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Abstract—In this paper, the wavelet-based fractal analysis
is applied to analyze an electrocorticogram (ECoG) signal
recorded from an epilepsy patient. A spectral exponent γ
yielded from the wavelet-based fractal analysis is determined
from a slope of log

2
var(dm,n)-m graph over an interval

of levels. Rather than a single spectral exponent, multiple
spectral exponents determined from various intervals of levels
corresponding to various ranges of spectral subbands of the
ECoG signal are examined. From the computational results,
it is observed that the spectral exponents of the ECoG signal
estimated from different intervals of levels m exhibit different
intriguing characteristics. It is also shown that the spectral
exponents of the ECoG signal obtained during epileptic seizure
events are significantly different from those of the ECoG signal
obtained during non-seizure period. Furthermore, during non-
seizure period the spectral exponent of the ECoG signal tends to
decrease as the corresponding range of frequencies of subband
decreases. On the contrary, for almost all spectral subbands the
spectral exponents of the ECoG signal tend to be comparable
except the lowest frequency subband.

Index Terms—wavelet analysis, fractals, epilepsy, seizure,
electrocorticogram

I. INTRODUCTION

Epilepsy is a common brain disorder in which clusters
of neurons signal abnormally [1]. About 50 million people
have epilepsy worldwide [2]. Epileptic seizures are mani-
festations of epilepsy [3]. Electroencephalogram (EEG), a
signal that quantifies the electrical activity of the brain, is
commonly used to assess behaviors of the brain and also
detect abnormalities of the brain. The EEG is also crucial
for the fundamental diagnosis of epilepsy [1]. EEGs are
typically recorded using electrodes placed on the scalp. A
scalp EEG is however very sensitive to signal attenuation and
artifacts, and has poor spatial resolution. An intracranial EEG
or an electrocorticogram (ECoG) is an alternative approach
to measure the electrical activity of the brain by placing
electrodes on the cortex.
Concepts and computational tools derived from the study

of complex systems including nonlinear dynamics and frac-
tals gained increasing interest for applications in biology and
medicine [4]. One of the reasons is that physiological signals
and systems can exhibit an extraordinary range of patterns
and behaviors [4]. Furthermore, there is evidence that some
biological systems can exhibit scale-invariant or scale-free
behavior, in the sense that they do not have a characteristic
length or time scale that dominates the dynamics of the
underlying process [5]–[7].
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The mathematical concept of a fractal is commonly asso-
ciated with irregular objects that exhibit a geometric property
called scale-invariance or self-similarity [4], [8]. Fractal
forms are composed of subunits resembling the structure
of the macroscopic object [4] which in nature can emerge
from statistical scaling behavior in the underlying physical
phenomena [9]. Many physical, biological or physiological
signals may however not exhibit just a simple monofractal
scaling behavior [10]. These multifractal signals are associ-
ated with different self-similar behaviors on various scales
ranging from small to large scales.
The wavelet transform is a natural tool for characterizing

scale-invariant or self-similar signals and plays a significant
role in the study of self-similar signals and systems [9],
in particular 1/f processes [9], [11]. In [11], a wavelet-
based representation for 1/f processess was developed where
the spectral exponent γ is determined from the slope of
the log2-var of wavelet-coefficients versus the level. The
spectral exponent specifies the distribution of power from
low to high frequencies. The spectral exponent is directly
related to self-similar parameter [12], and also can be used
for long-range correlation characterization [13]. The wavelet-
based approach [11] has been widely applied to examine the
scale-invariant characteristics of epileptic EEG/ECoG data
associated with various states of the brain [14]–[16] and
also compared to the other common measures including the
correlation dimension [17] and the Hurst exponents [18],
[19].
Typically, a single spectral exponent determined from a

specific interval of levels of epileptic EEG/ECoG data is ex-
amined. In [20], multiple spectral exponents determined from
various intervals of levels (or ranges of spectral subbands) of
the epileptic ECoG epochs. It was shown that the epileptic
ECoG epochs are associated with different spectral exponents
depending on the interval of levels they are determined from.
This suggests that the epileptic ECoG epochs are associated
with different self-similar behaviors on various scales. In this
paper, the study is extended to examine characteristics of
multiple spectral exponents of long-term continuous ECoG
data determined from various intervals of levels.

II. MATERIALS AND METHODS

A. ECoG Data
Long-term ECoG data of an epilepsy patient at University

Hospitals of Cleveland, Case Medical Center in Cleveland,
Ohio, USA are analyzed. With the consent of the patient,
the long-term ECoG data were recorded using a Nihon-
Kohden EEG system (band-pass (0.10–300 Hz) filter, 1,000
Hz sampling rate) prior to surgery. A 6-hour segment of
single-channel ECoG data examined is acquired from within
the focal region of epileptic seizures. This ECoG segment
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Fig. 2. The corresponding spectral subbands of the 10th order of Daubechies wavelets at the levels m = 1, 2, . . . , 7.

contains four epileptic seizure events occurring between 24m
47s and 27m 36s, 1h 33m 57s and 1h 25m 45s, 2h 57m
19s and 3h 2m 11s, and 4h 18m 50s and 4h 20m 1s. The
ECoG signal is shown in Fig. 1. In general, both magnitude
and pattern of the ECoG signal change significantly during
epileptic seizure events.

B. Wavelet-Based Fractal Analysis
Models of 1/f processes are generally represented using

a frequency-domain characterization. The dynamics of 1/f
processes exhibit power-law behaviors [21] and can be
characterized in the form of [11]

Sx(ω) ∼
σ2
x

|ω|γ
(1)

over several decades of the frequency ω, where Sx(ω) is
the Fourier transform of the signal x(t) and γ denotes the
spectral exponent.
In [11], [22], it was proved that a random process x(t)

constructed by the wavelet basis expansions

x(t) =
∑

m

∑

n

dm,nψm,n(t) (2)

where ψm,n(t) is an orthonormal wavelet basis and dm,n are
the wavelet coefficients has a time-averaged spectrum

Sx(ω) = σ2
∑

m

2−γm
∣

∣Ψ
(

2−mω
)
∣

∣

2 (3)

that is nearly-1/f , i.e.,

σ2
L

|ω|γ
≤ X(ω) ≤

σ2
U

|ω|γ
(4)

for some 0 < σ2
L ≤ σ2

U < ∞. Variances of the wavelet coef-
ficients dm,n that are a collection of mutually uncorrelated,
zero-mean random variables are

var(dm,n) = σ22−γm. (5)

The spectral exponent γ of a 1/f process can there-
fore be determined from the linear relationship between
log2 var(dm,n) and levels m, i.e.,

γ =
∆ log2 var(dm,n)

∆m
. (6)

The steps for computing the spectral exponent γ of the
time series x using the wavelet-based fractal analysis are as
follows [20]:
1) Decompose an ECoG epoch into M levels using the
wavelet-basis expansions to obtain the wavelet coeffi-
cients dm,n where levels m = 1, 2, . . . ,M .

2) Compute the variance of wavelet coefficients dm,n

corresponding to each level m, var(dm,n).
3) Take the logarithm to base 2 of the corresponding
variances of wavelet coefficients, log2 var(dm,n).

4) Compute the spectral exponent γ by estimating the
slope of a log2 var(dm,n)-m graph between the spec-
ified levels m.

C. Analytic Framework
In the computational experiment, the ECoG signal is par-

titioned into 5-second epochs without overlapping segments.
The state of the brain the ECoG epochs are associated
with is divided into two states: during non-epileptic seizure
period and during epileptic seizure event. The epochs of
ECoG signal are decomposed into seven levels using the
10th order of Daubechies wavelet (Db10). The spectral
subbands corresponding to the levels m = 1, 2, . . . , 7 range
approximately between 250.00–500.00 Hz, 125.00–250.00
Hz, 62.50–125.00 Hz, 31.25–62.50 Hz, 15.63–31.25 Hz,
7.81–15.63 Hz, and 3.91–7.81 Hz, respectively. The spectral
subbands of the 10th order of Daubechies wavelet corre-
sponding to levels m = 1, 2, . . . , 7 are shown in Fig. 2.
The spectral exponents of ECoG epochs are estimated

using a linear least-squares regression technique from five
intervals of levels referred to as intervals L1, L2, L3, L4, and
L5: m = 1, 2, 3, m = 2, 3, 4, m = 3, 4, 5, m = 4, 5, 6, and
m = 5, 6, 7, respectively. The spectral exponents determined
from the intervals L1, L2, L3, L4, and L5 are, respectively,
referred to as γ1, γ2, γ3, γ4, and γ5.

III. RESULTS
The spectral exponents γ1, γ2, γ3, γ4 and γ5 of the

first, second, and last 2-hour segments of the ECoG signal
are shown in Figs. 3(a)–(e), Figs. 4(a)–(e), and Figs. 5,
respectively. In addition, the spectral exponents γ1, γ2, γ3,
γ4, and γ5 of the ECoG signal are illustrated as a color-
map plot in Fig. 6. The color bar indicates the magnitude
of spectral exponent where the black and the white colors
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Fig. 3. The corresponding spectral exponents of the first 2-hour segment of the ECoG signal determined from various intervals of levels.
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Fig. 4. The corresponding spectral exponents of the second 2-hour segment of the ECoG signal determined from various intervals of levels.
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Fig. 5. The corresponding spectral exponents of the last 2-hour segment of the ECoG signal determined from various intervals of levels.
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Fig. 7. The spectral exponents of the ECoG signal around the corresponding epileptic seizure events.
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Fig. 8. Comparison of the spectral exponents of the ECoG signal obtained during non-epileptic seizure period and epileptic seizure events.

denote the spectral exponents of -0.6 and 5.8, respectively.
In general, the spectral exponents γ1, γ2, γ3, and γ4 of the
ECoG signal tend to dramatically increase from the baseline
during epileptic seizure events while the spectral exponent
γ5 of the ECoG signal tend to slightly decrease from the
baseline during epileptic seizure event.
The most intriguing characteristic of spectral exponents

of the ECoG signal obtained during epileptic seizure events
is observed at the interval L3. Further, in Figs. 7(a)–(d),
the spectral exponents γ3 (plotted in black) around the first,
second, third, and last epileptic seizure events are compared
to the corresponding ECoG signal (plotted in gray), respec-
tively. Evidently, the significant changes of spectral exponent
γ3 of the ECoG signal occur about the beginning and the end
of epileptic seizure events.
Box plots shown in Fig. 8(a)–(e) compares the spectral

exponents of the ECoG epochs obtained during non-seizure
period and epileptic seizure events determined from intervals
L1, L2, L3, L4, and L5, respectively. It is shown that the
spectral exponents γ1, γ2, γ3, and γ4 of the ECoG epochs
obtained during epileptic seizure events tend to be higher
than those of the ECoG epochs obtained during non-seizure
period. On the contrary, the spectral exponents γ5 of the
ECoG epochs obtained during epileptic seizure events tend
to be lower than those of the ECoG epochs obtained during
non-seizure period.
In addition, the spectral exponents γ1, γ2, γ3, γ4, and

γ5 of the ECoG signal obtained during non-seizure period

and epileptic seizure events are compared in box plots
shown in Fig. 9(a)–(b), respectively. It is shown that the
characteristics of the spectral exponents γ1, γ2, γ3, γ4, and
γ5 of the ECoG signal obtained during non-seizure period
and epileptic seizure events are remarkably different. The
means and the standard deviations of the spectral exponents
of the ECoG epochs obtained during non-seizure period and
epileptic seizure events are summarized in Table I.

IV. DISCUSSION

The computational results show that the spectral exponents
of the ECoG signal vary according to the state of the brain
and also the interval of levels (ranges of spectral subbands)
from which the spectral exponents are determined. In gen-
eral, the spectral exponents determined from higher fre-
quency subbands (62.50–500.00Hz, 31.25–250.00Hz, 15.63–
125.00Hz, and 7.81–62.50Hz subbands) of the ECoG signal
exhibit similar characteristics while the characteristic of the
spectral exponent determined from the lowest frequency sub-
band (3.91–31.25Hz subband) is completely different from
the others. During epileptic seizure events the spectral ex-
ponents determined from 62.50–500.00Hz, 31.25–250.00Hz,
15.63–125.00Hz, and 7.81–62.50Hz subbands of the ECoG
signal tend to be higher but the spectral exponent determined
from the 3.91–31.25Hz subband of the ECoG signal tend
to be lower compared to the baseline of the corresponding
spectral exponents.
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Fig. 9. Comparison of the spectral exponents of the ECoG signal determined from intervals L1, L2, L3, L4, and L5.

TABLE I
STATISTICAL VALUES (MEAN±S.D.) OF THE SPECTRAL EXPONENTS OF
THE ECOG SIGNALS OBTAINED DURING NON-SEIZURE PERIOD AND

EPILEPTIC SEIZURE EVENTS.

Interval
State

Non-seizure Seizure

L1 3.4605±0.4565 3.6405±0.7511

L2 2.7238±0.5162 3.2396±1.1769

L3 2.3560±0.2405 3.8697±1.2158

L4 1.9226±0.3050 3.0966±0.7494

L5 1.7028±0.5911 1.4898±1.1125

In addition, the spectral exponents determined from the
highest frequency subbands (62.50–500.00Hz and 31.25–
250.00Hz subbands) exhibit another intriguing characteristic
after the end of epileptic seizure events. At those subbands
there are substantial decrease in the spectral exponents of the
ECoG signal right after the end of epileptic seizure events
before the spectral exponents gradually increases returning
to the baseline. The spectral exponent determined from
the 15.26–125.00Hz subband of the ECoG signal clearly
manifests epileptic seizure events. This also suggests that
the beginning and the end of epileptic seizure events can be
identified.
During non-seizure period, the spectral exponent tends

to decrease as the corresponding range of frequencies of
subband of the ECoG signal decreases. That is, the spectral
exponent determined from the 62.50–500.00Hz subband of
the ECoG signal tends to be higher than that determined
from the 31.25–250.00Hz subband of the ECoG signal that
is higher than that determined from the 15.63–125.00Hz
subband of the ECoG signal, and so on. However, during
epileptic seizure events, the spectral exponents determine
from various spectral subbands of the ECoG signal tend to
be comparable except the spectral exponent determined from
the 3.91–31.25Hz subband that tends to be lower than the
others.

V. CONCLUSIONS
In this paper, it is evidenced that the spectral exponent of

the ECoG signal varies according to the state of the brain

and also exhibits distinguishable characteristics of epileptic
seizure events regardless of the spectral subband of the ECoG
signal. Furthermore, the spectral exponents determined from
different spectral subbands of the ECoG signal obtained
from the same state of the brain, i.e, non-seizure period
and epileptic seizure event, exhibit distinctive characteristics.
These remarkable characteristics of the spectral exponents of
the ECoG signal can be further applied for epileptic seizure
detection.
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