
 

 

  
Abstract— This study proposes a modified artificial immune 

network algorithm for function optimization problems based 
on idiotypic immune network theory. A hyper-cubic mutation 
operator was introduced to reduce the heavy computational 
cost of the traditional opt-AINet algorithm. Moreover, the new 
symmetrical mutation can effectively improve local search. To 
maintain population diversity, we also devised an immune 
selection mechanism based on density and fitness. The global 
convergence of the algorithm was deduced through the method 
of pure probability and iterative formula. Simulation results of 
benchmark function optimization show that the modified 
algorithm converges more effectively than other immune 
network algorithms. 

 
Index Terms—Artificial immune algorithm, Idiotypic 

immune network, Hyper-cubic mutation,  Convergence 
 
 

I. INTRODUCTION 
IOLOGICAL immune systems has the ability of 
learning, memory and recognition antigen, and the 

characteristics of adaptive, distributed and diversity. 
Inspired by biological immune mechanism, a variety of 
artificial immune algorithms have been developed to solve 
problems in machine learning, fault diagnosis, system 
modeling, computer security, and other fields of engineering 
[1]–[2]. Artificial immune algorithm is an optimization 
search algorithm that is bionic and intelligent. It imitates 
biological immunology and the mechanism of gene 
evolution. At present, proposed immune algorithms mainly 
include clonal selection algorithm, negative selection 
algorithm, and immune network algorithm [3]–[4]. The 
immune network algorithm is based on immune network 
theory and is generally represented by the opt-AINet 
algorithm, which was proposed by De Castro in 2002 [5]. 
This algorithm was inspired by idiotypic network theory and 
can describe some of the dynamic characteristics of the 
immune system. Moreover, it possesses several unique 
features, including dynamically varied population sizes, 
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local and global search, and the capability to maintain any 
number of optima. Thus, this algorithm is among the most 
widely applied artificial immune optimization methods in 
problems of pattern recognition and multimodal 
optimization. However, the immune network algorithm is 
limited with respect to large-scale complicated optimization 
problems, including additional parameters, heavy 
computational cost, sensitivity to population size, and slow 
convergence rate. Furthermore, the algorithm does not fully 
reflect the regulation mechanism of immune networks, and it 
is rarely analyzed in terms of mathematical theory [6–7]. 

In the current study, we present a modified immune 
network algorithm (MINA) based on opt-AINet. This 
algorithm evaluates objective functions without negating the 
valuable characteristics of the original algorithm. We also 
introduce a hyper-cubic cloning mutation operator and a 
specific immune selection mechanism. The globle 
convergence of the algorithm is deduced by adopting the 
pure probability and iterative formula method. MINA is then 
compared with other immune network algorithms to verify 
its effectiveness. 

The paper is structured as follows. The basic principle of 
idiotypic immune network theory is presented in Section 2. 
The design scheme of the MINA for optimization is detailed 
in Section 3. The globle convergence of the modified 
algorithm are discussed in Section 4. The experimental 
results for a set of test functions and the comparisons with 
other algorithms are explained in Section 5. Finally, 
conclusions and recommendations for future research are 
provided in Section 6. 

II.  IDIOTYPIC IMMUNE NETWORK THEORY 
In 1974, Jerne introduced idiotypic immune network 

theory [9], which asserts that antibodies in the biological 
immune system have the uniqueness of being recognized by 
other antibodies. The uniqueness of antibodies can be seen 
as an epitope, and its role is to be recognized by other 
antibodies. Moreover, antibodies are identified by antigens 
through the receptors on the surface of the antibodies, which 
are called paratopes. Thus, antibodies can recognize one 
another and form an idiotypic immune network, as shown in 
Fig. 1. 
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Fig. 1.  The principle of idiotype immune network. 

Antibodies can recognize not only external invasive 
antigens, but also other antibodies. However, antibodies are 
suppressed during recognition, and the interaction network 
within the immune system reaches a dynamic equilibrium. 
Hence, the stimulation level of B cells (antibodies) not only 
depends on the affinity between the antibody and the antigen 
but also on the matching degree between antibodies. If 
stimulation levels exceed a certain threshold, the B cells 
produce new antibodies through cloning and super mutation. 
Otherwise, these cells die immediately and are replaced by 
those produced in the marrow. Thus, the mutation rate of an 
antibody is inversely proportional to its fitness during 
mutation. In particular, the mutation process of antibodies 
involves a continuous enhancement in affinity and a gradual 
maturation. These characteristics of immune network not 
only maintain the diversity of the antibody population 
effectively but also facilitate self-organization and 
regulation in the biological immune system [10]–[11]. 

III. MODIFIED IMMUNE NETWORK ALGORITHM 
In 2002, De Castro and Von Zuben proposed the 

opt-AINet network model [5]. Briefly, opt-AINet is an 
incomplete weighted connection diagram. This algorithm 
was originally intended for data mining, pattern recognition, 
and multimodal optimization [12]; it can perform local and 
global searches and adjust population size dynamically. 
Specifically, this algorithm conducts local searches based on 
cloning, mutation, and antibody selection. It performs global 
exploration by inserting random points and modifying 
population size. 

The performance levels of opt-AINet and other 
algorithms were compared in [13]. The results show that 
opt-AINet successfully determined the global optimum of 
the test functions used but that the required computational 
cost was much higher than those of the other algorithms. The 
study concluded that this heavy computational cost may be 
related to population increase. However, the possibility that 
the exploration of local optima causes population growth 
has not been studied further [14].  

Hence, the current study proposes a modified MINA to 
reduce computational cost and to improve the convergence 
of opt-AINet in processing problems related to complicated 
function optimization.  

The MINA algorithm is designed in detail as follows:  
(1) Chaotic Initialization: An initial population of N  

antibodies should be generated using the logistic formula. 

(2) When the stopping criterion is unsatisfied,  
(2.1) Fitness calculation: The fitness of each antibody 

should be calculated. 
(2.2) Antibody clone: Clones should be generated for 

each antibody.  
(2.3) Antibody mutation: Each clone mutates with the 

aid of the hyper-cubic mutation operator. The parent 
antibody is retained.  

(2.4) Clonal selection: N cells with maximum fitness 
from N mutation sets are selected from each clone set 
based on density and fitness for the next generation. The 
ideal n  antibodies are copied to the memory set.  

(2.5) Immune suppression: The antibody with a poor 
fitness value is deleted as determined according to Euclidean 
distance and the fitness difference between two antibodies. 
The antibody with an improved fitness value is preserved in 
the memory set.  

(2.6) Immune replacement: d  antibodies with poor 
fitness values are replaced with new, randomly generated 
members with high fitness values (diversity introduction). 

(2.7) The best antibody is determined from the memory 
set before proceeding to step 2. 

The main operators of MINA are detailed as follows: 

A. Chaotic Initialization 
To reflect the chaotic nature of the biological immune 

system and to generate the initial population, we adopt a 
chaotic initialization operator. L chaotic variables are 
computed using the following logistic formulas: 

( )1 1n n n
k k kx x xμ+ = − , [ ]0,1nx ∈ .               (1) 

 Where 1,2, ,k L= … , 1,2, , 1n N= −…  and 4μ = . k  is 
the serial number of chaotic variables. We assume that 

0n =  and that the L chaotic initial values 0
kx  vary 

randomly. The values of L  chaotic variables n
kx  are then 

calculated using the logistic equation. The other 1N −  
antibodies are obtained in the same manner. 

B. Antibody Clone  
The opt-AINet algorithm is very sensitive to the change of 

the number of clones. Therefore, each individual in the 
antibody population is cloned to a fixed number. Each 
antibody then possesses 2n  clones that are equally 
displaced over each dimension. n  denotes the number of 
dimensions. 

C. Hyper-cubic Mutation 
To increase the probability of exceeding the local 

optimum, a hyper-cubic mutation operator is introduced into 
the algorithm [15]. The mutation operation in Step 2.3 is 
conducted using the following method:  

Each individual antibody copies two clones for each 
problem dimension. These clones are symmetrically 
displaced from the original antibody under distance k . 

( ) ( )( )0.01 exp 1 0,1k f Gauss∗= ∗ − + ,           (2) 

where f ∗  is the normalized fitness of the original antibody, 

and ( )0,1Gauss  is the random Gaussian variable. The 
clones are evaluated over the objective function, and the 
ideal point from each dimension is determined to estimate 
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According to Theorem 1, the convergence of sequence 
( ){ }, 0X t t ≥

JJG
 and parameters M

tα  and M
tβ  are very closely 

related.  
To confirm the probability convergence of MINA, we 

must generate the following:  
( ) ( ),X t Y t S∀ ∈

JJG JG
， 0σ∃ > . We then obtain 

( ) ( )( )( )( )* min 0t mr P T X t Y t σ= → > >
JJG JG

,        (7) 

where *
tr  is the minimum mutation rate. 

Theorem 2. For any initial distribution, MINA converges 
to global optimal solution set M  in probability.  

Proof. Let ( ) { },1iX t X i N= ≤ ≤
JJG

 represent the antibody 

population at generation t  and let NX  denote the best 
individual. At generation 1t + , we obtain  

( ) { } { }1 21 ,1 , ,i N dX t Y i N Y Y Y−+ = ≤ ≤ =
JJG JG JJG

. 

Where { }1 1 2 1, , , N dY Y Y Y − −=
JG

" , N d NY X− = , and 

( ) { }2 1 2, , ,d
g N d N d NY T S Y Y Y− + − += =

JJG
" . 

Hence, 
( ) ( )( )

( )( )( ) ( )1 2

1 |

( ) ,

0,

d
r s m g N d N

N d N

P X t Y X t X

P T T T X X Y P T Y Y X

Y X

−

−

+ = =

⎧ ⊕ = Ω = =⎪= ⎨
⎪ ≠⎩

JJG JG JJG JJG

JJG JJG JG JJG
D . (8) 

Two cases must be considered with regard to state 
transition probability: 

(1) If ,X M Y M∩ ≠ ∅ ∩ = ∅
JJG JG

, we derive 

( )( 1) | ( ) 0P X t Y X t X+ = = =
JJG JG JJG JJG

 from Equation (8). Then 

( )
( )

( 1) | ( )

( 1) | ( ) 0
X M Y M

P X t M X t M

P X t Y X t X
∩ ≠∅ ∩ =∅

+ ∩ = ∅ ∩ ≠ ∅

= + = = =∑ ∑JJG JG

JJG JJG

JJG JG JJG JJG .    (9)   

(2) If ,X M Y M∩ = ∅ ∩ ≠ ∅
JJG JG

, we obtain 

( )2( )
d

d
g

M
P T Y

⎛ ⎞
Ω = ≥ ⎜ ⎟⎜ ⎟Ω⎝ ⎠

JJG
                    (10) 

( )( )( )
( )

1

1

*
1

, ( )

( )
N

r s m

t s
Z S Y Z X

P T T T X X Y

r P T Z X Y
∈ ⊂ ⊕

⊕ =

= • ⊕ =∑JG JJG JG JJG

JJG JJG JG

JG JJG JG .       (11) 

If 1 ( )Y Z X⊂ ⊕
JG JG JJG

, then 

( )
( )

( )

1

1 1

1

( )
11

1
( )

( )

( )

1

s

D Y
N d

D W
Y Y

W Z X

P T Z X Y

f Y e
e

N
f W e

υ
υ

υ

− − −
−

−
∈

∈ ⊕

⊕ =

⎛ ⎞
= ≥ ⎜ ⎟

⎝ ⎠
∏

∑
JJG

JG JJG

JG JJG JG

.    (12) 

Based on Equations (7), (8), (10), and (11), we can obtain  

( )
( )

11

( 1) | ( )

1 0 1
d N d

P X t Y X t X

M
e

N
υσ ς ξ

− −
−

+ = =

⎛ ⎞ ⎛ ⎞
≥ • • ≡ < ≤⎜ ⎟ ⎜ ⎟⎜ ⎟Ω ⎝ ⎠⎝ ⎠

JJG JG JJG JJG

.        (13) 

Hence, 

( )
( )
( 1) | ( )

( 1) | ( )

P X t M X t M

P X t Y X t X ς

+ ∩ ≠ ∅ ∩ = ∅

≥ + = = ≥

JJG JJG

JJG JG JJG JJG .      (14) 

The proof is completed with Equations (7), (9), and (14). 

V.  SIMULATION AND RESULTS  
To verify the convergence performance of MINA, we test 

the following three complex multimodal functions. The 
results are compared with those of traditional opt-AINet [5] 
and the novel immune clonal algorithm (NICA) [17]. 

(1) Levy No. 3 1f : 

( ) ( ) ( )
5 5

1 2 1 2
1 1

, cos 1 cos 1
i j

f x x i i x i j j x j
= =

= + + × + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑  

1 210 , 10x x− < < . 
This function contains approximately 760 local minima 

and 18 global minima with the ideal function 
value 176.542f ∗ = − . 

(2) Levy No. 8 2f :  

( ) ( ) ( ) ( ) ( )
1

2 22 2
1 1

1
sin 1 1 10sin 1

n

i i n
i

f x y y y yπ π
−

+
=

⎡ ⎤= + − + + −⎣ ⎦∑ . 

Where 1
1

4
i

i
x

y
−

= + , 10 10ix− ≤ ≤ , and 1, 2,...,i n= . 

When 3=n  and ( )1,1,1 Tx∗ = , the global minima is 0f ∗ = . 
Under this condition, we can obtain approximately 125 local 
minimum values.  

(3) Levy No. 10 3f : 

( )
2

3 1 2
1 1

cos 1
4000

nn
i i

i i

x x
f x

i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏ . 

Where 10n =  and [ ]600,600ix ∈ − . Using this formula, 
we can conduct a complex high-dimensional test function 
and increase the number of local extreme values with the 
growth in problem dimension. When ( )0,0, ,0x∗ = " , the 

global minimum is ( ) 0f x∗ = . 
In all of the experiments, the parameters of MINA are 

chosen as follows: 
100N = , 0.01ε = , 0.02ω = , 4μ = , 2ν = , 20d = . 

For opt-AINet and NICA, we follow the parameters in [5] 
and [17].   

The experiments were run 30 times using MINA, NICA, 
and opt-AINet on each test function. We present the average 
performance in terms of mean value, computational time, 
and the percentage of successful convergence. Table I 
illustrates the performance levels of the three algorithms, 
and Fig. 3 compares the convergence results of the functions 
using these three algorithms. 
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Fig. 3. Comparisons of convergence results 
using MINA, NICA, and opt-AINet
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