4 contacts peer 0 asking whether it hosts a mashup with
the desired filter operator.

• Peer 0 truly hosts such a mashup; and therefore a ’Yes’
answer combined with the mashup is sent to peer 2.

Since MashChord is built on top of Chord protocol.
Chord [14] states that a search process only requires
O(log N) messages where N is the number of peers in the
network. This is much cheaper cost compared to flooding
technique where number of messages increases exponentially
as search progresses. This is why depending on Chord search
mechanism makes searching for mashups in MashChord
efficient.

B. MashCAN

In this subsection, we show how can a peer-to-peer mashup
platform be implemented on top of CAN. We start by
explaining the basics of CAN protocol. Then, we demonstrate
how to apply it to our mashup platform.

1) CAN: The second mashup platform we introduce is
based on CAN [15]. CAN arranges peers and identifiers
on a virtual d-dimensional Cartesian coordinate space. For
simplicity, we will assume 2 dimensional coordinate space
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Fig. 7. Mapping process resulted in peers 0 and 4 hosting the mashup in
Figure 1

such as the one in Figure 8 in which we have 9 peers
occupying 9 zones. Each zone on the coordinate space can be
represented by its center point (x,y). A zone can be occupied
by only one peer. Notice that a neighbor peer for peer ’a’ is
a peer that shares at least part of 1 edge with peer ’a’. For
example, in the previous figure, neighbors of peer 7 are peers
0, 4, 5,and 8. Regardless of the technique used in assigning
a peer to a zone, if a new peer is to be placed in a zone
while that zone is already occupied, then the zone splits into
two zones such that the previous owner of the zone retains
half of the zone and the new peer occupies the other half.

The way peers and identifiers are assigned to zones is
as follows. One way to assign peers to zones is by simply
placing them randomly on zones. Another way is by using
a hash function for each dimension such that the values
coming from the hash functions represent a point in the
coordinate space which leads to a specific zone. For example,
given a 2 dimensional space, we have a hash function for
the x-coordinate and a hash function for the y-coordinate.
Each hash function takes peer IP address as an input and it
generates a value that maps to the designated coordinate. In
other words, for some new peer assume the output of the
first hash function is 3.0 and the output of the second hash
function is 5.0. This means that the peer will take control of
the zone in which the point (3.0,5.0) resides. This happens
to be the same zone that peer 4 already occupies. As a
consequence, that zone splits into two zones such that peer
4 retains half of the zone and the other peer takes over the
other half.

Now, peers will host resources and the way CAN maps
resources to peers is as follows. The same two hash functions
explained earlier will receive resource key as an input and
each hash function will generate the corresponding coor-
dinate value for that resource. Accordingly, in a 2 dimen-
sional space, assume the first hash function generates the x-
coordinate value 8.0 and the second hash function generates
the y-coordinate value 7.0. This means that the resource
in conversation will be hosted at the peer that controls the
zone in which the point (8.0,7.0) resides. According to the
previous figure this peer is 2.

The search process for a given resource occurs in the
following manner. First, it is important to know that each peer
in CAN keeps a routing table in which each neighbor peer
center point and coverage zone is saved. The search process
depends on a simple greedy approach to come closer to

Fig. 8. A 2 dimensional CAN space with 9 zones controlled by 9 peers

where the resource is hosted. Suppose that peer ’n’ initiated a
search for resource ’r’. peer ’n’ is represented by the center
point of its zone (x,y) and the resource ’r’ is represented
by coordinate space point (x1,y1). peer ’n’ computes the
Euclidean distance between point (x1,y1) and the center
point of each of the neighboring peers. Then peer ’n’ simply
forwards the search process to the peer in the zone that
resulted in the minimum distance because it is supposed to
be closer to the zone that hosts resource ’r’. This process is
repeated until the peer that is supposed to host resource ’r’
is reached.

2) MashCAN Mechanism: Our mashup platform consists
of several peers logically arranged via CAN. Each peer has
the capability of hosting, designing, and executing mashups.

In our implementation of MashCAN, we use a two dimen-
sional coordinate space for ease of representation. We utilize
SHA1 hash function for the x-coordinate and SHA256 func-
tion for the y-coordinate. We assume that each coordinate has
the range [0,10). In other words, peer and resource identifiers
takes a floating point number starting from zero and ending
at 10 exclusively. Also, we place peers randomly to their
zones. In our running example, we have 9 peers that control
9 zones which can be shown in Figure 8.

Now, we will explain how a resource key can be converted
to a CAN coordinate point in MashCAN.

• SHA1 and SHA256 hash functions will receive as input
the key for the subtree/mashup.

• The output of each hash function is a hexadecimal
number.

• Each hexadecimal number is converted to its corre-
sponding decimal equivalent.

• Each decimal number is divided by 10d−1 such that d
is the number of digits in the decimal number.

• This way each decimal number is converted to a floating
point number that falls in the interval [0,10).

As an example, Figures 9 shows how subtree1 key is
converted to x-coordinate value and Figure 10 shows the
same for y-coordinate value. In other words, converting
a resource key to x-coordinate and y-coordinate values is
computed based on equations 2 and 3 respectively. When
the same process is applied to each subtree of the mashup
in Figure 1, we end up with coordinate space points shown
in Figure 11. The same figure also shows the zone in which
each point resides.
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Fig. 9. Generating x-coordinate for subtrees1. Note that d is the number
of digits in the decimal number

x ccordinate =
To Decimal(SHA1(R))

10d−1
(2)

y ccordinate =
To Decimal(SHA256(R))

10d−1
(3)

In MashCAN, a mashup will be hosted by the following
peers.

• The peer on which the mashup is initially designed.
• Peers that each subtree of the mashup maps to according

to CAN protocol.
We will explain this by showing an example of mapping

a subtree/mashup to a peer in MashCAN. Assume peer 6
designs the mashup in Figure 1. This means that peer 6 will
host that mashup. In addition, the mashup will be hosted
by peers controlling zones in which each subtree coordinate
point resides. As shown in Figure 11 subtree1 has coordinate
point (6.7,8.0) which resides in zone controlled by peer 2.
Therefore, peer 2 will also host the mashup. By looking
at Figure 11 we see that different subtrees has coordinate
points (1.0,3.3), (1.3,3.6), (1.1,6.5), (6.7,8.0), (6.7,8.0), and
(1.1,1.6). These points resides in zones controlled by peers 0,
0, 6, 2, 2, and 0 respectively. As a result, peers 0, 2, and 6 are
the peers that host the mashup in conversation (Figure 12).
Clearly, peer 6 is not going to duplicate the mashup because
it was originally designed at that peer. In order for mashup
hosting to take place, peer 6 will issue a host request via its
neighbors to peers 0 and 2.

Now, we will explain how a given peer initiates a search
process for a subtree/mashup in MashCAN. Assume peer 1
issues a search for mashups that contain the filter operator
shown in Figure 1. The search process advances as follows.

• The filter operator representation is converted to a CAN
coordinate space point as explained earlier. As Figure 11
shows, this point is (1.1,6.5).

• Peer 1 asks their neighbors (peers 3 and 5) if point
(1.1,6.5) lies within their zone. The answer is No.

• Peer 1 finds which neighbor is closer to the zone in
which point (1.1,6.5) resides by computing Euclidean
distance between the point (1.1,6.5) and the center point
for each neighbor zone, namely (8.0,5.0) and (5.0,5.0).
The resulting distance is 7.0 and 4.1 respectively.

• Since distance between peer 5 and point (1.1,6.5) is
the minimum, then peer 1 forwards the search request
to peer 5 because it is supposed to be one step closer
towards the zone in which point (1.1,6.5) resides.

• peer 5 repeats the same process and forwards search
request to peer 4.

Fig. 10. Generating y-coordinate for subtrees1. Note that d is the number
of digits in the decimal number

• peer 4 finds that the point (1.1,6.5) resides within the
zone of its neighboring peer 6.

• peer 6 truly hosts a mashup that contains the filter
operator as a subtree, therefore the answer Yes is
returned to peer 1 which originally initiated the search
process.

MashCAN is built on top of CAN. CAN [15] states that a
search process requires only O(d∗n 1

d ) steps where ’d’ is the
number of dimensions and ’n’ is the number of peers. This
is drastically more efficient than the exponential complexity
of flooding search approach.

V. SCALABILITY AND RELIABILITY

Scalability and reliability are two important features for a
networking system. MashChord and MashCAN are scalable
and reliable because of three reasons. First, they follow a
structured peer-to-peer architecture that does not rely on a
given peer as the core of the system. This structured type of
peer-to-peer network has minimal search overhead due to de-
pending on structure to map resources to peers. MashChord
and MashCAN rely on Chord and CAN respectively which
are well established works that handle peer joins and leaves
efficiently. We will not discuss peer joins and leaves as they
are described in Chord protocol [14] and CAN [15] and they
are not the main focus of this paper.

Second, the scalability and reliability of our system is
extended by the nature of our mashup mapping protocol.
Remember that a mashup is hosted by several peers in
the network which are found by generating identifiers in
the case of MashChord and coordinate points in the case
of MashCAN for each subtree of a given mashup. If one
of those peers decides to leave the system, the system
functionality is not affected because the mashup is also
hosted on several other peers. For example, suppose that an
end-user is looking for mashups that contain subtree1 shown
in Figure 3. If such mashups exist, they would be hosted on
2 peers, namely, 0 and 4. Consequently, if one of those peers
fails or voluntarily leaves the network, the mashups can still
be found on the other peer.

Third, we further enhance the scalability and reliability of
our system by designing ’Execution Offloading’ mechanism.
One possible scenario is that one peer is busy performing
operations of its own. The end-user at that peer wants to ex-
ecute certain set of mashups. As explained in section IV-A2,
the peer has the necessary mashup components to execute the
mashups. But, its CPU is busy performing other work. We
can exploit the fact that a mashup is hosted at several peers
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Fig. 11. Operators and Subtrees mapped to CAN coordinate points

to offload all/part of mashup execution to other peers that
host that same mashup. One thing to mention here is that
each peer declares a percentage indicating how busy it is.
We add this piece of information to Chord finger tables and
MashCAN routing tables. Now, when a given peer wants
to offload part of its mashup execution to another peer,
it chooses the peer with minimum busy percentage. Also,
each peer has an offloading percentage which represents the
percentage of mashups to offload their execution to other
peers. The previous features aid towards a scalable and
reliable mashup platform.

VI. EFFICIENT MASHUP ACCESS

Efficiency is an important feature for any computer system.
If the application is a network oriented one, then efficiency
becomes extra important due to the many variants affecting
its functionality. There has been attention towards efficiency
in literature [21], [22]. We need to take care of efficiency of
peers in MashChord and MashCAN because each peer might
end up hosting lots of mashups. That might lead to inefficient
mashup access. For example, suppose a peer received request
to execute a mashup that it currently hosts; then it is the
responsibility of that peer to search the list of mashups and
subtrees it hosts for the desired mashup. If the number of
hosted mashups is large, then sequential searching process
would take long time to conclude.

Therefore, we add indexing structure to each peer that
aids towards fast mashup access. The type of index we use
is a B-tree index where index keys are the representation
of mashups and subtrees which was previously explained
in section III. The keys are added to the index based on
their lexicographical order. Accessing B-tree index requires
O(log n) steps which is very low in contrast with the
O(n) steps required for sequential search. As a result, using
this mashup index increases the efficiency of searching for
mashups.

Fig. 12. Mapping process resulted in peers 0, 2, and 6 hosting the mashup
in Figure 1

VII. SYSTEM EVALUATION

We use simulation to evaluate MashChord and MashCAN.
Our topology consists of 128 peers, 12800 total mashups
originally created at peers. Number of operators per mashup
is varied between 4 and 8. Offloading percentage for peers
is varied between 10% and 90%. Busy percentage for peers
is varied between 10% and 90%. The peers we use in
our simulation are extracted from 2012 Internet topology
measured by DIMES [23] and [24].

In the first experiment, we show the effect of mashup
execution offloading. We pick one peer randomly and we
vary offloading percentage for this peer between 10% and
90%. Then we measure the execution time spent by that peer.
Figure 13 shows that the execution time spent by that peer
decreases as the offloading percentage increases. This makes
sense because the peer has to execute a subset of mashups
as the execution of the rest of mashups is offloaded to other
peers. A related experiment is shown in Figure 14 where
declared busy percentage is changing between 10% and 90%.
We notice that as busy percentage increases the execution
time decreases. This is because a high busy percentage makes
peers reject execution offloading requests coming from other
peers.

In the next experiment, we measure the average number
of mapped mashups per peer when the number of operators
per mashup increases. Here, we are not pointing to the
original mashups created at each peer. We only focus on
the number of mashups that are hosted on other peers due to
operator/subtree mapping to Chord identifiers. Here, we vary
number of operators to be between 4 and 8. Figure 15 shows
that average number of mapped mashups per peer increases
as number of operators per mashup increases. When number
of operator per mashup increases, the number of subtrees
per mashup increases. Therefore, we have more subtrees that
are mapped to Chord identifiers. As a consequence, these
additional identifiers cause mashups to be hosted on more
peers.

In the last experiment, we test the effectiveness of our b-
tree index. Remember that a peer hosts a number of mashups.
When that peer receives a search request, the fist thing
it performs is to look for the requested mashups/subtrees
within the mashups it hosts. This process can be done
sequentially or using the B-tree index that we explained in
section VI. Figure 16 shows that number of steps needed to
conclude a search process within MashChord and MashCAN
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Fig. 13. Execution time spent by a peer when offloading percentage varies
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Fig. 14. Execution time spent by a peer when busy percentage varies

is tremendously low when the b-tree index is used. This is
a result of O(log n) performance of the b-tree index versus
O(n) performance of sequential search.

The previous experiments shed light on the importance
of mashup execution offloading in our system. They also
pointed out that the increase in number of operators per
mashup would increase the load of hosting mashups on peers.
In addition, the effectiveness of using B-tree index for search
efficiency is plotted in the experiments.

VIII. CONCLUSION

One of the popular Web 2.0 applications is mashup plat-
forms. Current mashup platforms rely on loosely-distributed
architectures and centralized architectures. This raises scal-
ability and reliability issues for mashup platforms. In this
paper, we built MashChord and MashCAN which are mashup
platforms designed on top of structured peer-to-peer architec-
tures. MashChord and MashCAN have low search overhead.
In addition, we add execution offloading feature to our sys-
tem which enhance the functionality of each peer. Moreover,
we use an indexing structure that increases the efficiency
of local search for mashups at each peer. These features
helps towards better efficiency, reliability, and scalability in
MashChord and MashCAN.
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Fig. 15. Average number of hosted mashups per peer when number of
operators per mashup varies

Chosen Design

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
s
te

p
s
 p

e
r 

s
e

a
rc

h
 a

tt
e

m
p

t

 

 

MashCAN MashChord
0

50

100

150
With Index
Without Index

Fig. 16. Average number of steps per search attempt with and without
using the b-tree index
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