
Automated Test Generation for Object-Oriented
Programs with Multiple Targets

Hiroki Takamatsu, Haruhiko Sato, Satoshi Oyama, Masahito Kurihara

Abstract—Software testing is costly. In particular, testing
object-oriented programs is complicated and burdensome be-
cause of the difficulty in generating method sequences for
creating objects and changing their states appropriately to
achieve high branch coverage. Automated test generation based
on static and dynamic analysis is not only an effective approach
to saving time and reducing the burden of testing, but also an
efficient way to find bugs.

Seeker is an implementation for automated test generation
that involves the generation of method sequences using static
and dynamic analysis. However, when we want to change some
values of variables to increase the branch coverage, the system
fails to generate method sequences to achieve the desired states
of objects with multiple targets (meaning fields or variables).

In this paper, we extend the functionalities of the system
for automated test generation so that it can handle multiple
targets to cover. Our approach identifies all targets involved in
uncovered branches and evaluates method sequences according
to a fitness function, while applying a search strategy to
suppress combinatorial explosion. The experimental results with
several open source projects show that our extension achieves
higher branch coverage than the original system and the
effectiveness of the extension tends to vary according to the
specific features of the projects.

Index Terms—Automated test generation, Dynamic Symbolic
Execution, Method sequence, Branch coverage

I. INTRODUCTION

SOFTWARE testing, the process of executing a program
with the intent of finding errors, is an important process

in software development for building high reliability systems.
However, software testing is often too costly for practitioners
to spare sufficient time for. This is the case particularly when
it comes to testing object-oriented programs, because when
testing object-oriented programs, we have to not only supply
appropriate arguments to the method calls but also insert
into the code a sequence of method calls to change the
states of the objects appropriately before verifying testing
conditions. This motivates the reduction of the burden of
software testing, and in order to achieve such a goal, au-
tomated test generation has become an active research field
in the software engineering community. An example is the
Seeker [1], an implementation of automated test generation
for object-oriented programs, developed by Thummalapenta,
et al. However, the current version of Seeker has a limitation.
When we want to modify the values of multiple targets
(meaning fields or variables) in order to cover a condition
in a certain execution path, it fails to generate test cases
that have to involve an appropriate sequence of method calls
before testing conditions. In general, branches that involve

Manuscript received June 30, 2014; This work was supported by JSPS
KAKENHI Grant Number 25330074.

H. Takamatsu, H. Sato, S. Oyama and M. Kurihara are with
the Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, Japan, 060-0814. E-mail: {takamatsu,
haru}@complex.ist.hokudai.ac.jp, {oyama, kurihara}@ist.hokudai.ac.jp

Fig. 1. An Overview of Dynamic Symbolic Execution

multiple targets tend to be complicated, and thus, we need to
sufficiently test such branches [2]. Hence, testing branches
associated with multiple targets is a critical program.

In this paper, we present an extension to the functionalities
of the Seeker so that it can handle multiple targets in the con-
ditions to cover more branches. The expected combinatorial
explosion in the number of candidate sequences of method
calls is suppressed by a search strategy based on heuristic
evaluation of the candidates.

The rest of the paper is structured as follows. Section II
describes the background and related works of automated test
generation for object-oriented programs. In Section III, we
describe the existing approach and its problems. In Section
IV, we explain the idea of the proposed method. In Section
V, we present our experiments and the results and in Section
VI, we describe our conclusions and discuss future work.

II. BACKGROUND AND RELATED WORKS

A. Dynamic Symbolic Execution

Dynamic Symbolic Execution (DSE) [3], [4] is a state-of-
the-art automated test generation technique. DSE, also called
Concolic testing [5], [6], combines tests with concrete values
and symbolic execution [7]. Figure 1 shows an overview of
DSE. DSE applies concrete and symbolic execution alter-
nately. Given a program and a method to be tested, DSE
first insert into the program the necessary fragments of code
to log the changes of values of variables and the events to be
raised in the execution, and then by supplying random values
for the arguments, it executes the program and the method
in order to collect execution traces. From those traces, DSE
collects the constraints (conditions) which, in conjunction,
uniquely identify a certain path that was executed. Then DSE
modifies the set of those constraints by negating one of them
(typically, the one that is most apart from the root of the
execution tree) in order to specify yet another path, say p,

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_06

(Advance online publication: 23 August 2014)

__

Source code 1. Graph Class
1 class Graph {
2 private ArrayList<Edge> edges;
3 private ArrayList<Node> nodes;
4
5 public void AddNode(Node n) {
6 if (n == null) throw new Exception();
7 nodes.Add(n);
8 }
9 public void AddEdge(Node source, Node target

){
10 if (nodes.Contains(source) &&
11 nodes.Contains(target)) {
12 // Case2 reach here
13 edges.Add(source, target);
14 } else {
15 // Case1 reach here
16 throw new Exception();
17 }
18 }
19 ...
20 }

Source code 2. Example Test Cases for Graph#AddEdge()
1 // Case1: A simple test case
2 Graph graph = new Graph();
3 graph.AddEdge(null, null);
4 // assert something
5
6 // Case2: A test case with method sequence
7 Graph graph = new Graph();
8 Node s1 = new Node();
9 Node s2 = new Node();

10 graph.AddNode(s1);
11 graph.AddNode(s2);
12 graph.AddEdge(s1, s2);
13 // assert something

to be tested. The modified set of constraints is then passed
to a standard SMT (Satisfiability Modulo Theory) solver [8],
which solves a satisfiability problem with a built-in theory
(such as the theory for integer arithmetic). The solution, if
any, represents a new set of values to the variables to ensure
the execution of the intended new path p in the next test
run. Repeating this procedure, DSE can efficiently identify
the sets of values for the variables to test a collection of
different execution paths to increase the branch coverage.

B. Method Sequence

Software testing for modern programs, in particular object-
oriented programs written in, say, C# or Java, often requires
a sequence of method calls (in short, method sequence) to
obtain desired object states [9], [10], [11]. In other words,
to achieve high coverage, it is necessary that the states of
the objects specified as a receiver or an argument be turned
into appropriate states that would meet the testing condition.
This means that programmers (or automated test generation
systems) have to insert into the code a method sequence to
create and transform objects before calling a method to be
tested.

For example, suppose we want to test a method AddEdge,
which adds an edge to a graph in Source code 1. The goal
is to achieve full coverage of AddEdge. When we execute
Case1 in Source code 2, we reach the line 16. The program
raises an exception because the graph has no nodes. To test
the ability of the operation to add an edge to a graph, we
must add method calls to add nodes to a graph in advance,
such as Case2 in Source code 2. When we execute Case2
in Source code 2, we reach the line 13. Now we have been

able to cover a code block different from Case1 execution.
This implies that the block was only reachable by test cases
with a proper method sequence.

In this manner, if automated test case generation tools
fail to consider the generation of method sequences, the
generated test cases will not cover sufficiently many code
blocks of object-oriented programs. This implies that to test
the behavior of object-oriented programs satisfactorily, it is
often necessary to properly generate method sequences to set
appropriate conditions before testing.

III. SEEKER

Seeker is one of the several novel implementations for
automated test generation with method sequences on C#. It
uses Pex as the engine for DSE. Seeker is based on the
technique of DSE and generates test cases using dynamic
and static analyses of programs. Our approach is based on
Seeker’s algorithm, which we illustrate in this section.

Seeker takes a target method to generate test cases as an
input and finally outputs test cases with a method sequence.
Seeker repeatedly applies static and dynamic analyses to
the target program. In each step, Seeker grows the method
sequences and reduces candidates of method sequences that
do not contribute to increasing the coverage. In the following,
we will provide an overview of Seeker and then briefly
describe the main components. Seeker works as follows:

1) Seeker generates a primitive test case that calls only
the method under testing.

2) It generates test cases that cover respective paths by
changing arguments in DSE.

3) For uncovered branches in the previous step, it detects
the variable the values of which should be changed
in order to cover the branch by analyzing execution
traces. The variable is referred to as the target field.

4) It identifies the relation (e.g. inheritance, comprehen-
sion) of the class that includes the target field.

5) From the relation identified in 4), it finds methods that
can change the value of the target field.

6) If the branch remains uncovered, Seeker adds candidate
methods to the existing method sequences, then returns
to 2) and repeats the process. Otherwise the process
ends.

A. Dynamic Analysis

When we generate test cases for a certain method under
testing, we first apply DSE to the target program. DSE gen-
erates many test cases that cover paths individually and also
returns covered and uncovered branches. During exploration
by DSE, execution traces are collected to be analyzed in
each static analysis step. Algorithm 1 shows the pseudocode
of Dynamic Analysis.

B. Static Analysis

In the static analysis phase, Seeker uses, as inputs, the
uncovered branches and the executed method sequences in
the previous dynamic analysis phase. Then, the program
detects the variable the values of which should be changed
to satisfy the constraints of the uncovered branches (target
field). Therefore, it finds the dependency of the class in-
cluding the target field. From the identified dependency, it

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_06

(Advance online publication: 23 August 2014)

__

Algorithm 1 DynamicAnalysis
Require: tb of TargetBranch (TB)
Require: inputSeq of MethodSequence (MSC)
Ensure: targetSeq of MethodSequence (MSC) or null
1: Method m = GetMethod(tb)
2: MSC tmpSeq = AppendMethod(inputSeq,m)
3: DSE(tmpSeq, tb, out tSeq, out covBranch, out

uncovBranch)
4:
5: if tb ∈ covBranch then
6: return targetSeq
7: end if
8:
9: if tb ∈ uncovBranch then

10: return StaticAnalysis(tb, inputSeq)
11: end if
12:
13: if tb /∈ uncovBranch then
14: List<TB>tbList = ComputeDominants(tb)
15: for all TB domiBranch ∈ tbList do
16: inputSeq = DynamicAnalysis(domiBranch, inputSeq)
17: if inputSeq == null then
18: break
19: end if
20: end for
21: if inputSeq ̸= null then
22: return DynamicAnalysis(tb, inputSeq)
23: end if
24: end if
25: return null

builds a hierarchy of fields (referred to as the field hierarchy).
Finally, it extracts candidates of methods that may mutate
the value of the target field and add them to the existing
method sequences. Algorithm 2 shows the pseudocode of
static analysis. Next we describe important components in
static analysis.

1) Detection of Target Field: In the target field detection
step, Seeker detects the variable that must be changed in
order to cover the uncovered branches in the last DSE. De-
tecting target field might seem trivial, but there is difficulty in
many cases. For example, it is straightforward to identify the
target field for branches such as if (list.size > 0),
because the variable size is a public member of the instance
list of some container class. When the target field is a
public member, we can modify the value directly. However,
we often find branches that involve method calls such as if
(graph.ComputeDistance() > 10). Then we must
analyze what the statement returns and these methods may
include further method calls, causing the step of detecting
the actual target field to be a complicated task.

2) Field Hierarchy: In the next step, Seeker builds from
the execution traces a field hierarchy that represents the
hierarchical inheritance relation between classes related to
the target field. We can trace the relation to the target field
in the field hierarchy. The field hierarchy helps to find the
methods that can modify the value of the target field and
the classes that are required to invoke these methods. This
is used to create a method-call graph mentioned later.

For example, when the target field is a member _count
in Arraylist class, the field hierarchy is Stack list
→ ArrayList _count in Source code 3.

3) Method-Call Graph: A method-call graph is a graph
that represents the caller and callee relation of the methods
that may modify the value of the target field and the classes

Algorithm 2 StaticAnalysis
Require: tb of TargetBranch (TB)
Require: inputSeq of MethodSequence (MSC)
Ensure: targetSeq
1: Field targetF ield = DetectField(tb)
2: List<TB>tbList = SuggestTargets(targetF ield)
3: for all TB prevTb ∈ tbList do
4: MSC targetSeq = DynamicAnalysis(prevTb, inputSeq)
5: if targetSeq ̸= null then
6: targetSeq = DynamicAnalysis(tb, targetSeq)
7: if targetSeq ̸= null then
8: return targetSeq
9: end if

10: end if
11: end for

Source code 3. An Overview of Stack Class
1 class Stack {
2 private ArrayList<int> list;
3 public int Push(int element) {
4 list.Add(element);
5 }
6 ...
7 }
8 class ArrayList {
9 private int _count;

10 private int[] _elements;
11 public int Add(int element) {
12 // something to add element
13 ...
14
15 _count++;
16 }
17 ...
18 }

that have these methods. Seeker creates the graph using the
field hierarchy, the code analysis and the execution trace
analysis. The root node is the target field and the level one
nodes are the methods that can change the value of target
field directly. In the remaining levels of nodes, the methods
of parent nodes are called by the methods of child nodes. The
terminal nodes are the public methods that can change the
target field. Seeker appends these methods to the existing
method sequences. In this way, the generated new method
sequences may convert a target field to the desired state and
cover the target branches.

For example, when the target field is a member _count
in Arraylist class, Then, the root node is the target
field _count and one of the level one nodes is Add()
in ArrayList. One of the terminal nodes is Push() in
Stack that has Add() in ArrayList as its parent.

IV. APPROACH

We have shown the difficulty in automated test gener-
ation considering object states and the existing approach
to overcome this problem by generating method sequences.
However, some problems remain. One of these is difficulty in
converting multiple object states into desired states in object-
oriented programs. In fact, Seeker cannot cover branches
that require the change of multiple objects to desired states.
Furthermore, the branches associated with multiple variables
tend to be complicated and thus require a significant amount
of comprehensive testing. This implies that the testing of
branches associated with multiple variables is a critical
problem for increasing the branch coverage. In this section

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_06

(Advance online publication: 23 August 2014)

__

Algorithm 3 StaticAnalysisForMultiTargetFields
Require: tb of TargetBranch (TB)
Require: inputSeq of MethodSequence (MSC)
Ensure: targetSeq
1: List<Field>targetF ields = DetectAllFields(tb)
2: List<TB>tbList = new List<TB>
3: for all Field targetF ield ∈ targetF ields do
4: tbList.Append(SuggestTargets(targetF ield))
5: end for
6: for all TB prevTb ∈ tbList do
7: MSC targetSeq = DynamicAnalysis(prevTb, inputSeq)
8: if targetSeq ̸= null then
9: calculateEvaluationValue(targetseq)

10: if isCandidate(targetseq) then
11: targetSeq = DynamicAnalysis(tb, targetSeq)
12: if targetSeq ̸= null then
13: return targetSeq
14: end if
15: end if
16: end if
17: end for

we will focus on this problem and propose an approach to
solve it.

The algorithm of the previous study [1] identifies only
one variable as the target field. In our study, we focus on all
variables that influence target branches. Actually, we have
improved the algorithm so that it can identify all variables
associated with target branches. Since this improvement is
conceptually simple and implemented in a straightforward
way, we will not present its details. However, you can easily
imagine that combinatorial explosion will occur because of
the combinations of all method calls to achieve conversion of
all variables to the desired states. To suppress the explosion,
we have introduced a technique of static analysis for multiple
targets as shown in Algorithm 3. We will briefly describe it
in the rest of this section.

A. Static Analysis

The proposed static analysis for multiple targets is based
on the algorithm of the previous study [1], which identifies
only one variable detected indeterminately as a target. In
our study, however, we focus on all variables that influence
target branches. Thus, the algorithm identifies these variables
as the targets. The field hierarchy and the method-call graph
are built for all these variables. Using these structures, our
algorithm generates appropriate method sequences that cover
target branches with multiple targets.

B. Reduction of Candidates

Considering the combinations of method calls and targets
as well as the number of permutations of method calls,
you can easily imagine that the number of potential method
sequences necessary to transform all variables to the desired
states will lead to combinatorial explosion. For example, if
there are two targets and if each variable has 10 methods
that may modify its value, then the program will generate
20 method sequences of length one. If the target branch was
not covered yet, the program would generate 400 method
sequences in the next step. Thus the number of candidate
method sequences increases exponentially.

In order to suppress the explosion, we evaluate the ”unfit-
ness” of the method sequences with an evaluation function

TABLE I
DEFINITION OF FITNESS FUNCTION

Expression True False
a == b 0 ∥a− b∥
a >b 0 (b− a) + 1
a ≥ b 0 (b− a)
a <b 0 (a− b) + 1
a ≤ b 0 (a− b)

TABLE II
AN OVERVIEW OF TARGET PROJECTS

Project Version Classes Methods Branches KLOC
Dsa 0.6 27 308 665 3.3

QuickGraph 1.0 88 634 1119 5.1
xUnit 1.6.1 151 1267 2379 11.9
NUnit 2.5.7 225 2344 1810 8.1

called the fitness function. Using some heuristics, it evaluates
the ”distance” between a constraint and a method sequence.
More precisely, given a method sequence, the function deter-
mines its evaluation value such that it represents a heuristic
cost for reaching the desired object states from the states
reached by the method sequence in the current branch at
hand. (Note that, in this sense, this function may be called
the unfitness function.) In this paper, we define the fitness
function only for a 32-bit integer as in Table I. The definition
is the same as that used by Xie et al [12]. For other types,
we give each method sequence the maximum value of 32-bit
interger (214748367) as the unfitness.

In order to suppress the explosion, the algorithm reduces
the number of candidate method sequences based on the
unfitness. More precisely, if the number of the generated
method sequences is more than the predefined limit, those
with higher unfitness (i.e., longer distance to the desired
states) are deleted. Users can set the limit according to the
available resources and the required quality. In this paper,
we set the limit to 100.

Table I defines no evaluation value for expressions with the
”not equal” operation. This is because we could not think of a
suitable measure to make two values different when they are
the same. However, our experience shows that new test cases
can often cover such ”not equal” branches fairly easily in the
next DSE step by modifying the target state, say, randomly.
Therefore, we assign 0 to such sequences regardless of their
concrete values.

It remains to been seen how the composite conditions
will be evaluated. We can identify composite conditions
when a branch involves two or more conditions connected
by the logical operators such as || and &&. The DSE
engine Pex, which we use in our implementation, processes
CIL (Common Intermediate Language), in which composite
conditions are split into a standard set of atomic conditions.
Thus it is not necessary to extend the definition of the fitness
function for composite conditions.

V. EXPERIMENTS AND RESULTS

We have implemented our approach in C# by extending
the Seeker on a machine running 32-bit Windows Vista with
the 2.53-GHz Intel Core 2 Duo processor with 4 GB RAM.
Our settings for the experiments are the same as used in [1]
as follows.

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_06

(Advance online publication: 23 August 2014)

__

TABLE III
BRANCH COVERAGE ACHIEVED BY SEEKER AND PROPOSED METHOD TESTS

Project Seeker Proposed Method
of tests Branch coverage Time (hours) # of tests Branch coverage Time (hours)

Dsa 961 88.1% 5 1387 91.5% 8.5
QuickGraph 1923 68.2% 8 2694 69.5% 17.3

xUnit 1360 41.1% 6.3 2391 46.8% 8.5
NUnit 1804 44.3% 12.8 5125 45.5% 23.3(Util Namespace)

• timeout: 500 sec (default: 120 sec)
• MaxConstraintSolverTime: 10 sec (default: 2 sec)
• MaxRunsWithoutNewTests: 214748367 (default: 100)
• MaxRuns: 2147483647 (default: 100)
The experiment was conducted in order to evaluate the

effectiveness of our method, based on the comparison with
the Seeker in terms of the execution time and the branch
coverage of test cases that were generated. We used four real-
world open source projects listed in Table II, which shows
their features including the number of classes, methods,
branches and lines of code. Dsa [13] is a library that provides
many data structures and algorithms for the .NET framework.
Quickgraph [14] is a C# graph library. xUnit [15] and NUnit
[16] are widely known unit testing frameworks for .NET
languages. In the experiments, we used its core component,
the util namespace, for NUnit.

A. Experimental Results and Evaluation

Table III shows the results. We can see that the proposed
method achieved 1 to 5% improvement in terms of the
coverage over the Seeker, although the execution time was
sometimes almost doubled. At first sight, this might seem to
be a moderate improvement. However, we should put more
weight on the novel test cases generated by our method.
Seeker generated a lot of test cases with a single target
fairly easily, but failed to generate test cases with multiple
targets. Intuitively, a lot of difficult, hard-to-find bugs may be
involved in such complicated branches with multiple targets.
Our emphasis in this paper was how this difficulty could
be overcome. In this respect, we should say that what was
impossible by Seeker was made possible by our method,
while covering the branches already covered by the Seeker.

B. Discussion

For some projects such as Quickgraph, the proposed
approach achieved only moderate improvements while taking
a fairly amount of time. Quickgraph is a library that provides
data structures and algorithms for graphs, and many methods
involve various objects such as Node or Edge. If the project
to be tested has a complex dependency among the objects,
it often requires so many operations or so long method
sequences to cover branches that it tends to require a lot
of extra time to achieve even a small branch coverage gain.
Quickgraph was such a project.

Other reasons for the moderate improvement are as fol-
lows. First of all, branches involving multiple targets occur,
in general, infrequently. A lot of branches involve only a
single target. This is why the Seeker restricted itself to the
single target. However, as noted in the previous subsection,
a lot of difficult, hard-to-find bugs may be involved in such

complicated branches with multiple targets. This means that
although the improvement was quantitatively moderate, it
was significant in terms of quality.

Second, we might have pruned desirable candidate method
sequences in the candidate reduction step. This can occur in
the projects that have complex dependency, like Quickgraph,
because such projects cause the combinatorial explosion of
method sequences. If we had set a proper limit to the num-
ber of reserved method sequences, we could have avoided
this problem, but even then a lot of execution time might
have been wasted by the exponentially increased number of
reserved method sequences. This means that we must de-
termine the limit properly, considering specific requirements
for the time and quality of testing.

Finally, the fitness function might not have been powerful
enough, because it was defined only for integer types and
its heuristics were simple. This means that further research
is necessary for extending its domain types and developing
more powerful heuristics.

VI. CONCLUSION AND FUTURE WORK

Testing for object-oriented programs requires method se-
quences, and many approaches have been proposed for gener-
ating them for a single target. In this paper, on the other hand,
we have extended an existing method, focusing on generating
method sequences that mutate multiple targets. We imple-
mented our method on top of the Seeker and evaluated its
effectiveness by using four real-world projects. We saw that
our system achieved higher coverage of difficult branches
than the Seeker, while requiring additional execution time.
However, the results also showed that the effectiveness of the
proposed approach varied according to the specific features
of different projects.

Our future work includes the improvement of the fitness
function so that its domain includes a lot of data types other
than integers and reflects a useful heuristics in those domains.
Another interesting work is the design of the search strategy
for generating method sequences so that it can contribute to
a significant suppress of the combinatorial explosion. In any
work, extensive analyses of covered and uncovered branches
would be critical for developing a good strategy to make the
automated test generation more successful.

REFERENCES

[1] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su,
“Synthesizing method sequences for high-coverage testing,” SIGPLAN
Not., vol. 46, no. 10, pp. 189–206, Oct. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2076021.2048083

[2] H. Takamatsu, H. Sato, S. Oyama, and M. Kurihara, “Autoamted
test case generation considering object states in object-oriented pro-
gramming,” in Lecture Notes in Engineering and Computer Science:
Proceedings of The International MultiConference of Engineers and
Computer Scientists 2014. IMECS 2014, 12-14 March 2014, Hong
Kong, pp. 569–573.

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_06

(Advance online publication: 23 August 2014)

__

[3] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” SIGPLAN Not., vol. 40, no. 6, pp. 213–223,
Jun. 2005. [Online]. Available: http://doi.acm.org/10.1145/1064978.
1065036

[4] N. Tillmann and J. Halleux, “Pexwhite box test generation for
.net,” in Tests and Proofs, ser. Lecture Notes in Computer Science,
B. Beckert and R. Hhnle, Eds. Springer Berlin Heidelberg, 2008,
vol. 4966, pp. 134–153. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-79124-9 10

[5] K. Sen, “Concolic testing,” in Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’07. New York, NY, USA: ACM, 2007, pp.
571–572. [Online]. Available: http://doi.acm.org/10.1145/1321631.
1321746

[6] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools,” in Computer Aided Verification,
ser. Lecture Notes in Computer Science, T. Ball and R. Jones, Eds.
Springer Berlin Heidelberg, 2006, vol. 4144, pp. 419–423. [Online].
Available: http://dx.doi.org/10.1007/11817963 38

[7] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976. [Online]. Available:
http://doi.acm.org/10.1145/360248.360252

[8] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,”
in Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 337–340. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1792734.1792766

[9] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 59:1–59:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393666

[10] P. Tonella, “Evolutionary testing of classes,” SIGSOFT Softw. Eng.
Notes, vol. 29, no. 4, pp. 119–128, Jul. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1013886.1007528

[11] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Combined static and
dynamic automated test generation,” in Proceedings of the 11th
International Symposium on Software Testing and Analysis (ISSTA
2011), 2011.

[12] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte, “Fitness-guided
path exploration in dynamic symbolic execution,” in Proceedings of
the 39th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2009), June–July 2009, pp. 359–368.
[Online]. Available: http://www.csc.ncsu.edu/faculty/xie/publications/
dsn09-fitnex.pdf

[13] DSA, http://dsa.codeplex.com/.
[14] QuickGraph, http://quickgraph.codeplex.com/.
[15] xUnit, http://xunit.codeplex.com/.
[16] NUnit, http://www.nunit.com/.

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_06

(Advance online publication: 23 August 2014)

__

