
 

 

Abstract— Non-deterministic behaviors of concurrent 

programs sometimes produce errors that depend on 

interleavings, such as race conditions. Unfortunately, executing 

all possible interleavings is usually not feasible because of their 

potential huge number. In our previous work, we used the 

existing reachability testing method to generate test cases and 

succeeded in reducing the number of test cases by eliminating 

redundant and infeasible ones. In this paper, we propose three 

further improvements. The first is to reduce the memory space 

required for generating test cases. We propose a new method by 

analyzing data dependency to generate only those test cases that 

might affect sequences of locks and shared variables. The second 

improvement is to generate test cases for detecting race 

conditions caused by accesses through reference variables. Our 

method can generate test cases for detecting such race conditions 

by creating test cases based on the data dependency of the 

reference variables. The third improvement is to reduce the 

effort involved in checking race conditions by utilizing previous 

test results. The new method can identify only those parts of the 

execution trace in which the sequence of locks and shared 

variables might be affected by a new test case, thus necessitating 

that race conditions be rechecked only for those affected parts.  

 
Index Terms— error detection, race condition, concurrent 

program, execution trace. 

 

I. INTRODUCTION 

ULTI-CORE processors are now used in various 

computer systems ranging from super computers to PCs, 

and even to small cellular phones. Concurrent programming 

plays a very important role in fully exploiting the capability of 

multi-core processors for improving their performance. One 

of the problems in concurrent programming is to ensure data 

consistency. In this paper, we focus on race conditions. Race 

conditions can be detected from execution traces. Some 

execution trace analysis techniques use lockset analysis [1] 

[2] [3] for dynamically detecting race conditions. They verify 

the consistency of locking for accesses on shared variables. 

Most research in this field focuses on reducing false positives 

[4]–[7]. 

The execution of a sequential program depends only on 

 
Manuscript received October 08, 2013; revised March 15, 2014. 

T. E. Setiadi is with the Graduate School of Information Systems, 

University of Electro-Communications, Tokyo, Japan. The author was 

supported by the JINNAI international student scholarship. (phone: 

+81-90-4171-9071; e-mail: eric@maekawa.is.uec.ac.jp). 

A. Ohsuga is with the Graduate School of Information Systems, 

University of Electro-Communications, Tokyo, Japan. (e-mail: 

akihiko@ohsuga.is.uec.ac.jp). 

M. Maekawa is with the Graduate School of Information Systems, 

University of Electro-Communications, Tokyo, Japan. (e-mail: 

maekawa@maekawa.is.uec.ac.jp). 

input values. However, the execution of a concurrent program 

depends on both input values and interleavings. Race 

conditions cannot always be detected during testing because 

their occurrences depend on interleavings. In a concurrent 

program, a branch can take a different execution path due not 

only to a different input value, but also to a different 

interleaving. This situation happens when the program’s 

conditional statement depends on shared variables and the 

shared variables are affected by interleavings. A change of 

branch outcomes can affect the sequence of locks and shared 

variables, thus affecting the occurrence of race conditions. 

Hence, an execution trace might contain race conditions that 

depend on the branches and interleavings. As such, we must 

consider all possible interleavings during test case generation. 

Unfortunately, blindly executing all possible interleavings is 

not usually feasible because of their huge number. Two major 

issues in testing concurrent programs are efficiency and 

precision. 

Some existing work has tried to reduce the number of 

execution traces. For example, J. Huang, J. Zhou and C. 

Zhang [8] identified that frequently a large number of events 

recorded in an execution trace are mapped to the same lexical 

statements in the source code. However, removing them from 

execution traces might cause false negatives when checking 

for race conditions. Such a situation happens when a number 

of events from the same lexical statement in the source code 

are affected by a conditional statement in a branch whose 

“then” and “else” statements have different sequences of 

locks and shared variables. Another work by C. Park, K. Sen, 

P. Hargrove, and C. Iancu [9], known as active testing, 

generates a set of tuples that represents potential concurrent 

errors, by performing imprecise dynamic analysis of an 

execution trace. The later phase re-executes the program by 

actively controlling the thread schedule to confirm the 

concurrent errors. However, the set of tuples might be 

incomplete if some tuples were not executed in the previous 

execution. This situation happens when the executions of 

some tuples depend on the “then” or “else” statements of a 

branch whose conditional statement is affected by 

interleavings. This incomplete set of tuples might cause some 

false negatives for detecting race conditions. 

Some existing methods determine which interleavings are 

to be tested based on certain criteria. The simplest one is to 

execute different interleavings randomly, but this method 

does not guarantee that errors will be detected. O. Edelstein, E. 

Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur [10] 

improved random methods by using a heuristic approach for 

reducing the search space. ConTest [11] improves heuristic 

test case generation by using coverage criteria as a guide. 

Efficient Test Case Generation  

for Detecting Race Conditions 

Theodorus E. Setiadi, Akihiko Ohsuga, and Mamoru Maekawa 

M 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

However, this does not ensure that errors will be detected 

because not all possible execution paths might be tested. 

CHESS [12] generates all interleavings of a given scenario 

written by a tester based on a fair scheduling. Koushik Sen 

and Gul Agha [13] [14] explored different execution paths by 

generating new interleavings as well as new input. Their tool, 

known as “jCute”, generates all possible interleavings based 

on previous executions by changing the order of thread 

executions, starting from the smallest indexed thread. 

Nevertheless, here redundancy exists for detecting race 

conditions, because not all of the generated interleavings will 

change the sequences of locks and shared variables. 

Coverage criteria are useful as a guide for improving 

efficiency in testing. They are mainly classified based on data 

flow, concurrent states, and control flow. Coverage criteria 

for concurrent programs are mostly extensions from 

sequential programs. “Define-use” coverage is a coverage 

criterion based on data flow. The extension of “define-use” 

for concurrent programs was presented by [15]–[17]. Another 

data flow coverage criterion considers the order of data 

dependent operations which affect the values of shared 

variables [18]. Yet another one is based on concurrent states 

[19]. This coverage criterion measures the number of 

concurrent states visited during an execution of a program. 

Other coverage criteria are derived from existing ones by 

partially selecting only some program components. For 

example, such partial selection may pertain only to some 

threads [20], variables, synchronization operations [21], or 

operations based on temporal order relations [22]. All of the 

coverage criteria discussed above are mainly based on 

program structure, but they lack considerations about race 

conditions. 

Path coverage is another coverage criterion based on 

control flow. Detecting race conditions requires path 

coverage for checking all possible sequences of locks and 

shared variables. T. E. Setiadi, A. Ohsuga, and M. Maekawa 

[23] used the reachability testing method [24] to generate 

different interleavings for exploring different execution paths 

in concurrent programs. They focused on efficiency and 

succeeded in drastically reducing the number of test cases for 

detecting race conditions in the following ways: 

 -- By grouping test cases with the same locking structure, 

then testing only one of them. 

 -- By eliminating infeasible test cases caused by 

synchronization mechanisms, such as a wait-notify 

mechanism. However, some problems still remain: 

 -- Redundant test cases are still generated: Test cases 

with the same locking structure are grouped together and only 

one of them is tested. Therefore, the number of test executions 

is decreased, but some redundant test cases are still generated 

even though there is no need to execute them. 

 -- Race conditions caused by accesses through reference 

variables might not be detected: Their work focused only on 

the detection of race conditions caused by different sequences 

of locks and shared variables when different interleavings 

change branch outcomes. Actually, race conditions can also 

arise in different executions with the same branch outcome. 

Such race conditions might come about when a different 

inverleaving causes a reference variable to refer to different 

objects. A reference variable is a variable that refers to an 

object in Java language, and is similar to a pointer in C 

language. A similar situation also occurs when a lock variable 

refers to different lock objects. 

 -- Unnecessary checks for race conditions after each test: 

A race detector needs to check race conditions for the whole 

execution trace every time a new test case is executed. For 

most cases, this is not always necessary as it is sufficient to 

check for only some parts whose consistent locking might be 

affected by the new test case. 

In this paper, we propose the following further refinements 

and improvements: 

 -- Avoiding the generation of redundant test cases: We 

propose to do this by exploiting data dependency to generate 

only those test cases that might affect sequences of locks and 

shared variables. Our new proposed method requires smaller 

sized graphs for generating test cases compared to the existing 

reachability testing method. This means the required memory 

space is reduced. 

 -- Generating test cases to check consistent locking for 

accesses through reference variables: In addition to race 

conditions caused by a change in branch outcomes, our 

proposed method can also generate test cases for checking 

race conditions caused by accesses through reference 

variables. 

 -- Reducing the effort involved in checking race 

conditions: We propose a method to identify only the parts of 

the execution trace whose sequences of locks and shared 

variables might be affected by a new test case. Race 

conditions are then checked again only for those affected 

parts. For other (unaffected) parts, we can reuse the results 

from previous executions, thereby also reducing the effort 

involved in checking race conditions. 

This paper is organized as follows. In Section II, we briefly 

summarize the terms and notations used in the paper. Section 

III explains the proposed method for an efficient test case 

generation for detecting race conditions. Section IV shows the 

efficiency of our proposed method through some experiments, 

while Section V presents some discussions and future work. 

Finally, Section VI concludes the paper. 

II. TERMS AND NOTATIONS 

We briefly summarize the essential terms and notations 

which were originally introduced in T. E. Setiadi, A. Ohsuga, 

and M. Maekawa [23]. 

A. “Access-Manner” 

We divide an execution path of a single thread into several 

parts called “access-manners”. We assume a concurrency 

control using a lock mechanism. In order to define an 

“access-manner”, we use the notation L(Ti) as the number of 

active locks acquired by a thread Ti at a particular time. L(Ti) 

is 0 at the beginning of the execution of the thread Ti. During 

an execution of a program, L(Ti) is incremented and 

decremented by the following rules: 

 -- Incremented by 1 when the thread Ti successfully 

acquires a lock (i.e. has completed a lock instruction). 

 -- Decremented by 1 when the thread Ti releases the lock 

which is currently being acquired (i.e. has completed an 

unlock instruction). L(Ti) is not decremented if a thread is 

trying to release a lock which is not currently acquired. Hence, 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

L(Ti) cannot be negative. 

An individual “access-manner” is a sequence of 

lock-unlock and read-write operations on shared variables 

within an execution path of a thread. It starts and ends with the 

following conditions: 

 -- Start: a lock operation which causes L(Ti) to become 1. 

 -- End: an unlock operation which causes L(Ti) to 

become 0, or when an execution trace terminates. 

An individual “access-manner” must end before another 

individual “access-manner” starts; thus they cannot overlap. 

We classify “access-manners” based on their sequences of 

lock-unlock and read-write operations on shared variables as 

follows: 

 -- A usual “access-manner”: starts by acquiring a lock, 

accessing shared variables, then releasing the corresponding 

lock. 

 -- An unusual “access-manner”: starts by accessing 

shared variables without previously acquiring any locks, or 

when executing only an unlock operation without previously 

acquiring a lock. This might happen because programmers 

forget to acquire locks. Such an unusual “access-manner” 

might potentially cause race conditions should another thread 

be accessing the same shared variable. Throughout this paper, 

“access-manner” should be understood to mean a usual 

“access-manner”. 

B. “Use-Define” 

A “use-define” is a relation consisting of a usage “use” of a 

variable and the definition “define” of the variable. 

 -- A “use” means a read operation on a variable. 

 -- A “define” means a write operation of some value to a 

variable. A “use-define” is a triplet: 

ud(var, use_location, define_location)             (1) 

The “use-define” was initially defined for sequential 

programs. We call the “use-define” for sequential programs 

the conventional “use-define”. Yang, A.L. Souter, and L.L. 

Pollock [10] [34] extend the definition of “use-define” to the 

usage and definition of shared variables in concurrent 

programs. Below are the differences: 

 -- Sequential program: the “use” and “define” operations 

are located in the same thread. There must be no other write 

operations to the variable in between the “use” and “define” 

operations. 

 -- Concurrent program: the “define” operation might be 

located in a different thread to the "use" operation. The 

interleaving in a particular execution decides which thread 

actually defines the value. 

A set of “use-defines” is obtained from an execution trace. 

We use the set to find operations which affect conditional 

statements in branches or reference variables in 

“access-manners”. From an existing "use-define", we also 

define another potential "use-define" for the same "use" of the 

variable when there could be another interleaving which 

satisfies the following two conditions: 

 -- There is another “define” operation which occurs 

before the “use” operation. We assume the “use” operation 

can be executed after the “define” operation, i.e. not blocked 

by a thread creation or a wait-notify message. 

 -- There is no other “define” operation to the variable 

between the "define" operation in condition 1 and the "use" 

operation. 

A potential "use-define" is denoted by: 

ud’(var, use_location, define_location)                (2) 

Figure 2 is an example of one of the possible execution traces 

for the source code in Figure 1. Its “use-defines” and potential 

“use-defines” are as follows: 

 -- “Use-defines”: ud(x, 3, 1), ud(y, 3, 2), ud(x, 25, 20), 

ud(n, 4, 3), ud(ref2, 27, 23) 

 -- Potential “use-defines”: ud’(x, 3, 20), ud’(x, 25, 1), 

ud’(ref2, 27, 30) 

Let setUD(V) be the set of “use-defines” in an 

“execution-variant” V. An “execution-variant” V satisfies a 

“use-define” ud(var, use_location, define_location) if the 

“use-define” is included in the setUD(V). In other words, it 

satisfies the following condition: 

ud(var, use_location, define_location) ⊆ setUD(V)    (3) 

Let define_set(var, use_location) be the set of possible 

“define” operations for the variable var at the location 

use_location. Below are some examples of define sets in 

Figure 2: 

 -- define_set(x, 3) = { 1: x = -3, 20: x = 10 } 

 -- define_set(y, 3) = { 2: y = 2 } 

 -- define_set(n,4) = { 3: n = x + y } 

 -- define_set(x, 22) = { 1: x = -3, 20: x = 10 } 

If a define set contains only one “define” operation from the 

same thread, then we can guarantee that its values will not be 

affected by different interleavings. 

C. Variant Graph and “Execution-Variant” 

The reachability testing method [24] performs an efficient 

exploration of different sequences of read-write operations 

which affect values of shared variables. Using the idea behind 

the partial order reduction, it groups and ignores different 

interleavings that do not affect any values of shared variables. 

Test cases are generated systematically using a variant graph. 

A variant graph derives different sequences of read-write 

operations from the previous execution trace. A different 

sequence of read-write operations which affects the values of 

shared variables is called an “execution-variant”. 

“Execution-variants” are used as test cases in the reachability 

testing method. G. H. Hwang, K. C. Tai, and T. L. Huang 

introduced an algorithm to create a variant graph from an 

execution trace of a concurrent program (Hwang et al., 1995). 

Figure 3 is an example of a variant graph for the execution 

trace in Figure 2. 

III. PROPOSED METHOD 

A. System Overview 

The proposed system is a refinement of the existing 

deterministic testing method with tracing and dynamic race 

detection. Figure 4 shows the overview of the proposed 

method. The whole procedure for testing is shown as follows: 

1) Execute a concurrent program by taking a trace. 

2) Detect branches, concurrent-pairs of “access-manners”, 

and a set of “use-defines” from the execution trace. 

3) Create concurrent dependency graphs from branches and 

concurrent-pairs of “access-manners”. A concurrent 

dependency graph represents data flow relations among 

operations that might affect race conditions. 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 

 
 

 

 

0,0

0  1: write x

1, 0

1 

2, 1

2 

20: write x

2, 0

1 

3: read x

2, 2

2 

25: read x

1,1

2  

20: write x

2, 1

2 

3: read x

2, 2

2 

25: read x

0, 1

1 

20: write x

1, 1

2 

3: read x

2, 1

2 

1: write x

2, 2

2 

3: read x

0, 2

1 

25: read x

1: write x

V1 V2 V3

Note:

index

version

1, 2

2 

2, 2

2 

V4

25: read x

1, 2

2 

1, 2

2 

25: read x25: read x

3: read x 3: read x

 
Fig. 3.  Example of a variant graph. 

Thread T1 Thread T2 Thread T3

30: ref2 = ref1

20: x = 10

1: x = -3

2: y = 2

3: n = x + y 

4: if (n<0) {

5:  . . . 
21: . . .

25: print x

27: ref2.credit = 7

ud(x, 3, 1)

ud(y, 3, 2)

ud’(x, 25, 1) ud(x, 25, 20)

23: ref2 = new Object()

22: . . .

24: . . .

26: . . .
ud(ref2, 27, 23) ud’(ref2, 27, 30)

 
Fig. 2.  Example of an execution trace and some of its “use-defines”. 

Thread T1 Thread T2 Thread T3

30: ref2 = ref120: x = 10

21: . . .

22: lock b

23: ref2 = new Object()

24: unlock b

25: print x

26: lock b

27: ref2.credit = 7

28: unlock b

1: x = -3

2: y = 2

3: n = x + y 

4: if (n<0) {

5:   . . . 

6: } else {

7: lock a

8:   ref1.credit = 10

9: unlock a

10: }

ref2.credit

reference 

variable

variable

lock b

Note:
lock 

variable

 
Fig. 1.  Example of a concurrent program.  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 
 

4) Determine a set of “guidelines” for generating test cases. 

A “guideline” is a set of “use-defines” obtained by 

traversing the concurrent dependency graphs from the 

previous step. 

5) Generate test cases based on the set of “guidelines” from 

step 4. The idea is to generate only those test cases 

necessary to avoid redundancy and that do not affect race 

conditions. 

6) Execute the test cases using an existing 

deterministic/non-deterministic testing method by taking 

a trace. 

7) Detect any race conditions using an existing race detector 

and report any race conditions to programmers. 

8) If a new branch or a new “use-define” is found in the 

execution trace in step 6, repeat step 3 to step 8 for the 

new branch or the new “use-define”. 

9) The test is completed if neither a new branch nor a new 

“use-define” is found in step 6. 

Note that this new method introduces “concurrent 

dependency graphs”, instead of variant graphs. Variant 

graphs are the major instruments for representing and 

analyzing the execution development of a concurrent program 

in the reachability testing method. 

B. Avoiding Redundancy in Test Case Generation 

This section explains how to avoid generating redundant 

test cases by using a concurrent dependency graph. 

 

Concurrent Dependency Graph 

We newly propose a concurrent dependency graph for 

identifying data dependencies of shared variables or reference 

variables. A concurrent dependency graph is a directed graph 

representing “use-define” relations in an execution of a 

concurrent program. A conventional dependency graph 

depends only on data flow, but a concurrent dependency 

graph depends on data flow and interleavings. A concurrent 

dependency graph contains all possible data dependencies for 

different interleavings. Which data dependency actually 

occurs in a particular execution would depend on the 

interleaving during the execution. Figure 5 shows an example 

of a concurrent dependency graph.  

 

 
Let us take an example of the shared variable x in the root 

node. There are two write operations that can define its value 

depending on the interleavings. One is the write operation in 

line 1 while the other one is in line 20. The components of a 

concurrent dependency graph are as follows: 

 Node: 

 Box node (bn): 

 Root node: represents one of the following: 

- - A conditional statement in a branch 

(see the example in Figure 5), or 

 
Fig. 5.  Components of a concurrent dependency graph. 

  

Execute a 

concurrent 

program 

with tracing

Concurrent 

dependency graphs

Test 

cases

Test using 

deterministic / non-

deterministic  

testing with tracing

Detect 

branches Create 

dependency 

graphsT1     T2 T3T1     T2 T3

T1     T2 T3T1     T2 T3

11

22

33

66
77

44

Detect any 

race 

conditions

Traverse 

dependency 

graphs

Set of 

“guidelines“

55

Proposed method

if ( n < 0 ) {

⋮
else {

Detect 

concurrent-

pairs of 

“access-

manners”

T1     T2 T3

T1     T2 T3

T1     T2 T3

Execution traces

T1     T2 T3T1     T2 T3

T1     T2 T3T1     T2 T3

T1     T2 T3T1     T2 T3

Execution traces

Detect “use-define”

Set of 

“use-defines”

Generate 

test cases

88

Repeat if a new branch 

or “use-define” is found

 
Fig. 4.  Overview of the proposed method. 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 

- - An “access-manner” (see the example in 

Figure 12). 

A root node does not have an incoming edge. 

 Non-root node: derived from a root node or 

another non-root box node. Algorithm 1 

explains how to derive non-root nodes. A 

non-root node has one incoming and one 

outgoing edge. 

 Leaf node: a box node whose statement does 

not contain any variables. When a variable is 

used without being defined, then there will be 

no corresponding leaf node. A leaf node does 

not have an outgoing edge. In Figure 5, nodes 

bn4 and bn5 are leaf nodes. 

The maximum number of outgoing edges from a 

box node is 1. 

 Circle node (cn): represents a selection of “define” 

operations for a variable. 

 Edge: 

 “Use” edge (ue): represents a read operation to a 

variable. This edge goes out from a box node and 

comes into a circle node. It is labeled by the 

program statement that reads to the variable. 

 “Define” edge (de): represents a write operation to a 

variable. This edge goes out from a circle node and 

comes into a box node. It is labeled by the program 

statement that writes to the variable. 

Table I lists the definitions in a concurrent dependency graph. 

A concurrent dependency graph is created by deriving child 

nodes starting from their root node. Algorithm 1 explains how 

to derive child nodes from a box node, while Figure 6 is an 

illustration of Algorithm 1. 

 

 Algorithm 1. Deriving child nodes from a box node. 

Input  : - A box node bninput as a parent node. 

- A set of “use-defines” and potential 

“use-defines”. 

Output : - The input parent node is connected to a 

newly-created circle node cn as a child node. 

        - The circle node cn is connected to newly-created box 

node(s) as its child node(s). 

Step 1. Create a circle node cn for the input box bninput. 

1.1 Choose a variable var from the statement inside 

the bninput. 

1.2 Create a new circle node cn and label it as var. 

1.3 Create an outgoing “use” edge ue from the bninput 

to the circle node cn created in step 1.2. 

1.4 Label the “use” edge ue with the variable chosen 

in step 1.1. 

Step 2. Create child nodes for the circle node cn. 

2.1 Find “define” operations for variable(cn) from 

the set of “use-defines”. 

2.2 For every “define” operation in step 2.1, create 

one “define” edge de. 

2.2.1 For each “define” edge de in step 2.2, 

create a box node bn. 

2.2.1.1 Make the de the incoming edge 

for the bn. 

2.2.1.2 The box node bn contains the 

statement from the bninput with the variable var substituted by 

the define statement in step 2.2. 

 

 
 

Algorithm 2 explains how to construct a concurrent 

dependency graph. It derives a box node using Algorithm 1 

until all the derived child nodes reach leaf nodes. 

 

Algorithm 2. Constructing a concurrent dependency graph. 

Input:  - A set of “use-defines” and potential “use-defines” 

from an execution trace. 

- A root node. 

Output: A concurrent dependency graph dg. 

Step 1. Initialization: include the root node in the concurrent 

dependency graph dg. 

Step 2. For every box node bn in dg that does not have an 

outgoing edge. 

2.1 Create child nodes bn using Algorithm 1. 

Step 3. Repeat step 2 until no more new edges or new boxes 

are created. 

 

Figure 7(a) shows a concurrent dependency graph constructed 

using Algorithm 2 for the branch in Figure 2.  

 Only variables with a define set of more than one member 

within a concurrent dependency graph can create different 

“execution-variants”. Therefore, any variables with only one 

member in their define set are redundant with respect to 

exploring different “execution-variants”. Algorithm 3 

describes how to optimize a concurrent dependency graph by 

removing such a redundancy. Figure 7(b) shows an example 

of an optimized dependency graph. 

 

 Algorithm 3. Optimizing a concurrent dependency graph. 

Input: A concurrent dependency graph dg. 

Output: An optimized concurrent dependency graph dg. 

Step 1. For each circle node cn in the concurrent dependency 

graph dg. 

1.1 If cn has only one outgoing edge. 

Then 

         1.1.1 Remove the parent node of cn and all edges 

connected to cn. 

             1.1.2 Make the incoming edge of parent(cn) the 

incoming edge of child_node(cn). 

Note: step 1.1.2 is not applicable if the parent(cn) is a root 

node, because a root node does not have an incoming edge. 

4: if (x + y < 0)

x

4: if (x + y < 0)

4: if (-3 + y < 0) 4: if (10 + y < 0)

def x def x

use x

1: x = -3 20: x = 10

Step 1.1, 1.2

4: if (x + y < 0)

use x

Step 1.3, 1.4

4: if (x + y < 0)

def x def x

use x

1: x = -3 20: x = 10

Step 2.1, 2.2
Step 2.2.1, 2.2.1.1 

x

x
x

bninput

 
Fig. 6.  Step by step illustration for Algorithm 1. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 
 

 
 

4: if (n<0) {

4: if (x + y < 0)

4: if (-3 + y < 0) 4: if (10 + y < 0)

4: if (-3 + 2 < 0)

def n

use n

def x def x

def y

use x

gu1 = { ud(y, 3, 2), ud(x, 3, 1 ), ud(n, 4, 3) } 

gu2 = {ud(y, 3, 2), ud(x, 3, 20), ud(n, 4, 3) } 

3: n = x + y

1: x = -3 20: x = 10

use y

2: y = 2

4: if (10 + 2 < 0)

def y

use y

2: y = 2

(a) (b)

n

x

y y

4: if (x + y < 0)

4: if (-3 + 2 < 0) 4: if (10 + 2 < 0)

def x def x

use x

gu1 = { ud(x, 3, 1 ) } gu2 = { ud(x, 3, 20) } 

1: x = -3 20: x = 10

x

4: if (x + y < 0)

4: if (-3 + 2 < 0)

def x def x

use x

1: x = -3 20: x = 10

4: if (10 + 2 < 0)

xOptimization

Step 2.1

Step 2.2Optimization

 
Fig. 7.  Example of a concurrent dependency graph (a) and its optimized version (b). 

  

TABLE I 

DEFINITIONS IN A CONCURRENT DEPENDENCY GRAPH 

Definitions Examples (refer to Figure 5) 

variable(ue) : the variable used by a “use” edge ue. variable(ue1) = x 

variable(de) : the variable defined by a “define” edge de. variable(de1) = x 

variable(bn | cn): the set of variables in the statement of node bn or cn. variable(bn1) = { x, y } 

variable(cn1) =  {x} 

def_edge(cn): the set of define edges for a circle node cn. def_edge(cn1) = {de1, de2} 

parent(cn): the parent node of a circle node cn. 

parent(cn) = { bn | where a use-edge ue exists in which  

ue is the outgoing edge of bn,  

ue is the incoming edge of cn, 

variable(bn) ⋂  variable(cn) ≠ Ø }  

parent(cn1) = bn1 

child(bn): the child node of bn. 

child(bn) = { cn | where a “use” edge ue exists in which 

   ue is the outgoing edge of bn,  

   ue is the incoming edge of cn, 

                            variable(bn) ⋂  variable(cn) ≠ Ø }  

Note: The child node of a box node is a circle node that represents the “use” of a variable within the statement 

of the box node. A box node can only have one circle node as its child node. 

child(bn1) = cn1 

child(cn): the set of child nodes of cn. 

child(cn) = { bn | where for every bn, a define edge de exists in which  

de is an outgoing edge of cn,  

de is an incoming edge of bn } 

Note: A circle node cn does not have any child nodes if the variable for cn is used without being defined. 

child(cn1) = { bn2, bn3} 

 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 

The optimized graph is more efficient because it is smaller 

and thus requires fewer steps to traverse. The next subsection 

explains how to traverse a dependency graph. 

 

Traversing a Concurrent Dependency Graph 

A race condition can occur because different interleavings 

affecting branch outcomes can lead to different sequences of 

locks and shared variables. This subsection explains how to 

generate different interleavings in order to explore different 

branch outcomes. We use the term “guidelines” as a set of 

“use-defines” for generating a test case. The “guidelines” 

determine the data dependency for creating a test case. An 

“execution-variant” V satisfies a “guideline” if all members of 

the “guideline” are included in the set of “use-defines” of the 

“execution-variant” V. In other words, the following 

condition must be satisfied: 

all members of “guideline” ⊆ setUD(V)            (4) 

Algorithm 4 explains how to traverse the paths in a concurrent 

dependency graph to obtain a set of “guidelines”. Table II is 

an example of a set of “guidelines” obtained by applying 

Algorithm 4 to the concurrent dependency graph in Figure 

7(a). 

 

 Algorithm 4. Traversing a concurrent dependency graph. 

Input: A concurrent dependency graph dg. 

Output: A set of “guidelines” for generating test cases. 

Step 1. Initialization. 

       Let the output set of “guidelines” = { Ø } 

Step 2. Start from the root node of the input concurrent 

dependency graph dg, do a “Depth First Search ” (DFS). 

2.1 When the DFS visits a leaf node, extract the set of 

“use-defines” from the root node to the leaf node and add 

them as a “guideline” to the set of “guidelines” as the output. 

2.2 Repeat step 2.1 until all leaf nodes in the 

concurrent dependency graph dg have been visited.  

 

One test case will be created for each guideline, so there will 

be two test cases based on Table II. The “use-define” ud(y, 3, 

2 ) and ud(n, 4, 3) are the same for both guidelines. They are 

redundant because the concurrent dependency graph in Figure 

7(a) is not optimal. In order to distinguish between these two 

test cases, only the “use-defines” on variable x matter. Table 

III is an example of a set of “guidelines” obtained by applying 

Algorithm 4 to the optimized concurrent dependency graph in 

Figure 7(b). It shows that only the “use-defines” on variable x 

are necessary to distinguish between those two guidelines. 

 

 

 

Generating Test Cases from a Concurrent Dependency 

Graph 

This subsection explains an efficient test case generation 

using a set of “guidelines” from a concurrent dependency 

graph. We recall some definitions from the work by T. E. 

Setiadi, A. Ohsuga, and M. Maekawa [23] in the subsection 

on a Model for Concurrent Program Execution Traces about 

the sequence of operations in an execution of a concurrent 

program. These are as follows: 

 -- S is a sequence of read-write operations from an 

execution trace. 

 -- S(j) is a sequence of read-write operations in thread Tj. 

 -- S(j, i) is the i-th operation in the sequence of 

operations in thread Tj. 

The task for generating test cases can be stated as follows: 

Given a concurrent dependency graph dg derived from an 

existing sequence of read-write operations S1 and the 

following set of “guidelines” obtained from the concurrent 

dependency graph dg: 

 -- gu1 = { ud(var, use, def1) } 

 -- gu2 = { ud(var, use, def2) } 

Supposing that the existing sequence of read-write operations 

S1 satisfies the “guideline” gu1, create another sequence of 

read-write operations S2 that satisfies the “guideline” gu2. 

Let: 

 -- S(a,j) = the “use” operation in the guideline gu2. 

 -- S(a,j-1) = one operation in the thread Ta before the 

“use” operation S(a,j). 

 -- S(b k) = the “def2” operation in the guideline gu2. 

 -- S(b,k-1) = one operation in the thread Tb before the 

“def2” operation S(b,k). 

The solution for the S2 depends on whether the “use” 

operation is located in the same thread as “def2” operation or 

not: 

-- Case 1: the “use” operation is in the same thread as the 

“def2” operation, i.e. they are located in the same thread Tb, 

S(b,j) = “use” operation and S(b,k) = “def2” operation (refer 

to Algorithm 5). 

-- Case 2: The “use” operation is in a different thread to the 

“def2” operation (refer to Algorithm 6). 

Figure 8 illustrates the examples of these two cases. 

 

 Algorithm 5. Generating test cases if the “define” 

operation is in the same thread as the “use” operation. 

Step 1. Select the next operation non-deterministically. 

Step 2. If the operation selected in step 1 is the “def2” 

operation S(b, k), 

         Then  

             2.1 The next operations are from thread Tb until the 

“use” operation S(b, j). 

             2.2 Select the next operations non-deterministically 

until the concurrent program terminates. 

             2.3 Terminate this algorithm. 

         Else 

             2.1 Repeat from step 1. 

 

 Algorithm 6. Generating test cases if the “define” 

operation is in a different thread to the use” operation. 

Step 1. Initialization: 

- All threads are not blocked. 

TABLE II 

A SET OF “GUIDELINES” FROM THE CONCURRENT DEPENDENCY GRAPH IN 

FIGURE 7(A) 

NO. “Guideline” 

1 gu1 = { ud(y, 3, 2 ), ud(x, 3, 1 ), ud(n, 4, 3) } 

2 gu2 = { ud(y, 3, 2 ), ud(x, 3, 20), ud(n, 4, 3) } 

 TABLE III 

A SET OF “GUIDELINES” FROM THE CONCURRENT DEPENDENCY GRAPH IN 

FIGURE 7(B) 

NO. “Guideline” 

1 gu1 = { ud(x, 3, 1 ) } 

2 gu2 = { ud(x, 3, 20) } 

 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

Step 2. Select the next operation non-deterministically from 

any non-blocked threads. 

Step 3. Check whether the operation selected in step 2 is one 

operation before the “use” operation or before the "def2" 

operation. 

       3.1 If the operation selected in step 2 is S(b, k-1) 

         Then  

           3.1.1 Thread Tb is blocked. 

       3.2 If the operation selected in step 2 is S(a, j-1) 

Then 

3.2.1 Thread Ta is blocked. 

Step 4. If thread Ta and thread Tb are blocked 

      Then 

         4.1 Execute “def2” and “use” consecutively as the next 

operations. 

         4.2 Select the next operations non-deterministically 

until the concurrent program terminates. 

         4.3 Terminate this algorithm. 

Else 

         4.1 Repeat from step 2. 

 

An example of case 2: 

 -- From Figure 2: S1 is T1:1:x = -3, T1:2:y = 2, T1:3:n = 

x+y, T1:4:if(n<0), T1:5:..., T2:20:x = 10, T2:21:..., T2:22:..., 

T2:23:ref2 = new Object(),T2:24:..., T2:25:print x, T2:26:..., 

T2:27:ref2.credit = 7, T3:30:ref2=ref1 

 -- Figure 7(b): Let dg be the concurrent dependency graph 

derived from the existing sequence S1. 

 -- From Table III: the set of “guidelines” = { gu1 = { ud(x, 

3, 1 ) }, gu2 = { ud(x, 3, 20) } } is derived from the concurrent 

dependency graph dg in Figure 7(b). 

This example falls into case 2 because the “use” and “def2” in 

gu2 are in different threads. Figure 9 illustrates the test case 

generation. The sequence for S2 is T1:1:x = -3, T1:2:y = 2, 

T2:20:x = 10, T1:3:n = x+y, T1:4:if (n<0), T1:5:..., T2:21:..., 

T2:22:..., T2:23:ref2 = new Object(),T2:24:..., T2:25:print x, 

T2:26:..., T2:27:ref2.credit = 7, T3:30:ref2 = ref1. 

 

Comparison with the Existing Reachability Testing Method 

This subsection explains an example for test case 

generation using the existing reachability testing method. 

Figure 3 is an example of a variant graph for the execution 

trace in Figure 2. In this example, we exclude the shared 

variable ref2 and consider only the shared variables x and y to 

simplify the explanation. There are four “execution-variants”; 

they are V1, V2, V3, and V4 as shown in Figure 3. Dotted 

boxes in a variant graph represent some read or write 

operations accessing different values of shared variables as 

the result of different interleavings. 

 The variant graph in Figure 3 generates four test cases, but 

some of them are redundant. From the set of “guidelines” in 

Table II or Table III, our proposed method identifies that only 

two test cases are required. Table IV shows different values of 

variables when executing different “execution-variants”. The 

“execution-variants” V1 and V3 have the same truth value for 

the branch in line 4. It is sufficient to test only one of them 

with respect to exploring different execution paths caused by 

the branch. They differ in the values of the variable x in line 

25, but the truth value of the branch in line 4 is the same. A 

similar situation happens for the “execution-variants” V2 and 

V4. Suppose that the “execution-variant” V1 is executed when 

the program is first tested. The “execution-variant” V2 can be 

created from V1 by replacing the “use-define” ud(x, 3, 1) with 

ud(x, 3, 20). 

 
Figure 9 shows how to generate only the required test cases 

based on the “guideline” from the proposed concurrent 

dependency graph. 

C. Generating Test Cases to Check Consistent Locking for 

Access through Reference Variables 

The difficulty in detecting race conditions is not only 

because a different interleaving can change branch outcomes, 

but also because it can change a reference variable to refer to a 

different object. A similar situation also occurs when a lock 

variable refers to a different lock object. In this subsection, we 

show that our proposed concurrent dependency graph can 

also generate test cases in such a situation. An example of the 

situation is illustrated below: 

 -- In Figure 10, the truth value of the branch depends on the 

order of executions of the “access-manner” M1 and M4 as 

seen in Figure 10(a) and Figure 10(b). In the event that the 

branch takes a different execution path, the error might not be 

detected. 

 -- The reference variables ref1 and ref2 can refer to the 

same or different objects depending on the order of 

executions of the “access-manners” M5 and M6, as shown in 

Figure 10(b) and Figure 10(c). A race condition arises in 

execution 3 in Figure 10(c) in the event that the 

“access-manner” M3 and “access-manner” M5 are not 

protected by the same lock. A race condition cannot 

bedetected in execution traces 1 or 2, but can be detected in 

execution trace 3. 

Concurrent-pairs of “Access-Manners” 

We use the term ‘concurrent-pair’ of “access-manners” for 

checking race conditions in a concurrent execution. Two 

“access-manners” M1 and M2 are a concurrent-pair, denoted 

by pair(M1, M2), if there exists a different interleaving that 

can change the order of occurrence between one of the 

operations from M1 and one of the operations from M2. Let’s 

assume an “access-manner” M1 in a thread T1, and an 

“access-manner” M2 in a thread T2. The “access-manners” 

M1 and M2 are a concurrent-pair of “access-manners” if the 

following three conditions hold: 

 -- Different threads: The threads T1 and T2 are different. 

 -- Not blocked by a thread creation: The thread T1 is not 

created by the thread T2 after the “access-manner” M2 ends, 

or the thread T2 is not created by the thread T1 after the 

“access-manner” M1 ends. 

 -- Not blocked by a synchronization message: The thread 

T1 does not wait for a message from the thread T2 before the 

“access-manner” M1 starts, or the thread T2 does not wait for 

a message from the thread T1 before the “access-manner” M2  

TABLE IV 

DIFFERENT VALUES OF VARIABLES AMONG DIFFERENT 

“EXECUTION-VARIANTS” 

“EXECUT

ION- 

VARIANT

” 

3: 

read x 

3: 

read y 

3: 

write 

n 

4: if 

(n<0) 

25: 

read x 

V1 -3 2 -1 True 10 

V2 10 2 12 False 10 

V3 -3 2 -1 True -3 

V4 -3 2 12 False 10 

 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 

 
 

 

T1:1:x=-3

T1:2:y=2

T2:20:x=10

T1:3:n =x+y

T1:4:if(n<0)

S(2, k-1)

S(1, j-1)

S(2, k)

S(1, j) 

ud (x,3,20)

S2

T1:1:x=-3

T1:2:y=2

T1:3:n=x+y

T1:4:if(n<0)

T1:5:...

T2:20:x=10

T2:21:...

T2:22:...

T2:23:ref2=new 

Object()

T2:24:...

T2:25:print x

T2:26:...

T2:27:ref2.credit=7

T3:30:ref2=ref1 

S1

ud (x,3,1)

Execute non-

deterministically

:
.
:
.

 
Fig. 9.  Example of a test case generation from a “guideline”. 

  

S1 S2

def2

use

def2

use

Ta Tb Ta Tb

Case 1

def1

def1

S1 S2

def2

use

def1

def2

use

Ta Tb Ta Tb

Case 2

def1

Existing sequence           New sequence

Existing sequence           New sequence

ud(var, use, def2)

S(b,1)

…

S(b, k)

…

S(b, j)

…

S(a,1)

…

S(a, j-1)

S(b, 1)

…

S(b, k-1)

S(b, k)

S(a, j)

ud(var, use, def1)

ud(var, use, def1)               ud(var, use, def2)

The def2 operation is executed.

Execute operations from the same thread 

until the use operation is executed. 

Executing operations in the same thread 

will guarantee that no other def

operations from other threads in between 

the def2 and use operation.

Thread Ta is blocked.

Thread Tb is blocked.

Execute the def2 and use operation 

consecutively. 

Executing the def2 and use operation 

consecutively will guarantee that no other 

def operations from other threads in 

between them.

 
Fig. 8.  Example of test case generation for different cases. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 

 
 

starts. 

Figure 11 is an example of an execution for the source code 

in Figure 1. It shows some concurrent-pairs of 

“access-manners”. The number of concurrent-pairs of 

“access-manners” depends on the number of 

“access-manners” and how they are distributed among 

threads. 

 We have to check race conditions for each concurrent-pair 

of “access-manners”. When a “use” operation has more than 

one member in its define_set, its value might be affected by 

different interleavings. For each concurrent-pair of 

“access-manners”, we have to check race conditions for all 

the combinations of the define_set of the lock variables and 

reference variables. The occurrence of race conditions might 

be affected in the event that any lock variables refer to 

different lock objects or any reference variables refer to 

different objects. A race condition can occur in Figure 11 

between the concurrent-pair of “access-manners” M1 and M3. 

This happens when the reference variables ref1 and ref2 refer 

to the same object, and the lock variables a and b refer to 

different lock objects. 

 There is no need to check different interleavings 

between a concurrent-pair of “access-manners” that satisfies 

the following two conditions, because the consistent locking 

will be the same: 

 -- The concurrent-pair of “access-manners” has been 

checked for race conditions in the previous test execution. 

 -- Different interleavings will not change the value of lock 

variables and reference variables. 

In this way, we can reduce the number of test cases. On the 

contrary, if any different interleavings might affect the lock 

variables or reference variables, then they have to be tested 

because the consistent locking might be affected accordingly. 

 Generating Test Cases 

 This section explains how to generate different 

interleavings to check whether accesses through reference 

variables in an “access-manner” have consistent locking.  

In Figure 11, the define_set for the read operation to ref2 in 

M3 for pair2 contains two members, hence its value might be 

affected by different interleavings.  

 Figure 12 shows an example of a concurrent dependency 

graph for the “access-manner” M3 in Figure 11. The root node 

contains the statements from the “access-manner” M3.

Thread T1 Thread T2

branch

M1 M4

M2 M3

Thread T3

M6

M5

if (n<0)

n=-1 n=2

ref1

ref2

ref2=ref1

ref1
Note: 

M : “access-manner”
 

 

T1 T2

if (n<0) true

M1

M4
M2 

T3

M6

Execution 1

M5

n=-1

n=2

T1 T2

if (n<0) false

M1

M4

M3 

T3

M6

M5

n=-1

n=2

Execution 2 Execution 3

T1 T2

if (n<0)

M1

M4

M3

T3

M6

M5

n=-1

n=2

ref2 = ref1

ref1 ref2

A different interleaving causes 

a change in a branch outcome.

A different interleaving causes a reference 

variable to refer to the same object.

The ref1 and ref2 refer 

to the same object.

CS3 is executed 

instead of CS2

ref1
ref2

The ref1 and ref2 refer 

to different objects.

(a)                                          (b)                (c)
 

Fig. 10.  Example of three executions with different interleavings. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 
 

 

 
Traversing a Concurrent Dependency Graph of an 

“Access-Manner” 

This subsection shows an example of how to traverse the 

concurrent dependency graph of the “access-manner” M3 in 

Figure 12. Table V shows the results of traversing the 

concurrent dependency graph in Figure 12 by applying 

Algorithm 4. Let us assume that the execution in Figure 11 is 

obtained when the program is first tested, and we call it 

“execution-variant” V1. Its interleaving satisfies the 

“use-define” ud(ref2, 27, 23). The “execution-variant” V2 is 

used as the next test case as shown in Figure 13. Its 

interleaving satisfies the “use-define” ud(ref2, 27, 30). The 

next subsection explains how to create the 

“execution-variant” V2 effectively from the concurrent 

dependency graph in Figure 12. 

 

Generating Test Cases for Checking Consistent Locking of an 

“Access-Manner” 

Based on Table V, the “execution-variant” V2 can be 

generated from “execution-variant” V1 by changing the 

“define” operation for the “use” operation of variable ref2 in 

line 21. 

 -- The “guideline” for the current “execution-variant” V1: 

{ ud(ref2, 27: ref2.credit = 7, 23: ref2 = new Object( )) } 

 -- The “guideline” for the target “execution-variant” V2: 

{ ud(ref2, 27: ref2.credit = 7, 30: ref2 = ref1 ) } 

Generating the “execution-variant” V2 applies to case 2 

because the “use” operation is in a different thread from the 

target “def” operation. Therefore, Algorithm 6 applies for this 

case. 

 -- “defbase” : 23: ref2 = new Object( ) 

 -- “deftarget”   : 30: ref2 = ref1 

 -- “use”   : 27: ref2.credit = 7 

Figure 13 shows an example of the execution trace that 

satisfies the “guideline” gu2. 

D. Reducing the Effort Involved in Checking Race Conditions 

When a new test case is executed, only concurrent-pairs of 

“access-manners” whose “access-manners” are affected by 

the new test case have to be re-checked for race conditions. In 

26: lock b

27: ref2.credit = 7

28: unlock b

ref2

:
.
:
.

def

use

26: lock b

27: new Object().credit = 7

28: unlock b

26: lock b

27: ref1.credit = 7

28: unlock b

30: ref2 = ref1
23: ref2 = new Object()

def

b b

:
.
:
.

use use

 
Fig. 12.  Example of the concurrent dependency graph for the 

“access-manner” M3 in Figure 11. 

  

TABLE V 

SET OF “GUIDELINES” FOR GENERATING TEST CASES FOR TESTING PAIR2 IN FIGURE 11 

No. “Guideline” 
“Execution- 

variant” 

Test result 

1 gu1 = { ud(ref2, 27, 23) } V1 No race condition, because ref1 and ref2 refer to different objects. 

2 gu2 = { ud(ref2, 27, 30) } V2 Race condition for accessing ref1, if lock a and lock b refer to different lock objects. 

 

Thread T1 Thread T2 Thread T3

30: ref2 = ref1

20: x = 10

21: . . .

22: lock b

23: ref2 = new Object()

24: unlock b

25: print x

26: lock b

27: ref2.credit = 7

28: unlock b

1: x = -3

2: y = 2

3: n = x + y 

4: if (n<0) {

6: } else {

7: lock a

8:   ref1.credit = 10

9: unlock a

10: }

ref1 and ref2 refer 

to different objects

time

M1

M2

pair1

M3
pair2

define_set(ref2, 27) = 

{ 23: ref2 = new Object(), 

30: ref2 = ref1 }

pair1 = pair(M1, M2)

pair2 = pair(M1, M3)

ud(ref2, 27, 23)

ud’(ref2, 27, 30)

 
Fig. 11.  Example of some concurrent-pairs of “access-manners” in an execution trace. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 
 

this way, the effort for checking race conditions is reduced. 

The following discussion explains how to identify the 

“access-manners” which are affected by a new test case. 

 

Conditional Statements in a Branch 

A different interleaving might change branch outcomes 

which can, in turn, change the sequences of locks and shared 

variables. In the event that a test case is created based on a 

conditional statement of a branch, then only the 

“access-manners” affected by the change of the branch 

outcomes have to be re-checked for race conditions. Let op(br, 

true) be the set of operations executed only when the 

conditional statement in a branch br is true and let op(M) be 

the set of operations within an “access-manner” M. When the 

outcome of the branch br changes from true to false, only 

check race conditions in concurrent pairs of 

“access-manners” involving “access-manner” M, where op(br, 

false) ⋂  op(M) ≠ Ø. Also, when the outcome of branch br 

changes from false to become true, a similar rule applies. For 

example, let us assume a test case is created based on the 

branch in line 4 in Figure 13. If the branch has changed its 

outcome from true to become false, then the “access-manner” 

affected by the test case is M1. Therefore, we have to check 

only those race conditions for the concurrent-pairs related to 

the “access-manner” M1; these are pair1, pair2, and pair5. 

 

Assignment of Lock Variables or Reference Variables within 

an "Access-Manner" 

Different interleavings might change the assignment of 

lock variables or reference variables within an 

“access-manner”. If a test case is created based on an 

“access-manner” Ma, then we have to check only those race 

conditions for the concurrent pair of “access-manners” 

pair(M1, M2) where M1 = Ma or M2 = Ma. The test cases in 

the example of Table V are created based on the 

“access-manner” M3 from Figure 11. Only pair2 and pair4 

have to be re-checked using a race detector because they are 

related to the “access-manner” M3. On the other hand, since 

pair1, pair3 and pair5 are not related to the “access-manner” 

M3, they are not affected by the test case. Hence, there is no 

need to re-check race conditions among them (see Figure 13). 

When a loop contains an “access-manner”, each iteration 

can generate a concurrent-pair of “access-manners”. In the 

case of an infinite loop, the number of concurrent-pairs of 

“access-manners” can be infinite. However, in some cases the 

concurrent-pairs generated in each iteration could be the same 

as in the previous one. In such cases, there is no need to check 

for all the iterations. In this way, the effort involved in 

checking race conditions during the test can be reduced. We 

will show an example of this in subsection C of section IV on 

experiments. 

IV. EXPERIMENTS 

In this section, we show the effectiveness of our proposed 

new method in reducing the memory required for generating 

test cases. The work by T. E. Setiadi, A. Ohsuga, and M. 

Maekawa [23] requires a variant graph from the existing 

reachability testing method. The effectiveness of our 

proposed new method is demonstrated by comparing the size 

of our proposed concurrent dependency graph against that of 

the variant graph. We discuss three experiments using the 

following multi-threaded Java open source programs [23]: 

1. jNetMap [25] is a network client for monitoring devices, 

such as PCs and routers, in a network. 

2. Apache Commons Pool [26] is a generic object-pooling 

library from Apache. 

3. Jobo  [27] is a web spider for downloading complete 

websites to a local computer. 

Table VI shows that the concurrent dependency graph 

proposed in this paper is smaller in size than the variant graph 

in the existing reachability testing method. 

Thread T1 Thread T2 Thread T3

30: ref2 = ref1

20: x = 10

21: . . .

22: lock b

23: ref2 = new Object()

24: unlock b

25: print x

26: lock b

27: ref2.credit = 7

28: unlock b

1: x = -3

2: y = 2

3: n = x + y 

4: if (n<0) {

6: } else {

7: lock a

8:   ref1.credit = 10

9: unlock a

10: }

11: print y ref1 and ref2 refer 

to the same object

time

M1

M2

pair1

M3
pair2

pair1 = pair(M1, M2)

pair2 = pair(M1, M3)

ud(ref2, 27, 30)

M4

pair3

pair4

pair3 = pair(M2, M4)

pair4 = pair(M3, M4)

pair5 = pair(M1, M4)
 

Fig. 13.  Example of a test case execution for "execution-variant" V2. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 

 

A. Experiment 1: jNetMap 

There is an access to a shared variable in an infinite loop 

affected by another thread. This causes an infinite sequence of 

read-write operations and creates a variant graph of infinite 

size. Figure 16 shows only some parts of the variant graph 

from the reachability testing method. Here we explain only 

one example that caused a redundancy.  

Figure 14 shows the execution trace of the first execution. 

The reachability testing method considers all different 

interleavings between the two threads that can affect the 

values of shared variables. On the other hand, our proposed 

method considers only different interleavings that can 

possibly change the outcome of the conditional statement in 

line 279, so it generates fewer test cases. In this experiment, 

only the conditional statement in line 279 might cause 

different sequences of locks and shared variables.  

Figure 15 shows a concurrent dependency graph for the 

branch from the execution trace analysis of the first execution. 

The traversal of the concurrent dependency graph in Figure 

15 results in a set of “guidelines” in Table VII for generating 

test cases. Table VII shows the set of “guidelines” for 

producing two test cases based on the traversal of the 

concurrent dependency graph in Figure 15.  

 

 
The branch outcomes for the conditional statement in line 

279 are determined by the assignment from the write 

operation in either line 69 or 112. For a comparison with the 

existing reachability testing method, we created a variant 

graph in Figure 16 based on the execution trace in Figure 14. 

We refer to the source code in Figure 17 to explain the 

cause of redundancy. The truth value of the branch in line 279 

is affected by the order of interleavings between the 

assignment of shared variable pingInterval in line 69 and 112. 

The other read and write operations to the shared variable 

pingInterval in line 123, 284, and 286 do not affect the truth 

value of the branch in line 279, so different interleavings 

among them are redundant. For exploring different execution 

paths caused by the branch in line 279, we have to consider 

only whether an “execution-variant” satisfies the 

ud(pingInterval, 279, 69) or ud(pingInterval, 279, 112). In 

other words, we can group those “execution-variants” into 

two groups and it is sufficient to test only one of each group. 

B. Experiment 2: Apache Commons Pool 

The reachability testing method uses a variant graph with 

990 nodes to generate 216 test cases. However, most of them 

do not affect the occurrence of the race condition. As shown 

in the work by T. E. Setiadi, A. Ohsuga, and M. Maekawa 

[23], only two test cases are actually required. Figure 19 

shows that we require a concurrent dependency graph with 

only 4 nodes to generate those two required test cases. 

Figure 18 shows the execution trace of the test program 

containing race conditions. The reachability testing method 

considers all different interleavings that affect the values of 

shared variables among the three threads in Figure 18. Our 

proposed method generates fewer test cases because it 

considers only those interleavings that can possibly affect the 

conditional statement in line 906. Figure 19 shows a 

concurrent dependency graph from the execution trace in 

Figure 18. 

 

 
Based on the set of “guidelines” in Table VIII, our 

proposed method generates only 2 test cases. Figure 20 shows 

a piece of code to explain the cause of redundancy in the 

reachability testing method. The conditional statement in line 

906 depends only on the values of the shared variable 

_numActive affected by the interleavings with the assignment 

in line 765 of the thread T3. The access through the reference 

variable _pool depends on interleavings, but it does not affect 

the conditional statement in line 906. Hence, different 

interleavings that are affecting the reference variable _pool 

are redundant. Figure 21 shows the concurrent dependency 

graph for the reference variable _pool. 

C. Experiment 3: JoBo 

In this experiment, we downloaded a website from Yahoo 

[28] and saved it in a local computer. Similar to Experiment 1, 

there is an access to a shared variable within an infinite loop. 

This shared variable is affected by another thread, thus 

causing an execution trace of infinite length accessing the 

shared variable in question. 

The reachability testing method produces a variant graph of 

infinite length because of this execution trace of infinite 

length. As shown in the work by T. E. Setiadi, A. Ohsuga, and 

M. Maekawa [23], only two test cases are required. Figure 23 

shows the concurrent dependency graph for creating the two 

required test cases. 

Figure 22 shows the execution trace of the first execution. 

Note that loop 1 is an infinite loop. The infinite loop in the 

thread T3 is accessing a shared variable. For each access to a 

shared variable in the loop iteration, its value can be affected 

by the assignment from the thread T4. Therefore, the 

reachability testing method generates infinite test cases 

because it produces a different test case for each iteration in 

TABLE VII 

SET OF “GUIDELINES” FROM THE CONCURRENT DEPENDENCY GRAPH IN 

FIGURE 15 

NO. “Guideline” 

1 gu1 = { ud(pingInterval, 279, 69 ) } 

2 gu2 = { ud(pingInterval, 279, 112 ) } 

 

TABLE VIII 

SET OF “GUIDELINES” FROM THE CONCURRENT DEPENDENCY GRAPH IN 

FIGURE 19 

NO. “Guideline” 

1 gu1 = { ud(_numActive, 906, 126 ) } 

2 gu2 = { ud(_numActive, 906, 765 ) } 

 

TABLE VI 

COMPARISON OF THE EXISTING VARIANT GRAPH AND THE PROPOSED 

CONCURRENT DEPENDENCY GRAPH 

NO Programs 

Number of nodes 

Existing variant 

graph (from our 

previous work using 

the reachability 

testing method) 

Concurrent 

dependency graph 

(from our proposed 

new method) 

1 jNetMap Infinite 8 

2 Apache 

Commons 

Pool 

990 4 

3 Jobo Infinite 4 

 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 
 

 
 

 
 

0, 0

0  

69: write

1, 0

1 

0, 1

1 

112: write

2, 0

1 

279: read

3, 0

2 

3, 1

3 

286: write

112: write

3, 2

3 

V1

2, 1

2 

112: write

3, 1

1 

3, 2

3 

V2

286: write

2, 2

2

123: read

2, 2

3

V3

123: read 286: write

1, 1

2

112: write

2, 1

2

279: read

3, 1

2

284: read

4, 1

2

286: write

V4

:
.
:
.

V5

1, 2

2

123: read

:
.
:
.

V6

1, 1

2 

69: write

2, 1

2

279: read

3, 1

2

284: read

4, 1

2

286: write

:
.
:
.

V7

:
.
:
.

V8

1, 2

2

123: read

:
.
:
.

V9

0, 2

1 

123: read

:
.
:
.

V10

0, 0

0  

index of thread T2

index of thread T-AWT-EventQueue-0

version of 

pingInterval

shared variable

1, 2

2 

2, 2

2 

69: write

279: read

ud(..., 279, 69)

ud(..., 279, 112)

ud(..., 279, 69)

gu1 gu2
gu1:

.
:
. :

.
:
.

:
.
:
. :

.
:
.

 
Fig. 16.  Variant graph for the execution of jNetMap. 

  

279:  if (pingInterval <= 0) {

279: if 

(parseFloat(interval.getText()) 

<= 0) {

279: if 

(obj.readFloat() 

<= 0) {         

pingInterval

69: pingInterval = 

obj.readFloat();         
112: pingInterval = 

parseFloat(interval.getText());

“use”

“define”“define”

 
Fig. 15.  Example of a concurrent dependency graph for the execution of jNetMap. 

  

69: pingInterval = obj.readFloat();

:

279: if (pingInterval <= 0) {

280:

:

286: pingInterval = 

parseFloat(interval.getText());

:

:

112: pingInterval = 

parseFloat(interval.getText());

:

123: obj.writeFloat(pingInterval);

:

Thread T-AWT-EventQueue-0Thread T2

ud(pingInterval, 

279, 69)

ud’(pingInterval, 

279, 112)

 
Fig. 14.  Execution trace of the first test execution of jNetMap. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 

 

 
 

the infinite loop. Our method identifies that only some of the 

iterations are sufficient for checking consistent locking, 

because the concurrent-pair of “access-manners” generated 

for each iteration is the same as in the previous one 

Figure 23 shows a concurrent dependency graph for the 

branch from the execution trace analysis of the first test 

execution in Figure 22. Based on the traversals of the 

concurrent dependency graph in Figure 23, our proposed 

method produces the set of “guidelines” in Table IX. We then 

generate two test cases based on Table IX. 

Figure 24 shows the piece of code that affects the test case 

generation. There is an infinite loop in the thread T3 accessing 

a shared variable. From the execution trace of the first 

execution, the reachability testing method produces a variant 

graph with infinite nodes. For each node, an 

“execution-variant” can be created by making a different 

order of interleavings for an assignment from the thread T4, 

hence causing an infinite number of test cases. 

  The first and second loop iterations of the execution trace 

in Figure 22 satisfy the first “use-define” in the “guideline” 

gu1, whereas the third iteration satisfies the second 

“use-define” in the “guideline” gu2. The first iteration of the 

infinite loop has the same concurrent-pair of 

“access-manners” as the second iteration, whereas the third. 

TABLE IX 

SET OF “GUIDELINES” FROM THE CONCURRENT DEPENDENCY GRAPH IN 

FIGURE 23 

NO. “Guideline” 

1 gu1 = { ud(m_connection, 43, 9 ) } 

2 gu2 = { ud(m_connection, 43, 145 ) } 

 

906: if(0<_numActive)

906: if(0<_numActive++)906: if(0<0)

_numActive

126: _numActive = 0 765: numActive++

“use”

“define”“define”

 
Fig. 19.  Example of a concurrent dependency graph for Apache Commons Pool. 

  

126: int _numActive = 0;

: 

906:   if (0 < _numActive) {

:

_numActive--;

:

_numActive--;

:

_pool = null;

:

392: _pool = new 

CursorableLinkedList();

:

1025: Iterator it =   

_pool.iterator();

:

Thread T1 Thread T2

:

765:  _numActive++;

:

Thread T3
ud(_numActive, 

906, 126)

ud’(_numActive, 

906, 765)

branch

 
Fig. 18.  Execution trace of the experiment using Apache Commons Pool. 

  

69: pingInterval = obj.readFloat();

:

276: while (true) {

279: if (pingInterval <= 0) {

280:

:

283: } else {

284: Thread.sleep((int)

(60000*pingInterval));     

285: } 

286: pingInterval = 

parseFloat(interval.getText());

:

:

112: pingInterval = 

parseFloat(interval.getText());

:

123: obj.writeFloat(pingInterval);

:

Thread T-AWT-EventQueue-0Thread T2

 
Fig. 17.  The source code of jNetMap. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 
 

 

 
 

 

branch b3,1

First re-execution : 

T3:9   m_connection = null

. . . 

T3:43  if(m_connection!=null)

T3:47     . . . 

T3:43  if(m_connection!=null)

T3:47     . . .

T4:145 m_connection=sock 

T3:43  if(m_connection!=null)

T3:44     . . .

False

False

True

loop 1

first iteration

loop 1

second iteration

loop 1

third iteration

branch b3,2

branch b3,3

:
.
:
.

ud(m_connection,  43, 145)

ud(m_connection,  43, 9)

 
Fig. 22.  Execution trace of the first test. 

  

1025: Iterator it =   

_pool.iterator();

1025: Iterator it =   

null.iterator();

1025: Iterator it =   

new 

CursorableLinkedList().

iterator();

_pool
392: _pool = new 

CursorableLinkedList(); 1258: _pool = null;

“use”

“define”“define”

 
Fig. 21.  Concurrent dependency graph for the reference variable _pool. 

  

126: int _numActive = 0;

: 

904: public synchronized void 

setFactory(PoolableObjectFactor

y factory) throws 

IllegalStateException {

906:   if (0 < _numActive) {

907:      throw new 

IllegalStateException("Objects

are already active");

908:   } else {

:

910:        _factory = factory;

911:   }

912:}

:

_numActive--;

:

_numActive--;

:

_pool = null;

392: _pool = new 

CursorableLinkedList();

:

1025: Iterator it =   

_pool.iterator();

Thread T1 Thread T2

A shared variable affects

a conditional statement 

in a branch. Hence, the 

truth value can be 

affected by different 

interleavings. 

715: public Object 

borrowObject() {

:

765:  _numActive++;

}

Thread T3

The interleavings affect

conditional statement in 

the branch.

branch

The interleavings

do not affect

conditional 

statement in the 

branch.

 
Fig. 20.  Example of a test program using the Apache Commons Pool library. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

 

 
 

 
 

one has a different concurrent-pair of “access-manners”. All 

possible different concurrent-pairs of “access-manners” in the 

iterations of loop 1 have been explored, from the first iteration 

until the third one in the first execution. Therefore our 

proposed method does not need to test all the infinite loop 

iterations, because the remaining loop iterations will not 

produce different sequences of locks and shared variables. 

V. DISCUSSIONS AND FUTURE WORK 

The proposed method applies for concurrent programs that 

are using lock mechanisms. It is effective in reducing the 

number of test cases by considering only different 

interleavings that are affecting race conditions. Our method 

also supports file references, such as file_name = 

fopen(c:\\data\…), because we can treat them in a similar way 

to reference variables. 

Even though a lock variable can refer to different lock 

objects or a reference variable can refer to different objects, 

there are some special conditions in which we can guarantee 

there will be no race conditions caused by different 

interleavings among concurrent-pairs of “access-manners” 

M1 and M2. In such a situation, the test cases can be further 

reduced because there is no need to check the interleavings 

between them. This can happen when no same object is 

referred to in either M1 or M2 even though different 

interleavings are applied between them. Formally, we define 

this as follows: 

Let vars(M) be the set of reference variables within an 

“access-manner” M. There is no intersection between objects 

referred to by vars(M1) and vars(M2). 

VI. CONCLUSION 

We proposed an efficient new method to generate different 

interleavings as test cases for detecting race conditions. This 

represents a refinement of the existing method for test case 

generation and dynamic race detection. We expanded on past 

work, [24], [29] and [30], concerning reachability testing. The 

original aspects of our proposed method are as follows: 

-- Utilizing data dependency by proposing concurrent 

dependency graphs to guide the test case generation, in order 

to generate only different interleavings that might affect 

consistent locking. In this way, we can avoid generating 

redundant test cases. 

-- Generating test cases for checking the consistent locking 

of accesses through reference variables. We show that our 

method to generate test cases for detecting race conditions 

caused by branching can also be applied for detecting race 

conditions caused by accesses through reference variables. 

-- Dividing an execution trace into several concurrent-pairs 

of “access-manners” to reduce the effort involved in checking 

race conditions. Race conditions have to be re-checked only 

among concurrent-pairs of “access-manners” that are affected 

by new test cases. When a test case changes branch outcomes, 

our proposed method checks whether any of the 

“access-manners” are affected by these branch outcomes. 

Subsequently, only the concurrent-pairs related to those 

“access-manners” that are affected by the change of branch 

outcomes have to be re-checked. Similarly, when a test case 

changes a lock variable or a variable reference within any 

09: m_connection = null;

:

40: for ( ; ; ) {

:

// Check connection

43: if(m_connection != null)

44: break;

45: else {

// Check error

47: if(isError()){

:

}

:

}

:

infinite 

loop

branch

affected 

by a

shared 

variable

Thread T3 Thread T4

shared variable
m_connection

123: public void run() {

:

145: m_connection = sock;

:
}

useuse

defdef

*

*

* operations affecting branch.

defdef*

Note:

 
Fig. 24.  The source code of JoBo. 

  

43: if(m_connection != null) {

43: if(sock != null) {43: if(null != null) {

_numActive

9: m_connection = 

null

145: m_connection = 

sock

“use”

“define”“define”

 
Fig. 23.  Example of a concurrent dependency graph for JoBo. 

  

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



 

“access-manners”, only the concurrent-pairs related to the 

affected “access-manners” have to be re-checked. In this way, 

we can reduce the effort involved in checking race conditions 

during the tests. 

REFERENCES 

[1] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, 

“Eraser: a dynamic data race detector for multithreaded programs,” 

ACM Transactions on Computer Systems, 1997.  

[2] C. Praun and T. Gross, "Object race detection," in Proceedings of the 

16th ACM SIGPLAN conference on Object oriented programming, 

systems, languages, and applications (OOPSLA), pp. 70–82, 2001. 

[3] M. Christiaens and K. De. Bosschere, "TRaDe, a topological approach 

to on-the-fly race detection in Java programs," in Proceedings of the 

Java Virtual Machine Research and Technology Symposium (JVM), 

April 2001. 

[4] H. Nishiyama, "Detecting data races using dynamic escape analysis 

based on read barrier," in Proceedings of the 3rd Virtual Machine 

Research and Technology Symposium (VM), May 2004. 

[5] L. Wang L and S.D. Stoller, "Runtime analysis of atomicity for multi- 

threaded programs," IEEE Transactions on Software Engineering, vol. 

32, issue 2, ISSN 0098-5589, pp. 93-110, February 2006. 

[6] Y. Yu, T. Rodeheffer, and W. Chen, "RaceTrack: efficient detection of 

data race conditions via adaptive tracking," ACM Symposium on 

Operating Systems Principles (SOSP), 2005. 

[7]  J.D. Choi, B.P. Miller, and R.H.B Netzer, "Techniques for debugging 

parallel programs with flowback analysis," ACM Transactions on 

Programming Languages and Systems, 13(4), pp. 491–530, 1991. 

[8] J. Huang, J. Zhou, and C. Zhang, "Scaling Predictive Analysis of 

Concurrent Programs by Removing Trace Redundancy," ACM 

Transactions on Software Engineering and Methodology, vol. 22, 

issue 1, 2011. 

[9] C. Park, K. Sen, P. Hargrove, and C. Iancu, "Efficient Data Race 

Detection for Distributed Memory Parallel Programs," SC11, Seattle, 

Washington, USA Copyright 2011 ACM 978-1-4503-0771-0/11/11, 

November 12-18, 2011. 

[10] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur, 

"Testing multi-threaded Java programs," IBM System Journal, Special 

Issue on Software Testing, February 2002. 

[11] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G, Ratsaby, and S. Ur, 

“Framework for testing multi-threaded Java programs,” Concurrency 

and Computation: Practice and Experience. John Wiley & Sons, 

15(3-5), pp. 485-499, 2003. 

[12] M. Musuvathi,S. Qadeer, and T. Ball, "CHESS: A systematic testing 

tool for concurrent software," Microsoft Research Technical Report, 

MSR-TR-2007-149, 2007. 

[13] K. Sen and G. Agha, "Concolic Testing of Multithreaded Programs and 

Its Application to Testing Security Protocols," UIUC Technical Report, 

Department of Computer Science, January 2006. 

[14] K. Sen and G. Agha, "CUTE and jCUTE: Concolic unit testing and 

explicit path model-checking tools," in CAV. Springer, pp. 419-423, 

2006. 

[15] S. Lu, W. Jiang, and Y. Zhou, “A study of interleaving coverage 

criteria.” in Proceedings of the 6th joint meeting of the European 

software engineering conference and the ACM SIGSOFT symposium 

on the foundations of software, 2007. 

[16] C.D. Yang and L.L. Pollock, “All-uses testing of shared memory 

parallel programs,” Software Testing, Verification, and Reliability 

(SVTR) Journal, vol. 13, no. 1, pp. 3-24, 2003. 

[17] C. D. Yang, A. L. Souter, and L. L. Pollock, “All-du-path coverage for 

parallel programs,” In: Proceedings of the 1998 ACM SIGSOFT 

international symposium on Software testing and analysis, Clearwater 

Beach, Florida, United States. ISBN:0-89791-971-8, pp. 153-162, 

1998. 

[18] H. Kojima, Y. Kakuda, J. Takahashi, and T. Ohta, “A Model for 

Concurrent States and Its Coverage Criteria,” International 

Symposium on Autonomous Decentralized Systems, ISADS '09, pp. 

23-25, 2009. 

[19] R. N. Taylor, D. L. Levine, and C. D. Kelly, “Structural Testing of 

Concurrent Programs,” IEEE Trans. Soft. Eng, vol.18, no.3, pp. 

206-215, 1992. 

[20] J. Takahashi, H. Kojima, and Z. Furukawa, “Coverage Based Testing 

for Concurrent Software,” The 28th IEEE International Conference on 

Distributed Computing Systems Workshops, 533-538, 2008. 

[21] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur, “Applications of 

Synchronization Coverage,” in Proceedings of the tenth ACM 

SIGPLAN symposium on Principles and practice of parallel 

programming, Chicago, IL, USA. ISBN:1-59593-080-9, pp. 206-212, 

2005. 

[22] M. Factor, E. Farchi, Y. Lichtenstein, and Y. Malka, “Testing 

concurrent programs: a formal evaluation of coverage criteria,” 

Seventh Israeli Conference on Computer-Based Systems and Software 

Engineering (ICCSSE '96), Herzliya, ISRAEL. ISBN: 0-8186-7536-5, 

1996. 

[23] T. E. Setiadi, A. Ohsuga, and M. Maekawa, “Efficient Execution Path 

Exploration for Detecting Races in Concurrent Programs,” IAENG 

International Journal of Computer Science, vol. 40, issue 3, pp. 143 – 

163, September 2013. 

[24] G. H. Hwang, K. C. Tai, and T. L. Huang, “Reachability Testing: An 

approach to testing concurrent software,” International Journal of 

Software Engineering and Knowledge Engineering, 1995. 

[25] jNetMap, June 2009. Available: http://www.rakudave.ch/?q=jnetmap  

[26] Apache Commons Pool, 2006. Available at: 

http://jakarta.apache.org/commons/pool/  

[27] D. Matuschek, JoBo: web spider, Dec 2006. Available at: 

http://www.matuschek.net/jobo-menu/  

[28] Yahoo. Available at: http://www.yahoo.com  

[29] R. Carver and Y. Lei, “A general model for reachability testing of 

concurrent programs,” International Conference on Formal 

Engineering Methods, pp. 76-98, 2004. 

[30] Y. Lei, and R. H. Carver, “Reachability testing of concurrent 

programs,” IEEE Transactions on Software Engineering, vol. 32, 

issue 6, pp. 382- 403, 2006. 

 

 

Theodorus Eric Setiadi. He received his Engineering Degree in Electrical 

Engineering and a Masters Degree in Computer System Engineering from 

the Institute of Technology, Bandung, Indonesia, in 2000 and 2002, 

respectively. He is pursuing his PhD degree at the Graduate School of 

Information Systems, University of Electro-Communications, Tokyo, Japan. 

His research interests are debugging systems and execution trace analysis. 

 

Akihiko Ohsuga. He received a B.S. degree in mathematics from Sophia 

University in 1981 and a Ph.D. Degree in Electrical Engineering from 

Waseda University in 1995. From 1981 to 2007, he worked with the Toshiba 

Corporation. Since April 2007, he has been a professor in the Graduate 

School of Information Systems, University of Electro-Communications. His 

research interests include agent technologies, formal specification & 

verification, and automated theorem proving. He is a member of the IEEE 

Computer Society (IEEE CS), the Information Processing Society of Japan 

(IPSJ), the Institute of Electronics, Information and Communication 

Engineers, and the Japan Society for Software Science and Technology. He 

is currently a vice chair of the IEEE CS Japan Chapter. He received the 1986 

Paper Award from the IPSJ. 

 

Mamoru Maekawa. He pursued his university education at Kyoto 

University (BS) and the University of Minnesota (MS and PhD). He has vast 

experience in both the research and development of operating systems (with 

Toshiba, Japan and also with an American software company), as well as in 

teaching computer and information science to both undergraduate and 

graduate levels at several universities (University of Iowa, University of 

Texas at Austin, University of Tokyo, University of 

Electro-Communications). He has published more than 30 books including 

"Operating Systems: Advanced Concepts" (Benjamin/Cummings/Addison 

Wesley) and many titles in areas covering operating systems, software design 

and development, multimedia and artificial intelligence in the Iwanami book 

series. 

 

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_04

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 

http://www.rakudave.ch/?q=jnetmap
http://jakarta.apache.org/commons/pool/
http://www.matuschek.net/jobo-menu/
http://www.yahoo.com/



