
 

 

 

  

Abstract—In this paper, a novel learning framework for 

Single hidden Layer Feed forward Neural network (SLFN) 

called Optimized Extreme Learning Machine (OELM) is 

proposed for the classification of EEG signals with the 

emphasis on epileptic seizure detection. OELM is an effective 

learning algorithm of single-hidden layer feed-forward neural 

networks. It requires setting the number of hidden neurons 

and the activation function. Adjustment in the input weights 

and hidden layer’s biases are not needed during the 

implementation of the algorithm, and only one optimal solution 

is produced. This makes the OELM a valuable tool for the 

applications that need small response time and provide a good 

accuracy. The features such as energy, entropy, maximum 

value, minimum value, mean value and standard deviation of 

wavelet coefficients are used to represent the time frequency 

distribution of the EEG signals in each sub-band of the 

Wavelet Transformation. We have compared the proposed 

classifier with other traditional classifiers by evaluating it with 

the benchmark EEG dataset. It is found that the performance 

of the proposed OELM with Wavelet based statistical features 

is better in terms of training time and classification accuracy.   

An accuracy of 94% for classifying the epileptic EEG signals is 

achieved and needs less training time compared with SVM. 

 
Index Terms—EEG Signal Classification, Epileptic Seizure 

Detection, Optimized Extreme Learning Machine, Wavelet 

Transformation 

I. INTRODUCTION 

HE human brain is obviously a complex system, and 

exhibits rich spatiotemporal dynamics. Epilepsy is one 

of the most prevalent neurological disorders in human 

beings. It is characterized by recurring seizures in which 

abnormal electrical activity in the brain causes the loss of 

consciousness or a whole body convulsion. Patients are 

often unaware of seizure, because it is unpredictable and it 

may result in severe physical injury. Studies show that 4-5% 

of the total world population has been suffering from 

epilepsy [1].  

Electroencephalogram is one of the important tools for 

diagnosis and analysis of epilepsy.  Electroencephalogram is 

a recorded representation of electrical activity produced by 

firing of neuron within the brain along the scalp. For 

recording EEG, electrodes will be pasted at some key points 

on the patient’s head. Electrodes pick up the signals and will 

be recorded in a device through wires that are connected to 
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electrodes. The “10-20” system is the internationally 

recognized method to apply the location of electrodes in 

EEG recording.  The“10-20” refers to the fact that actual 

distances between electrodes are either 10% or 20% of 

front-back or right-left distance of the skull [2–4]. 

As complete visual analysis of EEG signal is very 

difficult, automatic detection is preferred. Fourier transform 

has been most commonly used in early days for processing 

EEG signals. However as EEG signal is a non-stationary 

signal, Fourier analysis does not give accurate results [5–7]. 

The most effective time-frequency analysis tool for analysis 

of transient signal is wavelet transform [8–10].  

The automated diagnosis of epilepsy can be subdivided 

into preprocessing, feature extraction, and classification. 

Seizure detection can be classified as either seizure onset 

detection or seizure event detection. In seizure onset 

detection the purpose is to recognize the starting of seizure 

with the shortest possible delay. The purpose of seizure 

event detection is to identify seizures with the highest 

possible accuracy [11–16].  

For treatment of epilepsy, patients take antiepileptic drugs 

on daily basis. But about 25% of them again experience 

frequent seizures. For these patients, surgery is the most 

important and generally adopted treatment method. Surgery 

can be done only if epileptogenic focus is identified 

accurately. For this purpose different types of tracers are 

used as soon as seizure onset is detected.  Hence the seizure 

onset detection is very important [1].  

Seizure detection from EEG signal was started since 

1980s. In 1982 Gotman proposed a remarkable work on 

seizure detection [5]. Khan and Gotman proposed a wavelet 

based method for classification of epileptic and non-

epileptic data [17]. In 2005 wavelet transform method and 

short time Fourier transform method were compared to find 

out their accuracy in determining the epileptic seizures. 

They found that wavelet transform method gives better 

performance [18].  Ubeyli suggested the combined neural 

network model for the classification using wavelet based 

features [12]. Their method gave good accuracy in Bonn 

University data. In 2011, Gandhi et al. made a comparative 

study of wavelet families for EEG signal classification [11]. 

Important features such as energy, entropy, and standard 

deviation at different subbands were computed using 

wavelet decomposition. Feature vector was used to model 

and train the probabilistic neural network and classification 

accuracies were evaluated for each of the wavelet families. 

The result obtained was compared with support vector 

machine classifier. 

An onset detection system was designed by Gotman and 

Saab in 2004. They achieved a median detection delay of 

9.8 sec and sensitivity of 77.9% using scalp EEG. Shoeb and 
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Guttag achieved 96% sensitivity and small detection delays 

[6]. Sorensen et al. achieved 78–100% sensitivity when 

using a matching pursuit algorithm and with 5–18 seconds 

delay in seizure onset detection [19]. 

Neural networks and statistical pattern recognition 

methods have been applied to EEG analysis. Over the past 

two decades, single hidden layer feed-forward neural 

networks (SLFNs) have been used for classification. 

Classification is the basis of cognition. Of all the algorithms, 

neural networks, which simulate the function of neurons 

simply, have been proved to be a general and effective 

method [20]. The learning speed of feed-forward neural 

networks is in general far slower than required and it has 

been a major bottleneck in their applications during past 

decades. Recently, an effective training algorithm for 

SLFNs called Hybrid Online Sequential Extreme Learning 

Machine (HOS-ELM) is proposed in [21]. In contrast to the 

standard ELM, which involves a trial-and error process to 

identify a suitable architecture of the network, Optimized 

Extreme learning machine (OELM) searches for a suitable 

network architecture, i.e., identifying an appropriate number 

of hidden nodes for the data set in hand, based on statistical 

information, hence there is significant saving in training 

time. For further improving its search performance, a 

cooperative PSO method called multiple particle swarm 

optimizers with inertia weight (MPSOIW) is proposed in 

[22]. Furthermore, OELMs produce significantly more 

compact networks, compared with the standard ELM, 

through the removal of irrelevant hidden nodes. In 

comparison to the standard ELM, OELMs is also not 

affected by the functional form of the hidden node used. 

Hence OELMs demonstrate excellent robustness in the 

generalization ability of the final network.  However it is 

also found that OELM requires more hidden neurons than 

conventional tuning-based algorithms in many cases. This 

algorithm can obtain good performance with high learning 

speed in many applications. Using statistical methods to 

measure the relevance of each hidden node in contributing 

to the prediction accuracy of the classifier, the appropriate 

architecture of the classifier network is then defined. A 

pruned-ELM (P-ELM) algorithm [23] is a systematic and 

automated approach for designing ELM classifier network. 

P-ELM uses statistical methods to measure the relevance of 

hidden nodes. Initially large number of hidden nodes, 

irrelevant nodes, is then pruned by considering their 

relevance to the class labels. As a result, the architectural 

design of ELM network classifier can be automated. 

Gaurang Panchal et al., [24] put forth a behavior analysis of 

multilayer perceptrons with multiple hidden neurons and 

hidden layers. The problem with the model selection is 

considerably important for acquiring higher levels of 

generalization capability in supervised learning. A 

computer-aided classification system has been developed for 

cyst and tumor lesions in dental panoramic images [25]. 

This paper is intended to compare the performance of four 

different types of fuzzy aggregation methods in 

classification of epilepsy risk levels from EEG Signal 

parameters [26].  

In this paper, a novel learning framework for SLFNs 

called optimized extreme learning machine (OELM) is 

proposed. This frame work uses the same concept of the 

ELM where the output weights are obtained using least 

squares, however, with the difference that Tikhonov's 

regularization is used in order to obtain a robust least square 

solution. The problem of reduction in the ELM performance 

in the presence of irrelevant variables is well known, as well 

as its propensity for requiring more hidden nodes than 

conventional tuning-based learning algorithms. To solve 

these problems, the proposed framework uses an 

optimization method to select the set of input variables and 

the configuration of the hidden-layer. Furthermore, in order 

to optimize the fitting performance, the optimization method 

also selects the weights of connections between the input 

layer and the hidden-layer, the bias of neurons of the 

hidden-layer, and the regularization factor. Using this 

framework, no trial-and-error experiments are needed to 

search for the best SLFN structure. Selection of the optimal 

number of neurons in this layer and the activation function 

of each neuron, try to overcome the propensity of ELM in 

necessitating more hidden nodes than conventional tuning-

based learning algorithms.  

 The paper is organized as follows. The overall system is 

explained in Section 2. Section 3 presents the proposed 

methodologies such as Wavelet Transform based feature 

extraction and Optimized Extreme Learning Machine based 

Classification of EEG signals with the emphasis on epileptic 

seizure detection. Section 5 discusses the experimental 

results and findings. Finally section 6 concludes the paper.  

II. MATERIALS AND METHODS 

 As in traditional pattern recognition systems, the epileptic 

seizure detection consists of main modules such as a feature 

extractor that generates a Wavelet based statistical features 

from the EEG signals and a feature classifier (OELM) that 

outputs the class. The block diagram of the proposed 

approach is illustrated in Fig. 1. 

 

 
 

 

 

 

 
Fig. 1.  Block diagram of the proposed EEG classification system. 
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TABLE I 

DESCRIPTION SUMMARY OF EEG DATA SET OBTAINED FROM UNIVERSITY OF BONN GERMANY 

Subject 
SET A SET B SET C SET D SET E 

Five healthy subject Five epileptic patients 

Patient state 
Awake and eyes 

open (normal) 

Awake and eyes 

closed (normal) 

Seizure free 

(interictal) 

Seizure free 

(interictal) 

Seizure 

activity(ictal) 

Electrode types Surface Surface Intracranial Intracranial Intracranial 

Electrode 

placement 
International 10–20 International 10–20 

Within epileptogenic 

zone 

Opposite to 

epileptogenic zone 

Within epileptogenic 

zone 

No. of epochs 100 100 100 100 100 

Epoch duration (s) 23.6 23.6 23.6 23.6 23.6 

A. Dataset Description 

 The EEG data [27] used in this work is obtained from 

University of Bonn, Germany. The data is available in 

public domain that consists of five different sets. Each data 

set consists of 100 single-channel EEG epochs of 23.6 s 

duration. The data were recorded with 128-channel 

amplifier system and digitized at 173.61 Hz sampling rate 

and 12-bit A/D resolution. The description of the data set is 

summarized in Table I. 

B. Wavelet Transformation  

Wavelet transform is the representation of a time function 

in terms of simple, fixed building blocks termed as wavelets. 

These building blocks are a family of functions which are 

derived from a single generating function called mother 

wavelets using translation and dilation operations. The main 

advantage of wavelet transform is that it has varying 

window size, being broad at low frequency and narrow at 

high frequency. It leads to an optimal time-frequency 

resolution in all frequency ranges. By performing spectral 

analysis using wavelet transform, EEG signals consisting of 

many data points can be compressed into a few features 

[28]. 

The key feature of wavelets is the time-frequency 

localization.  It means that most of the energy of the wavelet 

is restricted to a finite time interval. A newer alternative to 

the wavelet transform is the Wavelet transform. Wavelets 

are very similar to wavelets but have some important 

differences. In particular, whereas wavelets have an 

associated scaling function φ (t) and wavelet function ψ (t), 

Wavelets have two or more scaling and wavelet functions. 

For notational convenience, the set of scaling functions can 

be written using the following vector notation.  

 

φ(t) ≡ [φ1(t)φ2(t)⋯φr(t)]T                               (1) 

 

where is called the multi scaling function. Likewise, the 

Wavelet function is defined from the set of wavelet 

functions as 

 

ψ(t) ≡ [ψ1(t)ψ2(t)⋯ψ r(t)]T                                   (2) 

 

when r=1. ψ (t), is called a scalar wavelet, or simply 

wavelet. While in principle it can be arbitrarily large, the 

Wavelets studied to date are primarily for r=2. Wavelet 

transformation employs two sets of functions called scaling 

functions and wavelet functions, which are related to low-

pass and high-pass filters respectively. The decomposition 

of the signal into the different frequency bands is merely 

obtained by consecutive high-pass and low-pass filtering of  

the time domain signal. The procedure of multi resolution 

decomposition of a signal s[n] is schematically shown in 

Fig. 2. Each stage of this scheme consists of two digital 

filters and two down-samplers by 2.  The first filter, h[n] is 

the discrete mother wavelet, high pass in nature, and the 

second, g[n] is its mirror version, low-pass in nature. The 

down-sampled outputs of first high-pass and low-pass filters 

provide the detail, D1 and the approximation, A1, 

respectively. Table II summarizes various wavelet 

decomposed signal sub-bands and its frequency ranges. 

Wavelet transformation have advantages over traditional 

Fourier transforms for representing functions that have 

discontinuities and sharp peaks, and for accurately 

deconstructing and reconstructing finite, non-periodic and/or 

non-stationary signals. 

 
Fig. 2.  Four Level Wavelet Decomposition. 

 
TABLE II 

WAVELET DECOMPOSED SIGNAL SUB-BANDS AND ITS FREQUENCY RANGES 

Decomposed signal Frequency Range (Hz) 

D1 43.4-86.8 

D2 21.7-43.4 

D3 10.8-21.7 

D4 5.4-10.8 

A4 0-5.4 

  

 Wavelets have several advantages in comparison to scalar 

wavelet, which can possess compact support, orthogonality, 

symmetry and high order approximation, which is not 

possible with scalar wavelet. We experimentally found that 

Wavelet provides superior performance over scalar wavelet 

for classification of EEG signals 

C. Parameters for Feature Extraction 

The EEG signals, which contain many data points, can be 

compressed into a few features that can differentiate 

different classes. The features used include some wavelet 
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based features and some statistical features without wavelet 

decomposition. 

Wavelet Based Features such as Energy, Entropy, 

Standard Deviation, Mean, Maximum, and Minimum were 

used as parameters after wavelet decomposition. 

The energy at each decomposition level was calculated as 

 ��� = ∑ �����	
��� ,																														� = 1,2,⋯ , �,         (3) 

 ��� = ∑ ������	
��� .														                           (4) 

 

The entropy at each decomposition level was calculated as 

 ���� = ∑ ���	
��� log����	 � ,														� = 1,2,⋯ , �,      (5) 

 

where � = 1, 2, . . . , � is wavelet decomposition level from 1 

to � and � is the number of coefficients of detail or 

approximation at each decomposition level. 

The standard deviation at each decomposition level was 

calculated using the following equation: 

 �� = � �
��∑ ���� −  ��	
��� !�/	,                       (6) 

 

where  � is the mean and is given by 

  � = �
∑ ��� 	,									� = 1,2,⋯ , �,
���             (7) 

 

D. Feature Classification 

Feed forward neural networks have been extensively used 

in many fields because of their ability: To approximate 

complex nonlinear mappings directly from the input 

samples; To provide models for a large class of natural and 

artificial phenomena that are difficult to handle using 

classical parametric techniques. On the other hand, neural 

networks lack faster learning algorithms. The traditional 

learning algorithms are usually far slower than required. It 

may take several hours, several days, and even more time to 

train neural networks by using traditional methods.  From 

mathematical point of view, research on the approximation 

capabilities of feed forward neural networks has focused on 

two aspects: universal approximation on compact input sets 

and approximation in a finite set of training samples. Two 

main architectures exist for Single Layer Feed forward 

Neural network (SLFN), namely: 1) those with additive 

hidden nodes, and 2) those with Radial Basis Function 

(RBF) hidden nodes. For many of the applications using 

SLFNs, training methods are usually of batch-learning type. 

The SLFNs can approximate any function with arbitrarily 

small error and form boundaries with arbitrary shapes if the 

activation function is chosen properly. Hence, in 

applications of function approximation and classification, 

the SLFN is one of powerful tools which can be used. 

Different from the tenet in neural networks, all the hidden 

nodes in SLFNs need to be tuned.  

E. Extreme Learning Machine (ELM) 

An effective training algorithm for SLFNs called 

Extreme Learning Machine (ELM) shows that the hidden 

nodes of generalized feed forward networks needn’t be 

tuned and these hidden nodes can randomly be generated. 

The Fig. 3 illustrates the general architecture of ELM. 

Unlike gradient-descent based algorithms, the network 

parameters in ELM are determined in single steps. The input 

weights and hidden layer biases are chosen randomly, and 

then the output weights are calculated by Moore–Penrose 

(MP) generalized inverse. This algorithm can obtain good 

performance with high learning speed in many applications. 

For nearly all problems, one hidden layer is sufficient. 

Two hidden layers are required for modeling data with 

discontinuities such as a saw tooth wave pattern. Using two 

hidden layers rarely improves the model, and it may 

introduce a greater risk of converging to a local minima. 

There is no theoretical reason for using more than two 

hidden layers. One of the most important characteristics of a 

perceptron network is the number of neurons in the hidden 

layer. Using too many neurons in the hidden layers can 

result in several problems. First, too many neurons in the 

hidden layers may result in over fitting. Over fitting occurs 

when the neural network has so much information 

processing capacity that the limited amount of information 

contained in the training set is not enough to train all of the 

neurons in the hidden layers. A second problem can occur 

even when the training data is sufficient. An inordinately 

large number of neurons in the hidden layers can increase 

the time they take to train the network. The amount of 

training time can increase to a point that it is impossible to 

adequately train the neural network [15]. Obviously, some 

compromise must be reached between too many and too few 

neurons in the hidden layers. There are many rule-of-thumb 

methods for determining the correct number of neurons to 

use in the hidden layers, such as the following: 

• The number of hidden neurons should be between the 

size of the input layer and the size of the output layer. 

• The number of hidden neurons should be 2/3 the size of 

the input layer, plus the size of the output layer.  

• The number of hidden neurons should be less than 

twice the size of the input layer. 

III. PROPOSED METHODOLOGY 

A. Adjustable Single hidden Layer Feed forward Neural 

network (A-SLFN) architecture 

The neural network considered in this paper is a SLFN 

with adjustable architecture as shown in Fig. 3, which can 

be mathematically represented by 

 # = $�%& + ∑ (�&)��� *��,                         (8) 

 *� = +��%� + ∑ (��,��� -�.��.                        (9) 

 

n and h are the number of input variables and the number of 

the hidden layer neurons, respectively; vj is the output of the 

hidden layer neuron j; xi, i=1,…,n, are the input variables; 

wij is the weight of the connection between the input 

variable i and the neuron j of the hidden layer; wjO is the 

weight of the connection between neuron j of the hidden 

layer and the output neuron; bj is the bias of the hidden layer 

neuron j, j=1,…,h, and bO is the bias of the output neuron; 

fj(.) and g(.) represent the activation function of the neuron j 
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of the hidden layer and the activation function of the output 

neuron, respectively. si is a binary variable used in the 

selection of the input variables during the design of the 

SLFN.  

Using the binary variable si, i=1,…,n, each input variable 

may be considered. However, the use of variables si is not 

the single tool to optimize the structure of the SLFN. The 

configuration of the hidden layer can be adjusted in order to 

minimize the output error of the model. The activation 

function fj(
.
), j=1,…,h, of each hidden node can be either 

zero, if this neuron is unnecessary, or any (predefined) 

activation function. 

A SLFN with randomly chosen weights between the input 

layer and the hidden layer and adequately chosen output 

weights are universal approximators with any bounded non-

linear piecewise continuous functions.  

 

 
Fig. 3.  Single hidden layer feed forward neural network with adjustable 

architecture. 

 

 Considering that N samples are available, the output 

bias is zero, and the output neuron has a linear activation 

function, (3) and (4) can be rewritten as 

 # = /(01231,                                     (10) 

 

where # = 4#/13,⋯ , #/�351 is the vector of outputs of the 

SLFN, (& = 4(�&, ⋯ , ()&	51 is the vector of output 

weights, and v is the matrix of the outputs of the hidden 

neurons (3) given by 

 

2 = 6*�/13			*�/23	⋯ 		*�/�3⋮													⋮						⋱							⋮	*�/13			*�/23	⋯ 		*�/�39,                        (11) 

 

with si=1, i=1,…,n. Considering that the input weights and 

bias matrix W, 

 

: = ;			%�							%		 	⋯					%)	(��			(�	 	⋯ 		(�)		⋮								⋮						⋱							⋮	(,�			(,	 	⋯ 		(,)
<,                      (12) 

 

is randomly assigned, the output weights vector wO is 

estimated as  

 (&= = 2>#? ,                                         (13) 

 

where V† is the Moore–Penrose generalized inverse of the 

hidden- layer output matrix V, and #? = 4#?/13,⋯ , #?/�351 is the desired output. Considering 

that 2 ∈ ℜ
B, with N≥h and rank (v)=h, the Moore–

Penrose generalized inverse of V can be given by 

 2> = /2123��21.                                (14) 

 

the estimation of wO can be obtained by the following least-

squares solution: 

 (&= = /2123��21#?.                            (15) 

 

In Optimized ELM, the weights of the output connections 

are obtained using the same ELM methodology, however, 

with a change. The objective of the least squares method is 

to obtain the best output weights by solving the following 

problem: 

 C�D/‖# − #?‖	3,                                (16) 

 

where ǁ . ǁ2 is the Euclidean norm. The minimum-norm 

solution to this problem and the use of least squares can be 

considered as a two-stage minimization problem involving 

the determination of the solutions, and the solution with 

minimum norm among solutions obtained in the previous 

stage. The use of Tikhonov's regularization allows the 

transformation of this two-stage problem into a single-stage 

minimization problem defined by 

 C�D/‖# − #?‖	 + F‖:&‖	3,                      (17) 

 

where α>0 is a regularization parameter.  

 (&= = /21	2 + FG3��21	#?,                      (18) 

 

where I is the hxh identity matrix. Furthermore, using 

Tikhonov's regularization, the robustness of the least squares 

solution against noise is improved. As previously 

mentioned, the ELM requires more hidden nodes than 

conventional tuning-based algorithms. Furthermore, the 

presence of irrelevant variables in the training dataset causes 

a decrease in the performance. To overcome these problems, 

in OELM the determination of the set of input variables, the 

number and activation function of the neurons in the hidden 

layer, the connection weights between the inputs and the 

neurons of the hidden layer, the bias of the hidden layer 

neurons, and the regularization parameter α is made using an 

optimization methodology. The optimization of the SLFN 

consists in minimizing the following evaluation function: 

 H = �IJKL/#, #?3,                                   (19) 

where  �IJKL/#, #?3 = M�
∑ 4#/N3 − #?/N35	
O��   

is the root mean square error (RMSE) between the desired 

(real) output and the estimated values of the output. To 

improve the generalization performance, the estimation error 

Ermse(y,yd) is obtained in a validation dataset that has no 
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overlap with the training dataset.  In the optimization 

process, it is considered that the individual / state will be 

constituted by PO = 4(��, ⋯ , (,) 	, %�, ⋯ , %) 	, -�, ⋯ , -) 		, -�Q	, ⋯ , -)Q, F51;  
                                                                                    (20) 

 N = 1,⋯ ,C, where -�Q ∈ S0,1,2U, V = 1,⋯ , ℎ,  an integer 

variable that defines the activation function fj of each neuron 

j of the hidden-layer as follows: 

 

+�/*3 = XY
Z0																															�+	-�Q = 0,�/�[\]^/�_33 													�+	-�Q = 1,*																														�+	-�Q = 2,            (21) 

 

The use of parameters -�Q makes it possible that the 

adjustment of the number of neurons (if -�Q = 0	the neuron 

is not considered), and the activation function of each 

neuron (sigmoid or linear function) take place.  In this work 

only these two types of activation function have been used; 

however, any type of activation function can be considered. 

This optimization problem is a problem where the decision 

variables area is a combination of real, integer, and binary 

variables. The decision variables are mapped into real 

variables within the interval [0,1] and before computing the 

evaluation function for each individual, all variables need to 

be converted into their true value. If the true value of the l-th 

variable (l=1,2,⋯,v) of individual k is real, it is given by 

 `Oa = �`bJcd − `bJ�,�POa + `�J�,,                (22) 

 

Where `bJ�, and `bJcd  represent the true variable bounds 

(`bJ�, ≤ `Oa ≤ `bJcd). If it is a integer value, 

 `Oa = rounddown ��`bJcd − `bJ�, + 1�POa! + `�J�, ,  (23) 

 

where rounddown(
.
) is a function that rounds to the greatest 

integer that is lower than or equal to its argument. If the true 

value is binary, it is given by 

 `Oa = round�POa�,                                (24) 

 

where round(
.
) is a function that rounds to the nearest 

integer. The variables si, i=1,…,n, are binary variables and 

thus are converted using (18). The variables -�Q, j=1,…,h, 

are integer variables and thus are converted using (17), 

considering that the lower and upper bounds are 0 and 2, 

respectively. The input weights wij and bias bj are converted 

using (16), considering that the lower and upper bounds are 

-1 and 1, respectively. Finally, the regularization parameter 

is also converted using (16), considering that the lower and 

upper bounds are 0 and100, respectively. 

B. Learning model 

 Given a training set N={(Xi,ti)|XiєR
n
, ti єR

m
,i=1,..,N}, 

hidden node output function G(a,b,x) and the number of 

hidden nodes L, 

• Assign randomly hidden node parameters(a i,bi),i=1,..,L 

• Calculate the hidden layer output matrix H 

• Calculate the output weight β: β=H†T where H†is the 

Moore-Penrose generalized inverse of hidden layer 

output matrix H 
 

TABLE III 

COMPARISON OF VARIOUS PARAMETERS FOR ELM, MLP, SVM ON TESTING 

SAMPLES 

 ELM MLP SVM 

Training time(s) 2.22 1026.12 3436.62 

Training error (RMSE) 0.26 0.28 0.29 

Testing time(s) 0.04 0.12 0.32 

Testing error (RMSE) 0.41 0.45 0.47 

The number of hidden neurons /the number 

of support vectors 

370 620 1120 

 

C. Comparison of ELM with BP, MLP, SVM 

We have compared ELM with BP, MLP and SVM by 

evaluating with benchmark EEG dataset. Table III compares 

various parameters for the classifiers such as ELM, MLP and 

SVM on testing samples and the features of ELM have been 

listed below. 

• ELM needs much less training time compared to 

popular BP and SVM 

• The prediction accuracy of ELM is usually slightly 

better than BP. 

• Compared with BP, ELM can be implemented easily 

since there is no parameter to be tuned except an 

insensitive parameter L. 

• ELM needs more hidden nodes than BP but much less 

nodes than SVM which implies that ELM and BP have 

much shorter response time to unknown data than SVM 

From Table 2 we can see that, ELM with much lesser 

number of hidden neurons has a similar learning 

performance with SVM (ELM uses 370 hidden neurons, 

MLP uses 620 hidden neurons and SVM produces 1120 

support vectors), the training error difference of ELM and 

SVM algorithms is about 0.028 and difference of ELM and 

MLP is about 0.0127; the testing error only has about 

0.0011 and 0.0323 difference. 

D. Problem of ELM with irrelevant variables 

ELM models tend to have problems when irrelevant or 

correlated variables are present in the training data set. For 

this reason, it is proposed in the OELM methodology, to 

perform a pruning of the irrelevant variables, via pruning of 

the related neurons of the SLFN built by the ELM. 

 

E. Optimized Extreme Learning Machine 

In contrast to the standard ELM, which involves a trial-

and-error process to identify a suitable architecture of the 

network, OELMs (Optimized Extreme learning machine) 

search for suitable network architecture to save training 

time. Optimized Extreme learning machine (OELM) 

represents one of the recent successful approaches in 

machine learning, particularly for performing pattern 

classification. Rong et al [23] presented fast pruned ELM as 

a systematic and automated method for ELM classifier 

network design and pruning of neurons in a network built 

using ELM has been proposed. 
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Fig. 4.  The steps of OELM algorithm. 

 

It starts with a large network and then eliminates the 

hidden nodes that have low relevance to the class labels. 

OELM mainly focuses on pattern classification applications. 

OELM is applicable for both regression and classification 

applications. Optimized-ELM algorithm is a systematic and 

automated approach for designing ELM classifier network. 

It is a very good compromise between the speed of the ELM 

and the accuracy and robustness of much slower and 

complicated methods. Fig. 4 illustrates the steps of OELM 

algorithm. OELM provides a systematic approach for 

designing the network architecture of the ELM classifier. 

Using statistical methods to measure the relevance of each 

hidden node in contributing to the prediction accuracy of the 

classifier, the appropriate architecture of the classifier 

network is then defined. The OELM methodology can also 

handle multiple-output—multiple- class problems in both 

regression and classification using multiple inputs. The 

accuracy of the ELM can be problematic in many cases, 

while the OELM remains robust to all tested data sets. The 

main goal in this brief was not to show that the OELM is the 

best either in terms of MSE or the computational time. The 

main goal is to prove that it is a very good compromise 

between the speed of the ELM and the accuracy and 

robustness of much slower and complicated methods. 

F.  OELM Algorithm 

The OELM methodology has the following steps: 

• Build the SLFN using the original ELM algorithm 

• Rank the hidden nodes by applying multi-response 

sparse classification algorithm  

• Select the hidden nodes through Leave-One-Out (LOO) 

validation.  

 

G. Multilayer perceptrons (MLPs) construction using ELM 

The very first step of the OELM methodology is the 

actual construction of the SLFN using the original ELM 

algorithm with a lot of neurons (Christian et al. 2010). 

Multilayer perceptrons (MLPs) are feed forward neural 

networks trained with the standard back propagation 

algorithm. They are supervised networks so they require a 

desired response to be trained. They learn how to transform 

input data into a desired response, so they are widely used 

for pattern classification. Their main advantages are that 

they are easy to use, and that they can approximate any 

input/output map. The main novelty introduced by the ELM 

is in the determination of the kernels, initialized randomly. 

While the original ELM used only Sigmoid kernels, 

Gaussian, Sigmoid and Linear are proposed in OELM. The 

linear kernels included in the network helps when the 

problem is linear or nearly linear. The Gaussian kernels 

have their centers taken randomly from the data points, 

similarly the widths randomly drawn between percentile 

20% and percentile 80% of the distance distribution of the 

input space. From a practical point of view, it is advised to 

set the number of neurons clearly above the number of the 

variables in the dataset, since the next step aims at pruning 

the useless neurons from the hidden layer. Output weights b 

can be computed from hidden layer output matrix H: the 

columns hi of H are computed by hi= Ker(xi
T
), where Ker 

stands for either linear, sigmoid or Gaussian activation 

functions (including multiplication by first layer weights).  

Finally, the output weights b are computed by b = H†y, 

where  H† stands for the Moore-Penrose inverse and y = (y1, 

. . . , yM) 
T
is the output. 

 

H.  Multi-response Sparse Classification (MRSC) 

It is used for the removal of the useless neurons of the 

hidden layer. MRSC is mainly an extension of the least 

angle regression algorithm (Efron et al., 2004) and hence, it 

is actually a variable ranking technique, rather than a 

selection one. An important detail shared by the MRSC and 

the LARS is that the ranking obtained is exact, if the 

problem is linear. In fact, this is the case with the OELM, 

since the neural network built in the previous step is linear 

between the hidden layer and the output. Therefore, the 

MRSR provides an exact ranking of the neurons for our 

problem. Because of the exact ranking provided by the 

MRSR, it is used to rank the kernels of the model. MRSR 

algorithm enables to obtain a ranking of the neurons 

according to their usefulness. The main idea of this 

algorithm is the following: denote by T = [t1. . . tp] the n × p 

matrix of targets, and by X = [x1. . . xm] the n × m regressors 

matrix. MRSR adds each   regressor one by one to the model 

Y
k
= XW

k
, where Y

k
= [y

k
1. . . y

k
p] is the target approximation 

by the model. The W
k 

weight matrix has k nonzero rows at 

k
th

 step of the MRSR. With each new step a new nonzero 

row, and a new regressor to the total model, is introduced. 

 

I. Leave-One-Out 

Since the MRSR only provides a ranking of the kernels, 

the decision over the actual best number of neurons for the 

model is taken using an LOO validation method. One 

problem with the LOO error is that it can be very time 

consuming, if the data set has a high number of samples 

(Christian et al., 2010). Fortunately, the PRESS (PREdiction 

Sum of Squares) statistics provide a direct and exact formula 

for the calculation of the LOO error for linear models. 

 

єPRESS = (yi− hi b)/ (1 − hi P hi
T )                          (25) 

 

where P is defined as P = (HTH)−1, H the hidden layer output 

matrix. The final decision over the appropriate number of 

MLP Construction using ELM 

  EEG Data 

Ranking of best neurons using 

MRSC 

Selection of optimal number of 

neurons by LOO 

OELM Model 
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neurons for the model can then be taken by evaluating the 

LOO error versus the number of neurons used. In the end, a 

single-layer neural network possibly using a mix of linear, 

sigmoid and Gaussian kernel is obtained, with a highly 

reduced number of neurons, all within a small computational 

time. 

 

J. Features of Optimized ELM 

• OELM is a simple tuning-free three-step algorithm. 

• The learning speed of OELM is extremely fast. 

• The OELM tends to reach the solutions straightforward 

without such trivial issues. 

• The OELM learning algorithm looks much simpler than 

many learning algorithms: neural networks and support 

vector machines. 

IV. RESULTS AND DISCUSSION 

 
Fig. 5.  Comparison of between-class-distance and within-class-distance for 

various hierarchical classes based on the features. 

 

For classification of EEG signals, we have used 500 

signals (Dataset A-E each contains 100 signals). From these 

by cross fold selection method, we have used 50% of the 

non-overlapped data for training and remaining 50% of the 

non-overlapped data for testing. Fig.5 compares between-

class-distance and within-class-distance for various 

hierarchical classes of datasets based on the features. From 

the figure, it was observed that the within-class-distance was 

minimum and the between-class-distance was maximum. So 

the extracted features are well suited for discriminating 

various classes.  

In this section we present our results based on 

computation complexity and classification rate by 

comparing the proposed classification technique with other 

classification techniques using benchmarked EEG datasets. 

From these by cross fold selection method, we used 50% of 

the non-overlapped total data for training and remaining 

50% of the non-overlapped data for testing. In this work, the 

Daubechies wavelet of order 2 (db2) made it more 

appropriate to detect changes of EEG signals since it 

supports asymmetry and orthogonal. Hence, the wavelet 

coefficients were computed using the db2 and the number of 

decomposition levels was chosen to be 4. For 

implementation of this work we used MATLAB (R2013a) 

environment running in an Intel Core2 Duo processor with 

2.8 GHz. Table IV shows that the computation complexity 

of OELM is superior to other standard classifiers such as 

MLP, SVM and ELM. OELM model consumes much lesser 

CPU time than SVM, MLP and ELM for unknown samples 

which shows the greatest advantage of OELM.  

 

TABLE IV 
COMPARISON OF VARIOUS CLASSIFICATION METHODS BASED ON 

COMPUTATIONAL TIME 
 

Classifier Computational Time 

MLP 25.20 s 

SVM 56.23 s 

ELM 10.34 s 

OELM 3.64 s 

 

TABLE V 
COMPARISON OF VARIOUS CLASSIFICATION METHODS BASED ON 

CLASSIFICATION RATe 

 
Classifier OELM MLP SVM ELM 

Overall 

Classification 

Accuracy 

96% 88% 90% 

 

91% 

 

TABLE VI 
COMPARISON OELM CLASSIFICATION ACCURACY BASED ON VARIOUS 

KERNELs 

 
Kernel Classification Accuracy 

Linear 85% 

Sigmoid 86% 

Gaussian 89% 

Linear+Sigmoid 91% 

Linear+Gaussian 92% 

Linear+Sigmoid+Gaussian 96% 

 

The classification results presented in Table V prove that 

the OELM with Wavelet features obtains the highest 

classification accuracy when compared to the other 

classifiers. Wavelet transform is an effective tool for 

analysis of non-stationary signal, such as EEGs. The 

accuracies obtained by the MLP, ELM, SVM are slightly 

lower than the accuracies of the OELM. And also we 

compare the OELM classification accuracies by varying the 

kernels. Table VI presents the classification accuracy of 

OELM with various kernels. A satisfactory classification 

accuracy of 96% is achieved in classifying the epileptic 

EEG signals while using the combination of linear, sigmoid 

and Gaussian kernels. The accuracy of the ELM can be 

problematic in many cases, while the OELM remains robust 

to all tested data sets. 

The classification accuracy of our proposed approach has 

been compared with other existing classifiers such as ELM, 

SVM and SLFN. It can be seen from Table VII that the 

proposed OELM achieves the highest classification 

accuracy over other methods. Table VIII presents the values 

of the statistical parameters such as sensitivity, specificity 

and classification accuracy of the proposed classifier for 

various EEG Dataset {A,B,C,D,E}. The proposed classifier 

achieves an overall classification accuracy of 94%. 
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TABLE VII  
CLASSIFICATION ACCURACY OF OELM VERSUS OTHER EXISTING 

CLASSIFIERS  

Classifiers Classification Accuracy (%) 

OELM (Our work) 94 

ELM 92 

SVM 90 

SLFN 90 

 

TABLE VIII  
VALUES OF THE STATISTICAL PARAMETERS OF THE PROPOSED OELM 

CLASSIFIER FOR VARIOUS EEG DATASET 

Dataset Sensitivity (%) Specificity (%) Overall CA (%) 

Set A 93.25 98.42 

93.63 

Set B 93.63 98.36 

Set C 94.00 98.16 

Set D 94.13 97.17 

Set E 93.13 99.54 

 

Table X summarizes classification accuracy and 

Execution time of various kernels.  It is proved that the 

computation time for ELM kernel is much lesser than other 

kernels with comparable classification accuracy.  Using 

RBF kernels, the accuracy increases, reaches its maximum 

and then decreases.  In contrast, the accuracy with ELM 

kernels quickly stabilizes for each dataset.  In this work we 

have considered a complete five classes {ABCDE} of EEG 

for the classification.  In our proposed OELM classifier the 

computational complexity is lesser when compared with 

other existing classifiers that are N-1 where N is the number 

of classes.  The efficiency gained in testing phase is very 

important for many practical applications since the 

classification stage in application such as epileptic seizure 

detection is required to be online and requires fast response. 

 

TABLE IX  
CLASSIFICATION ACCURACIES AND NUMBER OF CLASSIFIERS REQUIRED 

Classifier 
Classification 

Accuracy (%) 

No. of classier 

required for N class 

problem 

OELM 

(Proposed 

Work) 

94 N 

ELM 93 
N(N-1) 

SVM 90 

SLFN 89 N(N-1) 

 

TABLE X  
CLASSIFICATION ACCURACY AND EXECUTION TIME VERSUS VARIOUS 

KERNELS 

SVM Kernel Classification  

Accuracy (%) 

Execution time 

(Seconds) 

ERBF 94 24  

RBF 91 56  

Poly 87 32  

Linear 82        25 

 

Table XI presents a comparison between our 

approach and other existing research works. We have used 

complete 5 classes EEG dataset which are more challenging 

to classify. Most of the exiting researchers have used only 2 

class or 3 class problems. Only a few research works have 

used the 5 classes dataset. The proposed OELM with RBF 

kernel and the features of wavelet transform based statistical 

coefficients and approximate entropy were used in our work 

to classify the EEG signals indicated higher performance 

than that of the other existing research works. 

 

TABLE XI  
COMPARISON OF CLASSIFICATION ACCURACY OF THE PROPOSED RESEARCH 

WORK WITH EXISTING RESEARCH WORKS 

Author(s) Year Feature 

Extraction 

Classification Dataset CA 

(%) 

Chandaka 

et el 

2009 Statistical 

Features 

Support 

Vector 

Machines 

A-E 99 

Ocak 2009 Wavelet 

Transform & 

Approximate 

Entropy 

Surrogate 

data analysis 

ACD-E 98 

Guo et al 2009 Wavelet 

Transform & 

Relative 

Eavelet 

Energy 

Artificial 

Neural 

Networks 

A-E 96 

Tzallas et 

al 

2009 Time 

Frequency 

Analysis 

Naives 

Bayes, 

Logistic 

Regression, 

Artificial 

Neural 

Networks 

A-E, 

A-D-E, 

A-B-C-

D-E 

99 

93 

89 

Ubeyli 2009 Eigenvector 

Methods 

Recurrent 

Neural 

Networks, 

Probabilistic 

Neural 

Networks 

A-B-C-

D-E 

78 

Guo et al 2010 Wavelet 

Transform& 

Approximate 

Entropy 

Artificial 

Neural 

Networks 

A-E 98 

Liang et al 2010 Wavelet 

Transform& 

Line length 

feature 

Artificial 

Neural 

Networks 

A-E 

ABCD-

E 

97 

91 

Subasi & 

Gursoy 

2010 Wavelet 

Transform & 

Principal 

Component 

Analysis & 

Independent 

Component 

Analysis 

Support 

Vector 

Machines 

A-E 99 

Nabeel 

Ahammad 

et al 

2014 Wavelet 

Transform 

based 

Statistical 

features, 

Energy and 

Entropy 

Extreme 

Learning 

Machine 

(ELM 

A-D-E 95 

Proposed 

Work 

2014 Wavelet 

Transform 

based 

Statistical 

features, 

Energy and 

Entropy 

Optimized 

Extreme 

Learning 

Machine 

ELM 

(OELM) 

A-E 

A-D-E 

ABCD-

E 

AB-

CD-E 

A-B-C-

D-E 

99 

96 

99 

95 

94 
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V. CONCLUSION 

In this paper, an epileptic EEG signal classification 

system using OELM is proposed and applied to benchmark 

EEG dataset. The Wavelet based statistical features have 

been used for the feature extraction. The OELM 

methodology has been detailed through the presentation in 

three steps: the plain original ELM as the first step to build 

the SLFN, followed by a ranking of the neurons by the 

MRSR algorithm, and finally, the selection of the neurons 

that will remain.  By the use of these steps, the speed and 

accuracy of the OELM methodology has been demonstrated. 

We have compared OELM with other traditional classifiers 

in terms of classification accuracy and computation 

complexity by evaluating with benchmark EEG dataset. 

From the obtained experimental results, it can be strongly 

recommended to use the OELM approach for classifying 

EEG signals on account of their superior generalization 

capability as compared to traditional classification 

techniques. This capability generally provides them with 

higher classification accuracies and a lower computation 

complexity.  It is a novel, fast and accurate methodology 

that can be applied to several regression and classification 

problems. It is found that the performance of the OELM is 

better in terms of training time and classification accuracy 

which achieves a satisfying classification accuracy of 96.5% 

for classifying the epileptic EEG signals. For further work, 

the comparisons with other methodologies are performed in 

order to verify the applicability and accuracy of the OELM 

with different datasets. 
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