
 

 

Abstract—Forecasting the volatility of satellite attitude is a 

meaningful but complicated problem due to the complex 

non-linear characteristics of the standard deviation series, 

which reflects the volatility of satellite attitude. Support Vector 

Regression (SVR) is an efficient machine learning technique 

derived from statistical learning theory and has been 

successfully employed to solve regression problem of time series 

with nonlinearity in recent years. However, the generalization 

capacity of SVRs is greatly depend on their hyper-parameters 

and the process of tuning parameters manually is 

time-consuming. Particle Swarm Optimization (PSO) is a simple 

but effective optimization method inspired by social behavior of 

organisms such as bird flocking and fishing schooling. Thus, this 

paper proposes a hybrid PSO-SVR model to predict the 

volatility of these three attitude angles in satellites: Pitch Angle 

(PA), Roll Angle (RA) and Yaw Angle (YA), respectively. 

Thereinto, PSO is exploited to seek the optimal parameters for 

SVR to achieve satisfactory generalization capacity. The 

standard deviation series generated from telemetry data of 

Attitude Control System belonging to a Chinese satellite was 

used as experimental data to testify the performance of our 

proposed PSO-SVR model. The experimental results indicate 

that the hybrid PSO-SVR model can be a promising alternative 

to forecast the volatility of satellite attitude with relative high 

accuracy compared with grey model, residual grey model, and 

BP neural network. 

 
Index Terms—Satellite Attitude, Volatility, Support Vector 

Regression (SVR), Particle Swarm Optimization (PSO) 

 

I. INTRODUCTION 

atellite attitude refers to the pointing direction of satellites 

flying in the orbit and the stabilization control of the 

attitude plays a crucial role in guaranteeing the successful 

operation of satellites[1]. In order to complete their missions, 

satellites have to meet various specified requirements, 

including these concerning the flying attitude. For instance, 

the antenna of telecommunication satellites should point at 

the earth all the time, whereas what earth observing satellites 

need to do is regulating the windows of their monitoring  
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equipment towards the earth all along. Thus, abnormal flying 

attitude will certainly interrupt the regular process fulfilling 

their tasks. According to statistics, from 1993 to 2013, there 

are approximately 300 catastrophic accidents or temporary 

malfunctions in total, resulting from different reasons, mainly 

including hitting by anomaly, solar array circuit failures, 

losing contact, power system failures, and attitude exceptions, 

etc. Among them, the attitude exceptions (pointing in wrong 

directions or fluctuating fiercely) contribute to an important 

part of them. (http://www.sat-nd.com/failures/). How to avoid 

satellite accidents via regulating the attitude is a challenging 

topic worth studying for researchers. 

The stabilization control of satellite attitude is conducted 

by a vital subsystem named Attitude Control System (ACS). 

One of the commonly used implementation schemes of ACS 

is the three-axis stabilization scheme due to its extensive 

applicability and high pointing precision. The satellite 

attitude discussed in this paper refers to Pitch Angle (PA), 

Roll Angle (RA), and Yaw Angle (YA) in the three-axis 

stabilization scheme. In the current competitive context of 

aviation industry, intense attention involving satellite attitude 

has been mainly given to developing techniques for designing 

attitude control schemes [2]-[4], attitude determination or 

estimation [5], [6], and ACS fault diagnosis [7]-[9]. Great 

achievements have been obtained from these studies. 

However, previous researches have failed to throw light on 

the analysis of the inherent regularity of historical data and 

prevent latent satellite failures concerning attitude exceptions 

in advance. Interruption caused by attitude exceptions still 

cannot be effectively decreased.  

For the prevention of malfunctioning processes, predicting 

the future values of key parameters is the first crucial 

procedure and trying to regulate the questionable component 

if predicted values exceed the given range is another 

important one. Time series prediction in which future 

parameter values are predicted as a function of the values in 

the past is an efficient approach to study the behavior of key 

parameters [10]. According to satellite-related knowledge, a 

lot of real-time telemetry attitude information, including PA, 

RA, and YA, is generated during the in-orbit monitoring and 

managing process and was stored in a huge database as time 

series for future analysis. It is well known that extensive 

researches concerning predicting the volatility of 

stock-market [11] are reported in the literature, as the 

volatility is able to reflect the stabilization level of 

stock-market. Predicting it in advance can provide some 

Forecasting Satellite Attitude Volatility Using 

Support Vector Regression with Particle Swarm 

Optimization 

Zuhua Zhong, Dechang Pi 

S 

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_01

(Advance online publication: 23 August 2014)

 
______________________________________________________________________________________ 



 

assistance for decision making for stock-market participant. 

As there also exists specific relationship between the 

volatility and the state of satellites according to expert 

knowledge and statistical analysis (see Fig. 1), we can regard 

the volatility of satellite attitude as the key parameter 

similarly. Generally speaking, the volatility of three-axis 

attitude usually belong to a given range when satellites 

running regularly. As shown in Fig. 1, the value of PA 

volatility under attitude exception situation is much larger 

than that in the normal situation. Therefore, if we forecast the 

volatility of satellite attitude according to recent historical 

data, its developing trend and incipient attitude failures will 

be found early if the predicted future value of volatility 

exceeds a specified threshold. Impact caused by attitude 

exceptions can be greatly controlled. In this paper, we take 

standard deviation as the indicator representing the volatility 

according to knowledge on statistic and we regard them as 

equivalent terms in the following paper. 
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Fig. 1.  Volatility comparison between normal and abnormal situation. 

 

In recent decades, time series prediction technology has 

been developed into two broad categories: traditional linear 

time series prediction and nonlinear time series prediction. 

The grey model [12] (GM) proposed by Professor Deng 

Julong, as a typical linear model, has been widely employed in 

short-term forecasting of monotonously increasing or 

decreasing data [13]. But their predicting accuracy will be 

greatly reduced if the objective data is highly nonlinear. Thus, 

it is not suitable to be applied in predicting the volatility of 

satellite attitude in consideration of the complex non-linear 

characteristics of the volatility series. Besides, various effort 

has been devoted into studying the artificial neural networks 

[14] (ANN) for that it can effectively solve function 

estimation problem with nonlinearity [15]. However, the 

empirical risk minimization principle followed by ANN make 

ANNs fail to get rid of some inherent deficiencies, e.g., the 

danger of over-fitting, the probability of getting stuck in local 

optimal, and slow convergence velocity. Support vector 

machine (SVM) is a novel and efficient machine learning 

technique proposed by Vapnik in 1995 [16], [17] originally 

for classification purposes [18], [19]. The structural risk 

minimization (SRM) principle implemented by SVMs aims to 

minimize the sum of empirical risk and confidence interval. 

This principle grants SVMs several merits compared with 

ANN, such as obtaining global, unique solution as modelling 

SVMs is dealing with a linearly constrained quadratic 

programming problem. Another advantage of this principle is 

that SVMs can effectively avoid over-fitting because SVMs 

are able to keep a balance between the empirical risk and 

confidence interval. Years later, the basic theory of SVMs 

was extended to support vector regression (SVR) [20], [21] to 

cope with regression problem and has exhibited desirable 

performance in time series prediction problem from various 

domain [22-25]. However, the difficulty in selecting proper 

SVR hyper-parameters substantially slow down the pace of 

resolving practical problems utilizing SVRs. What’s more, 

mature theoretical guidance for choosing SVR parameters is 

still in absence and tuning these parameters manually is 

time-consuming. 

Thus, this paper proposes a hybrid PSO-SVR model to 

predict the volatility of satellite three-axis attitude in which 

Particle Swarm Optimization (PSO) [26], [27] is used to 

select optimal SVR parameters. This forecasting model aims 

at providing assistance for monitoring the stabilization of 

satellite attitude. The performance of PSO-SVR is compared 

with the well-known existing method, GM, Residual GM, and 

BP neural network in order to demonstrate the superiority of 

our proposed model. The remaining of this paper is organized 

as follows: Section 2 provides a brief introduction to support 

vector regression. Basic theory and algorithm of particle 

swarm optimization is elaborated in Section 3. Section 4 

describes the process of SVR parameters optimization using 

PSO. Section 5 presents the procedures of employing 

PSO-SVR model in forecasting the volatility of satellite 

attitude and testifies the forecasting capability of our 

proposed PSO-SVR model with real telemetry dataset from 

an anonymous satellite ACS. Finally, Section 6 draw some 

conclusions. 

 

II. SUPPORT VECTOR REGRESSION 

Regression problems aim to determine a proper 

function ( )f x which accurately describes the relationship 

between input vector x and output value y. SVRs regard these 

models with minimum sum of empirical risk and confidence 

interval as the optimal ones. The core concept of SVR is 

firstly to map the original data into a high-dimensional feature 

space non-linearly, then to find an optimal linear regression 

function in this feature space [20], [21], see Fig. 2. The 

following table list the symbols concerning data in this paper. 

According to Statistical learning theory, SVRs 

approximate the regression function taking the following 

form: 

  ( ) nf x w x b w R   ，
 

(1) 

TABLE I 

NOTATIONS CONCERNING DATA 

G= {(xi, yi)} Dataset 

xi Input vector 

yi Corresponding output 

l Total number of data patterns 
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where Φ is the non-linear mapping function, w, b, ‘ ’ 

denotes the weight vector, bias term, and inner product, 

respectively. The values of w and b are estimated by 

minimizing the following formula based on Structural Risk 

Minimization Principle: 

1

1
( , )

2

l

reg i i

i

R w C L x ,y f


  
 

(2) 

Equation (2) mentioned above describes the regularized 

risk function. The first term 
1

2
w is the regularization term 

which reflects the complexity of the regression solution and 

corresponds to the confidence interval. While the second part 

is the empirical risk usually measured by the ε-insensitive loss 

function defined as: 

( , , ) max(0, ( ) )i i i iL x y f y f x   
 

(3) 

Besides, the positive constant C termed penalty factor keeps a 

balance between empirical risk and confidence interval. The 

value of C determines the importance attached to these two 

items. Increasing the value may lead to pay more attention on 

the empirical risk, otherwise on the confidence interval. 

Usually the larger the value of C, the greater the likelihood of 

over-fitting. Choosing a suitable value of C is crucial during 

the establishment of a favorable SVR model. Equation (3) 

indicates that the loss will be ignored if the difference 

between predicted value and actual value is less than ε, 

otherwise the loss equals the absolute difference between the 

predicting error and the radius of the ε-tube [20] shown in Fig. 

2. 
i ( *

i ) termed slack variables, are used to measure the 

distance between observed value and the upper(lower) 

boundary of the ε-tube (see Fig. 2).Then,(2) can be 

reorganized as function given by (4): 
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(4) 

The minimization of (4) can be solved by exploiting 

Lagrange theory, the corresponding Lagrange is: 
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(5) 

where , , ,i i i i     are so-called Lagrange multipliers. This 

quadratic programming problem can be further transformed 

to an easier handled dual optimization problem, that is: 

Maximize 

1 1

, 1

1

( , ) ( ) ( )

1
( )( ) ( ), ( )

2
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. . 0 C
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l l
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(6) 

Finally, we obtain a global and unique solution, where w is 

the sum of product between every training data and
i i   : 

1

( ) ( )
l

i i i

i

w x  



  
 

(7) 

Theoretically, these training patterns on the boundary of the 

ε-tube possess certain training error . ( )i i ie sign    , so b 

can be computed according to the following formula deriving 

from Karush-Kuhn-Tucker (KKT) conditions: 

( ) (0, )

( ) (0, )

i i i

i i i

b y w x for C

b y w x for C

 

  

      

        
(8) 

For the sake of stability, we take the average value of all the 

b computed from (8) as the eventual value of b. 
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Fig. 2. Left, a nonlinear function in the original space is mapped into the feature space (right) where the function become linear, ε denotes the negligible error 

of SVR and data points located on or outside the tube are so-called support vectors. 
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Thus, the regression function given by (1) can be 

transformed into the following explicit form: 

 
1

( ) ( )
l

i i i

i

f x K x,x b  



  
 

(9) 

 

In (9), ( )iK x,x is the so-called kernel function 

and (( ) ( ))i iK x x x,x   .Using kernel function enables SVR 

to handle dot product of high-dimensional feature space in 

original low-dimensional space without having to know the 

explicit mapping function or compute the value of ( )ix  

directly. Any function matching Mercer’s condition can be 

regarded as the kernel function. The commonly used kernel 

functions are shown in TABLE II. 

 
In highly non-linear spaces, RBF kernel usually achieve 

more satisfactory performance compared with other 

mentioned kernels. Moreover, only one free parameter σ 

having to be determined by users decrease the difficulty in 

parameter-selection procedure and make SVRs more 

attractive. Thus, we employ the RBF as kernel function in this 

work. Note that, according to KKT condition, these data 

patterns lying on or outside the boundary of the ε-tube will 

hold non-zero values of coefficients ( )i i   presented in (7) 

and they are the so-called support vectors [20]. Obviously, it 

is the support vectors that give shape to the regression 

function as the other points keep zero value of 

( )i i   .Generally, increasing the value of ε may lead to 

fewer support vectors and sparser representation of the 

solution. But a larger ε can result in lower fitting accuracy. 

Therefore, ε can be regarded as a trade-off between the 

sparseness of the representation and the fitting efficient [20]. 

In conclusion, three free parameters have to be tuned for 

SVRs with RBF kernel, namely, C, ε and σ. Generally 

speaking, the parameter selection problem devotes to choose 

the optimal parameter-set which can maximize the SVR 

generalization performance. The evaluation of the SVRs 

performance can be fulfilled through the computation of Root 

Mean Squared Error (RMSE), Mean Absolute Percentage 

Error (MAPE), and normalized mean square error (NMSE): 
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III. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization (PSO) algorithm is an iterative 

searching method motivated by swarm intelligence [26], [27]. 

The optimal solution is obtained through the iterative 

movement of “particles” under the guidance of individual 

historical knowledge and social intelligence. It has gained 

worldwide reputation in various optimization problems owing 

to its excellent efficiency and easy-to-handle virtue.  

Each particle is initialized with a position vector and a 

velocity vector. The current best position experienced by each 

particle is denoted as pbest , and the best global position 

determined by social intelligence is denoted by gbest . These 

two positions greatly influence the moving direction of every 

particle. During the searching process, every particle updates 

its position and velocity according to the following equations 

after pbest and gbest having been determined: 

1 1

2 2

( ) ( ) * ( )

( ( ) ( ))

( ( ) ( ))

id id

id id

d id

v t w t v t

c r pbest t x t

c r gbest t x t



 

 
 

(13) 

( ) ( ) ( )id id idx t x t v t 
 

(14) 

 

where t represents the current iteration, 
idx denotes the 

position of particle i on dimension d, whose value is limited in 

the range
max max[ , ]X X , and vid is the velocity of particle i on 

dimension d, whose value is limited in the 

range
max max[ , ]V V . ( )idpbest t is the current best known position 

of particle i  on dimension d at iteration t and ( )dgbest t denotes 

the global best known position on dimension d at iteration t. c1 

and c2 are acceleration coefficients whose value usually 

limited in [0,2], r1 and r2 are random numbers regenerated in 

each iteration with uniform distribute ranged in [0,1]. w , the 

so-called inertia weight proposed by Shi, denotes the 

momentum remaining in its present position [27] and it makes 

a trade-off between the global exploration and local 

exploitation. Larger value of w usually leads to better global 

exploration ability, whereas smaller value of w will result in 

better local convergence capacity. The above-mentioned 

parameters are set according to experiential guidance as 

follows: c1= c2=2, and the adjustment of w employs the 

linearly decreasing weight scheme ranging from 0.9 to 0.4: 

 

( ) ( ).( ) /init end max max endw t w w t t t w   
 

(15) 

 

In (15), 
maxt represents the max iterations, t represents the 

present iterations. 
initw  is the initial weight which is set to be 

0.9 in this work and wend is the ending weight which is set to be 

0.4. Procedures of searching in the solution-space with PSO is 

elaborated in Algorithm 1. 

 

 

Algorithm 1: Particle Swarm Optimization 

 

Input: Amount of particle swarm P, acceleration parameters 

c1 and c2, maximum iterations T, initial weight winit, ending 

weight wend, dimension of particle d. 

Output: global best-known particle gbest. 

//step1: Initializing all particles. 

TABLE II 

THREE COMMONLY USED KERNEL FUNCTIONS 

Radial basis function 

(RBF) 

2( ) exp( / 2 )i iK x ,x x x     

polynomial basis 

function 
( ) (a( ) )d

i iK x ,x x x b   

sigmoid function (x ,x) tanh( (x x) )i iK     
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1. FOR(i=1;i<= P;i++) 

2.     FOR(j=1;j<= d; j++) 

3.         Initialize xij(0) randomly with uniform distribution 

ranged in [-Xmax, Xmax]; 

4.         Initialize vij(0) randomly with uniform distribution 

ranged in [-Vmax, Vmax]; 

5.         pbestij(0)= xij(0);  

6.     END FOR 

7. END FOR 

Fitnessarg min

(0) (0),

where ( (0));

i

i
i

gbest pbest

i pbest

 

 
 

w(0) = winit; 

// step2: Searching the best particle in solution-space 

8. FOR(t=1;t<=T; t++) 

9. //update the pbest of every particle according to the value 

of Fitness 

10.      FOR(i=1;i<=P;i++) 

11.           IF(Fitness(particlei)< Fitness(pbesti(t-1))) 

12.               FOR(j=1;j<= d; j++) 

13.                   pbestij(t)= xij(t); 

14.               END FOR 

15.           END IF 

16.       END FOR 

17. //update the gbest of the swarm according to the value of 

Fitness 

18.       FOR(i=1;i<=P;i++) 

19.           IF(Fitness(pbesti(t))< Fitness(gbest(t-1))) 

20.               FOR(j=1;j<= d; j++) 

21.                   gbestj(t)= pbestij(t); 

22.               END FOR 

23.           END IF 

24.       END FOR 

25.  END FOR 

26. Update w(t) according to Eq.(15); 

27. //update the velocity and position of each particle 

28.     FOR(i=1;i<=P; i++) 

29.         FOR(j=1;j<= d; j++) 

30.             Update vij(t) according to Eq. (13); 

31.             Update xij(t) according to Eq. (14); 

32.         END FOR 

33.      END FOR 

34. Output gbest(T) as the best solution. 

Instructions: 

(1) The value of Fitness (particle) evaluate the performance 

of each particle. As it is usually measured by the error of 

the model using parameters extracting from 

corresponding particle, the smaller the value of Fitness 

(particle), the better the particle. 

(2) The end condition of the PSO algorithm can be matching 

specific accuracy requirement or given maximum iterations. 

This work adopts the latter. 

 

IV. PARAMETERS OPTIMIZATION OF SVR WITH 

PSO 

Choosing proper parameters of SVR is a crucial procedure 

as values of C, ε and σ have a great impact on the 

generalization capacity of SVR. In this study, each particle 

contains three dimensions corresponding to C, ε and σ. Note 

that, the whole dataset should be divided into two 

non-overlapping and independent datasets: training set and 

testing set, among which the former is employed for SVR 

parameter optimization and model establishment procedures 

and the latter is utilized as testing dataset to evaluate the 

model prediction efficiency and robustness. The parameters 

optimization process with PSO can be mainly summarized 

into the following steps: 

Step 1: Set the PSO parameters and initialize the particle 

swarm. Firstly, set the PSO parameters mentioned above, 

including the size of swarm, the dimension of solution-space, 

the maximum iterations, acceleration coefficients c1 and c2, 

and inertia weight. Then generate a population of initial 

particles with random position and velocity. Here we set the 

penalty factor C∈ [0.001, 100], the RBF kernel parameter σ

∈ [0.1, 10], and the ε-insensitive loss function parameter ε

∈ [0, 0.8], respectively. Choose current position as initial 

individual pbest for each particle and set the best pbest in 

particle swarm as the initial gbest . 

Step 2: Evaluate fitness. In order to keep a balance between 

computation cost and effectiveness of parameters 

optimization, we employed the k-fold cross validation to 

evaluate the fitness for each particle. In this technique, the 

training set is randomly divided into k non-intersecting 

subsets with roughly equivalent number of data patterns. For 

every set of SVR parameters extracting from corresponding 

particle, k-1 subsets are selected randomly to be the training 

set for establishing SVR model, and the performance of this 

SVR model is measured by calculating RMSE on the 

remaining one subset according to (10). Repeated this process 

for k times until each of the k subsets has been used once (only 

once) as testing subset in turn. Eventually, the fitness value of 

each particle is estimated by averaging the RMSE value over 

k-subset. 

Step 3: Update pbest and gbest . Update the pbest  and 

gbest  according to the value of fitness. Recalculate the inertia 

weight according to (15).  

Step 4: Calculate the velocity of each particle. Recalculate 

the velocity of each particle with the 

current pbest and gbest by (13). 

Step 5: Update the position of each particle. Update 

position vector for each particle according to (14). 

Step 6: Check stop condition. Repeat the iterative process 

until matching stopping criteria. Otherwise, go to Step 2.  

The above mentioned steps are depicted as an important 

module in Fig. 3. 

 

V. PSO-SVR MODEL IN FORECASTING THE 

VOLATILITY OF SATELLITE ATTITUDE 

Procedures of forecasting the volatility of satellite attitude 

with our proposed PSO-SVR model are depicted in Fig. 3. 

The following two subsections present the dataset 

introduction and data preprocessing procedures. 

A. Datasets 

This study was carried out based on a space project. The 

experimental dataset in this work is some telemetry data 
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coming from the ACS of an anonymous satellite in this project. 

We conducted experiments on the three-axis attitude with 

telemetry dataset on June 10, 2011. We firstly transform the 

original data into standard deviation series with equal interval 

as standard deviation can reflect the volatility of each period. 

According to expert knowledge and statistical analysis on 

nine months of data, we consider half an hour as the proper 

interval. TABLE III was obtained based on statistical results 

and experts advise. 

B. Data Preprocessing 

This subsection aims to give a brief introduction to the 

preprocessing procedures including data cleaning, data 

transformation, reconstruction of standard deviation series, 

and normalization of reconstructed data patterns. Above 

mentioned procedures are presented exhaustively as follows: 
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Training SVR with optimal 

parameters

SVR forecasting for testing 
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Output data patterns
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Fig. 3.  Overall architecture for foresting the volatility of satellite attitude using SVR with PSO. 
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(1) Data cleaning. The original attitude data is probably 

contaminated by burst noise, which is named as outlier. 

Outliers are monstrous or extremely small data frame 

resulting from decoding errors or transmission failures. This 

procedure aims at eliminating these outliers as the existence 

of outliers may influence the volatility. 

(2) Data transformation. The primary task of this 

procedure is to transform the original data into standard 

deviation series with equal time interval. 

(3) Reconstruction of standard deviation series. Time 

series prediction method based on SVR needs to find a 

regression function fitting the historical input vector and 

future output value. The original time series should be 

transformed into data patterns T= {(X1, Y1),...,(Xi, 

Yi),…,(Xn-m+1,Yn-m+1)}∈ 1( )n mX Y    firstly, where 

1 2 +1

2 3 +1 +2

1 2 1

,

...

m m

m m

n-m n-m n n

x x x x

x x x x
X Y

x x x x  

     
   

      
       
   

        

 

Each row of the matrix X represents an input vector, and the 

similar row in matrix Y is the corresponding output value. m is 

the embedded dimension. Then, the n+1-th output value can 

be predicted ahead by regression function described as 

follows: 

+1 1

1

( )K( , )n i i i n m

l

i

x X X b  

 



  
 

(15) 

where Xi refers to the ith row of matrix X, Xn-m+1 is the last 

testing pattern and l denotes the number of training patterns. 

In the traditional context of time series prediction, there is no 

mature theoretical guidance for choosing proper embedded 

dimension. This work determines the optimal m according to 

the MAPE (calculate from (11)) measured on testing set based 

on the Final Error Minimization Principle. We conducted 

experiments on PA, RA, YA with the value of m ranging from 

1 to 10, respectively. Fig. 4 shows that the value of m has an 

impact on the forecasting performance of SVRs. The three 

free parameters of SVR are fixed in order to get rid of their 

influence on the final result. We take the m which minimized 

the MAPE on the testing set as the optimal embedded 

dimension. So the optimal dimensions for PA, RA, and YA 

are 3, 4, and 7 respectively.   
 

(4) Normalization of reconstructed data patterns. Before 

the establishment of the SVR models, in order to facilitating 

the training procedure and improve the predicting 

performance, the experimental data, including the training 

patterns and testing pattern generated from above procedure 

should be scaled to range in [0,1] based on the following 

formula: 

min

max min

( )
'

x x
x

x x




  

(16) 

 

where x’ is the normalized value, x is the original value, and 

minx (
maxx ) is the minimal (maximum) value of corresponding 

dimension, respectively. Note that the predicted outputs will 

be remapped to their original value space by the inverse 

mapping function of (16) before calculating any performance 

criterion.  
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Fig. 4.  Effect of embedded dimension m on forecasting accuracy, SVR 

parameters was fixed to reduce their influence. 

 

C. Experimental Result and Discussion 

All experiments were conducted on a PC equipped with 

Intel(R) Core i5-3470M CPU and 4G RAM running on 64-bit 

Windows 7 Professional Edition. All above mentioned 

algorithms was implemented in JAVA and the experimental 

data was stored in Oracle 11g. We recoded the source code of 

LIBSVM toolbox programmed in JAVA, which was proposed 

by Chang and Lin and can be downed from: 

http://www.csie.ntu.edu.tw/~cjlin/ [28]. As previously 

discussed, we proposed a PSO-SVR model to forecast the 

volatility of satellite three-axis attitude. We firstly partitioned 

the preprocessed data patterns into two disjointing parts with 

the ratio 90% and 10%, wherein 90% of the older data 

patterns were used as training set for parameters optimization 

and predicting model establishment, and the most recent 10% 

data patterns were used as testing set to evaluate the fitting 

effectiveness and forecasting capacity. Based on that, we can 

obtain one-step ahead future prediction and several 

step-ahead prediction if we establish the sliding window 

mechanism. 

In the training stage, we firstly conducted the optimization 

process, which aims at obtain optimal parameters for SVR. 

The fundamental theory and the process of SVR parameters 

optimization using PSO is elaborated exhaustively in Section 

3 and Section 4. We set the size of particles to be 30, the 

maximum iterations to be 50 and 5-fold cross validation was 

adopted to evaluating the fitness value of each particle. The 

obtained optimal parameters of PSO-SVR model and 

corresponding forecasting accuracy for different attitude 

TABLE III 

RELATIONSHIP BETWEEN FLUCTUATING LEVEL AND RANGES 

OF VOLATILITY 

Case 
fluctuating 

level 

Ranges of attitudes volatility 

PA RA YA 

1# Relative 

stable 

0-0.01 0-0.005 0-80 

2# Slight 

unstable 

0.01-0.1 0.005-0.1 80-100 

3# Serious 

unstable 
>0.1 

>0.1 >100 
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angles are illustrated in TABLE IV. Satisfactory forecasting 

accuracy can be observed in TABLE IV, especially for YA 

testing set. 

 
With the purpose of exhibiting the superiority of PSO-SVR, 

contrast experiments was conducted on the same dataset using 

three existing prediction methods: backward propagation 

neural network (BPNN), GM (1, 1) and Residual GM (1, 1). 

With regards to BPNN, we taken the standard three-layer 

BPNN as the benchmark. The number of input layer nodes I is 

equal to the dimension of input vector, and the output layer 

nodes is equal to 1 corresponding to the output vector. 

Besides, the number of hidden layer nodes is set to be 2*I+1 

according to the Kolmogorov Theorem. So that we 

established 3-7-1 BP structure for PA, 4-9-1 BP structure for 

RA, and 7-15-1 BP structure for YA. The learning rate and 

momentum is set to be 0.01 and 0.9, respectively, as a BP 

network constructed with these learning parameters may 

achieve desirable prediction accuracy with relative few 

epochs [15]. In addition, the number of epochs in this work is 

set to be 1000 and the sigmoid function is used as transfer 

function. As for GM, we used the GM (1, 1) and Residual GM 

(1, 1) as comparison methods, in which the first ‘1’ means 

only for one dimension series and the second one means 

one-step ahead prediction. Residual GM (1, 1) was improved 

based on GM (1, 1). Note that, different from PSO-SVR and 

BPNN, the GM (1, 1) and Residual GM (1, 1) was executed 

on the whole dataset without reconstruction and 

normalization-process. 

Comparison of performance between the four 

above-mentioned methods is shown in Table V and Table VI. 

The obtained evaluations values of training set in Table V 

reflect the ability of learning the structure of data patterns. 

Smaller these values, the better the fitting effect on training 

set. While the evaluations measured on the testing set Table 

VI indicates the generalization potential and forecasting 

accuracy extending the established model to unused testing 

set. It indicates that the proposed PSO-SVR could achieve 

desirable fitting effect on the training set, but also superb 

generalization capacity on the testing set. Whereas the 

performance of all the other three model is not so satisfactory 

compared with PSO-SVR. Besides, the performance of 

BPNN is much better than that of linear methods GM (1, 1) 

and Residual GM (1, 1) as BPNN can also cope with 

nonlinear regression problem. Residual GM (1, 1) is slightly 

better than GM (1, 1). 

In order to present a visualized performance comparison, 

Fig. 5~Fig. 7 depict the real observations and predicted values 

of PA, RA, and YA volatility, respectively. Obviously, the 

forecasting results of GM (1, 1) merely take on a 

monotonously decreasing or increasing trend, while the actual 

data of volatility possesses complex non-linearity, 

accompanying certain fluctuation. The residual GM (1, 1) can 

merely capture the rough changing trend of dataset. Generally 

speaking, the more non-linear the objective data, the smaller 

the forecasting accuracy of GM (1, 1) and residual GM (1, 1). 

The proposed PSO-SVR model exhibited excellent fitting and 

forecasting performance even though the change of data 

presents great fluctuation and complex non-linearity. As 

shown in Fig. 5~Fig. 7, many predicted values using 

PSO-SVR are overlapped with their actual observations and 

most of the turning points can be well captured by PSO-SVR. 

As BPNNs require more training data, under-fitting 

phenomenon is always happening. Biggish error can be 

distinctly observed at the wave crest and wave hollow in Fig. 

TABLE IV 

FORECASTING ACCURACY AND OPTIMAL PARAMETERS 

FOR PAO-SVR MODEL 

type m 

SVR parameters Traini

ng 

MAPE

/% 

Testin

g 

MAPE

/% 
C ε σ 

PA 3 98.821

9 

1.323

E-5 

9.2693 1.8607 2.2343 

RA 4 31.720

1 

0.0845 2.2547 1.5201 3.8978 

YA 7 89.846

9 

5.556

E-4 

1.5052 2.1333 0.791 

 

TABLE V 

COMPARISION OF THE FORECASTING RESULTS FOR TRAINING 

SET AMONG PSO-SVR, BPNN, GM (1, 1) AND RESIDUAL GM (1, 1). 

Attitude 
Prediction 

Models 

MAPE

（%） 
RMSE NMSE 

PA PSO-SVR 1.86 1.57e-4 0.0864 

BPNN 3.10 1.81e-4 0.1158 

GM(1,1) 10.56 8.93e-4 0.9244 

Residual 

GM(1,1) 
7.43 7.90e-4 0.7228 

RA PSO-SVR 1.52 2.12e-4 0.1562 

BPNN 3.17 3.36e-4 0.1767 

GM(1,1) 10.07 5.24e-4 0.9680 

Residual 

GM(1,1) 
5.92 3.06e-4 0.3313 

YA PSO-SVR 2.13 0.0049 2.185e-5 

BPNN 38.64 0.0806 0.0059 

GM(1,1) 320.55 1.12 0.9484 

Residual 

GM(1,1) 
93.61 0.6388 0.3068 

Note: evaluation criteria of GM (1, 1) and Residual GM (1, 1) was 

calculated on the whole dataset. 

 

 

 
TABLE VI 

COMPARISION OF THE FORECASTING RESULTS FOR TESTING SET 

AMONG PSO-SVR, BPNN, GM (1, 1) AND RESIDUAL GM (1, 1). 

Attitude 
Prediction 

Models 

MAPE

（%） 
RMSE NMSE 

PA PSO-SVR 2.23 9.75e-5 0.4559 

BPNN 5.40 2.52e-4 0.6521 

GM(1,1) 10.56 8.93e-4 0.9244 

Residual 

GM(1,1) 
7.43 7.90e-4 0.7228 

RA PSO-SVR 3.91 1.73e-4 0.1805 

BPNN 7.17 3.06e-4 0.2864 

GM(1,1) 10.07 5.24e-4 0.9680 

Residual 

GM(1,1) 
5.92 3.06e-4 0.3313 

YA PSO-SVR 0.7912 0.0227 0.0012 

BPNN 4.66 0.1492 0.0523 

GM(1,1) 320.55 1.12 0.9484 

Residual 

GM(1,1) 
93.61 0.6388 0.3068 

Note: evaluation criteria of GM (1, 1) and Residual GM (1, 1) was 

calculated on the whole dataset. 
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7. Besides, the training process with BPNN is more 

time-consuming compared with SVR. Therefore, it can be 

concluded that the studied PSO-SVR is more effective for 

forecasting the volatility of satellite attitude.  
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VI. CONCLUSIONS 

This paper proposes a hybrid PSO-SVR forecasting model 

to predict the volatility of satellite attitude. The volatility is an 

important indicator reflecting the running state of satellites 

according to experts’ knowledge and statistical analysis of the 

telemetry data. In the PSO-SVR approach, PSO is employed 

to determine suitable SVR parameters since improper 

parameters always lead to awful performance. Experiments 

conducted on the real telemetry data aim to testify its 

feasibility in forecasting the volatility of satellite attitude. The 

experimental results show that PSO-SVR can obtain better 

performance compared with the existing prediction methods, 

such as neutral network BPNN and grey model GM (1, 1), 

residual GM (1, 1).  It exhibits great potential in capturing 

complex relationship between input and output and can avoid 

trapping in the local minimal that Neutral networks usually  
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Fig. 7.  Comparison between forecasting value with different prediction 

model and actual observations of YA volatility. 

 

encounter. However, this forecasting method involves priori 

knowledge about specific satellite, such as the time interval 

which is relative to the usual abnormality duration, and 

relationship between fluctuating level and volatility ranges.  

The PSO-SVR model can be used as real-time forecasting 

model to detect latent attitude problem in advance if the 

up-to-date telemetry data is used as experimental dataset. In 

this sense, the time taken by the whole procedure should be as 

least as possible so that there is enough time for regulating 

attitude. Furthermore, efforts will be made towards 

combining long-term prediction method with SVR in order to 

give a long-term and accurate forecast of the satellite attitude 

volatility. More importantly, the proposed method could be 

further applied in predicting other crucial parameters of 

satellite. 
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