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A Modified Immune Network Optimization
Algorithm

Lu Hong, Joarder Kamruzzaman

Abstract— This study proposes a modified artificial immune
network algorithm for function optimization problems based
on idiotypic immune network theory. A hyper-cubic mutation
operator was introduced to reduce the heavy computational
cost of the traditional opt-AlNet algorithm. Moreover, the new
symmetrical mutation can effectively improve local search. To
maintain population diversity, we also devised an immune
selection mechanism based on density and fitness. The global
convergence of the algorithm was deduced through the method
of pure probability and iterative formula. Simulation results of
benchmark function optimization show that the modified
algorithm converges more effectively than other immune
network algorithms.

Index Terms—Artificial immune algorithm, Idiotypic
immune network, Hyper-cubic mutation, Convergence

I. INTRODUCTION

IOLOGICAL immune systems has the ability of

learning, memory and recognition antigen, and the
characteristics of adaptive, distributed and diversity.
Inspired by biological immune mechanism, a variety of
artificial immune algorithms have been developed to solve
problems in machine learning, fault diagnosis, system
modeling, computer security, and other fields of engineering
[1]-[2]. Artificial immune algorithm is an optimization
search algorithm that is bionic and intelligent. It imitates
biological immunology and the mechanism of gene
evolution. At present, proposed immune algorithms mainly
include clonal selection algorithm, negative selection
algorithm, and immune network algorithm [3]-[4]. The
immune network algorithm is based on immune network
theory and is generally represented by the opt-AlNet
algorithm, which was proposed by De Castro in 2002 [5].
This algorithm was inspired by idiotypic network theory and
can describe some of the dynamic characteristics of the
immune system. Moreover, it possesses several unique
features, including dynamically varied population sizes,
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local and global search, and the capability to maintain any
number of optima. Thus, this algorithm is among the most
widely applied artificial immune optimization methods in
problems of pattern recognition and multimodal
optimization. However, the immune network algorithm is
limited with respect to large-scale complicated optimization
problems, including additional parameters, heavy
computational cost, sensitivity to population size, and slow
convergence rate. Furthermore, the algorithm does not fully
reflect the regulation mechanism of immune networks, and it
is rarely analyzed in terms of mathematical theory [6-7].

In the current study, we present a modified immune
network algorithm (MINA) based on opt-AlNet. This
algorithm evaluates objective functions without negating the
valuable characteristics of the original algorithm. We also
introduce a hyper-cubic cloning mutation operator and a
specific immune selection mechanism. The globle
convergence of the algorithm is deduced by adopting the
pure probability and iterative formula method. MINA is then
compared with other immune network algorithms to verify
its effectiveness.

The paper is structured as follows. The basic principle of
idiotypic immune network theory is presented in Section 2.
The design scheme of the MINA for optimization is detailed
in Section 3. The globle convergence of the modified
algorithm are discussed in Section 4. The experimental
results for a set of test functions and the comparisons with
other algorithms are explained in Section 5. Finally,
conclusions and recommendations for future research are
provided in Section 6.

1. IDIOTYPIC IMMUNE NETWORK THEORY

In 1974, Jerne introduced idiotypic immune network
theory [9], which asserts that antibodies in the biological
immune system have the uniqueness of being recognized by
other antibodies. The uniqueness of antibodies can be seen
as an epitope, and its role is to be recognized by other
antibodies. Moreover, antibodies are identified by antigens
through the receptors on the surface of the antibodies, which
are called paratopes. Thus, antibodies can recognize one
another and form an idiotypic immune network, as shown in
Fig. 1.
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Fig. 1. The principle of idiotype immune network.

Antibodies can recognize not only external invasive
antigens, but also other antibodies. However, antibodies are
suppressed during recognition, and the interaction network
within the immune system reaches a dynamic equilibrium.
Hence, the stimulation level of B cells (antibodies) not only
depends on the affinity between the antibody and the antigen
but also on the matching degree between antibodies. If
stimulation levels exceed a certain threshold, the B cells
produce new antibodies through cloning and super mutation.
Otherwise, these cells die immediately and are replaced by
those produced in the marrow. Thus, the mutation rate of an
antibody is inversely proportional to its fitness during
mutation. In particular, the mutation process of antibodies
involves a continuous enhancement in affinity and a gradual
maturation. These characteristics of immune network not
only maintain the diversity of the antibody population
effectively but also facilitate self-organization and

regulation in the biological immune system [10]-[11].

I1l. MODIFIED IMMUNE NETWORK ALGORITHM

In 2002, De Castro and Von Zuben proposed the
opt-AINet network model [5]. Briefly, opt-AlINet is an
incomplete weighted connection diagram. This algorithm
was originally intended for data mining, pattern recognition,
and multimodal optimization [12]; it can perform local and
global searches and adjust population size dynamically.
Specifically, this algorithm conducts local searches based on
cloning, mutation, and antibody selection. It performs global
exploration by inserting random points and modifying
population size.

The performance levels of opt-AlNet and other
algorithms were compared in [13]. The results show that
opt-AlNet successfully determined the global optimum of
the test functions used but that the required computational
cost was much higher than those of the other algorithms. The
study concluded that this heavy computational cost may be
related to population increase. However, the possibility that
the exploration of local optima causes population growth
has not been studied further [14].

Hence, the current study proposes a modified MINA to
reduce computational cost and to improve the convergence
of opt-AlNet in processing problems related to complicated
function optimization.

The MINA algorithm is designed in detail as follows:

(1) Chaotic Initialization: An initial population of N
antibodies should be generated using the logistic formula.

(2) When the stopping criterion is unsatisfied,

(2.1) Fitness calculation: The fitness of each antibody
should be calculated.

(2.2) Antibody clone: Clones should be generated for
each antibody.

(2.3) Antibody mutation: Each clone mutates with the
aid of the hyper-cubic mutation operator. The parent
antibody is retained.

(2.4) Clonal selection: N cells with maximum fitness
from N mutation sets are selected from each clone set
based on density and fitness for the next generation. The
ideal N antibodies are copied to the memory set.

(2.5) Immune suppression: The antibody with a poor
fitness value is deleted as determined according to Euclidean
distance and the fitness difference between two antibodies.
The antibody with an improved fitness value is preserved in
the memory set.

(2.6) Immune replacement: d antibodies with poor
fitness values are replaced with new, randomly generated
members with high fitness values (diversity introduction).

(2.7) The best antibody is determined from the memory
set before proceeding to step 2.

The main operators of MINA are detailed as follows:

A. Chaotic Initialization

To reflect the chaotic nature of the biological immune
system and to generate the initial population, we adopt a
chaotic initialization operator. L chaotic variables are

computed using the following logistic formulas:
X = ux) (1-x)), X" e[01]. €y
Where k =1,2,...,L ,n=12,..,.N-1 and #=4 . k is
the serial number of chaotic variables. We assume that
n=0 and that the L chaotic initial values xJ vary

randomly. The values of L chaotic variables x; are then

calculated using the logistic equation. The other N -1
antibodies are obtained in the same manner.

B. Antibody Clone

The opt-AlNet algorithm is very sensitive to the change of
the number of clones. Therefore, each individual in the
antibody population is cloned to a fixed number. Each
antibody then possesses 2n clones that are equally
displaced over each dimension. N denotes the number of
dimensions.

C. Hyper-cubic Mutation

To increase the probability of exceeding the local
optimum, a hyper-cubic mutation operator is introduced into
the algorithm [15]. The mutation operation in Step 2.3 is
conducted using the following method:

Each individual antibody copies two clones for each
problem dimension. These clones are symmetrically
displaced from the original antibody under distance k .

k=0.01*exp(—f")(1+Gauss(0,1)), )
where f° is the normalized fitness of the original antibody,

and Gauss(0,1) is the random Gaussian variable. The

clones are evaluated over the objective function, and the
ideal point from each dimension is determined to estimate
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the ideal hypercube vertex as defined by the 2n clones. An
additional clone is generated from the estimated best value,
as depicted in Fig. 2.

Fig. 2. Hyper-cubic maturation and best vertex estimation for a
two-dimensional maximization problem

Therefore, the number of clones for each subpopulation is
no longer a random parameter. However, it is fixed at 2n +1.

D. Immune Selection

The principle of idiotypic networks suggests that B cells
are stimulated and suppressed not only by non-self antigens
but also by other interacted B cells, according to Jenre [9].
To maintain population diversity, we introduce a new
selection mechanism based on density and fitness into
MINA.

The affinity between two antibodies can be defined as
follows:

ED(X,. X)) = [ (X, X, ) <e
NG
F(x)-7(x,)|<e

Where /(X,) and f(X~

»,) represent the fitness values of

antibodies X; and X, , respectively; €& and @ are
positive threshold values; and ED () corresponds to the
Euclidean distance. If Equation (3) is satisfied, the two

antibodies are similar. The density (D, ) of antibody X, can

be defined with the following equation:
Sim (X ; )

p =2, )

Where Sim(X,) is the number of antibodies similar

to X;and N is the population size of the antibody.

Based on the activation and suppression regulations of
antibodies in the immune system, the selection probability of
individual X, can be defined as follows:

f(X,)exP[(Dg(()‘:])J' “

X)) =~

2/ (X, Jexp

Where U is the regulation factor; D(X,) is the density of

antibody X; ; and f (X 1) is the fitness value of
antibody X .

The formula reflects the uncertainty of antibody selection

and of the dynamic adjustment mechanism of idiotypic

immune network theory. Therefore, MINA can not only
maintain the high affinity between individuals, but it also

generates a diverse population.

IV. CONVERGENCE ANALYSIS OF MINA

Convergence result obtained by traditional Markov chain
model generally refers to the corresponding Markov chain
tending to a stationary distribution. Moreover, it differs from
the general definition of convergence in optimization [16].
Furthermore, the Markov chain typically undergoes
numerous states. As a result, the performance of the
transition matrix is very difficult to analyze. To simplify the
algorithm considerably, we substitute traditional ergodic
analysis with the method of pure probability and an iterative
formula in the global convergence analysis of MINA.

For convenience, some parameters are defined as
follows:

Q : Antibody space

S = Q" : Population space

P() : Probability distribution

r,: Q" > Q" : Operator of MINA

Ff(l‘) =T, ()?(t—l)) : Markov chain of MINA in space
QN

M= {X;VY 5 S,f(X) > f(Y)} : Global optimal set

Some terms are formally defined as follows:

Definition 1. If sequence {}(t ),t 2 0} is the probability

convergent to the global optimal solution set, then
1imP{|:}(t)ﬂM¢®:|}:1 and we

denote )7(1) —> M(PW).
Based on the previous analysis, MINA can be described
as a random search sequence {Y(t ).t2 0} and expressed as

follows:
X(e)=17 (1, (X)X ()7 (). @©

Where 7T, is the immune suppression operator; 7, is the
immune selection operator; 7,, is the hyper-cubic mutation
operator; and ng is the immune replace operator.

Let

a :P(Y(zﬂ)mM:@ﬁ(z)mM;ﬁ@
- _ . We can then
B =P(X(t+1)mM¢®|X(t)mM=®)

generate the following theorem.
M

Theorem 1. If sequences {Ol, }and {ﬁ,M} satisfy the

following properties:
M

(1) 28" ==; @) 1ﬁ%:°’
1=1 t
then the random sequence {}(t),IZO} is probability
convergent to the satisfied solution set A/ . We then
determine }ijnP(}(t)mM¢®)=l . Given the space

limitations, we do not prove this theorem in this paper;
rather, we will discuss the proof in our full-length paper.
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According to Theorem 1, the convergence of sequence
{Y(t),tzo} and parameters " and B are very closely

related.
To confirm the probability convergence of MINA, we
must generate the following:

VX() ()eS Jo > 0. We then obtain
r[:min(P(Tm(7(t)—>\7(t))))>o>0, @)

where 1 is the minimum mutation rate.

Theorem 2. For any initial distribution, MINA converges
to global optimal solution set M in probability.

Proof. Let Y(t):{xi,ls i <N} represent the antibody

population at generation t and let X, denote the best
individual. At generationt+1, we obtain

X(t+1)={Y,1<i<N}= {Y Y, .Y, }

Where Y, = Yo Yo Yaaa)

Y_; :ng (S) = {YN—d+1'YN—d+2"”’YN} '
Hence,
P(x(t+1):\?|i() X)

0, Yyoa = Xy

Two cases must be considered with regard to state
transition probability:

Q) 1 XaMz@YAM=3 , we
(X(t+1): | X (t) ) 0 from Equation (8). Then

P(Y(Hl)mm ~FIX®)AM ¢@)

Yyoa =Xy, and

&X)=V|oP(TV@=Y), Y y=X, @

derive

=2 2 P(Y(Hl):?ﬁ(t):i)zo- ©)
(2) |f¥ﬁf;\/|x= é,%mM =, We obtain
P @)=Y [%] (10)
P 1. (X)eX)¥)
! A €5

IfY, = (Z®X) , then
P(T.Z®X)=Y,)
fn) DY) L \N-d-t
e v 1 L
-T1 1 o Z(We J . (12)
YieYy z f(W )e v

We(Z@X)

Based on Equations (7), (8), (10), and (11), we can obtain
P(X(t+D)=Y X1 =X)

ERLE N ¢)
>0'0(|||:|2||] (We “} =¢(0<¢£<1)

Hence,

P(Y(t+1)mv| | X (M) "M :@)
(14)
>P(X(t+1) YIX(@) = )>g

The proof is completed with Equations (7), (9), and (14).

V. SIMULATION AND RESULTS

To verify the convergence performance of MINA, we test
the following three complex multimodal functions. The
results are compared with those of traditional opt-AINet [5]
and the novel immune clonal algorithm (NICA) [17].

(1) Levy No. 3 f;:

f(%,%,) Z|cos[ (i+1) X1+I:|><ZJCOS|: j+1) %+ ]

-10 < X, X, <10.

This function contains approximately 760 local minima
and 18 global minima with the ideal function
value f* =-176.542.

(2) Levy No. 8 f,:

n-1

F(x) =sin? () + | s ~1)° (L4108 (2,0 ] +(y, ~1)'.

i=1

Where vy, :1+'—_1 ,-10<x <10, and i=12,..,n

When n=3 and x* = (1,1,1)T , the global minimais f* =0.
Under this condition, we can obtain approximately 125 local
minimum values.

(3) Levy No. 10 f,:

n 2

f,(x)= 24000—1_[005( ”2j+1

i=1 =1

Where n =10 and x €[-600,600]. Using this formula,

we can conduct a complex high-dimensional test function
and increase the number of local extreme values with the

growth in problem dimension. When x* =(0,0,---,0), the
global minimum is f*(x)=0.

In all of the experiments, the parameters of MINA are
chosen as follows:

N =100, £¢=001, =002, u=4,v=2, d=20.
For opt-AlNet and NICA, we follow the parameters in [5]
and [17].

The experiments were run 30 times using MINA, NICA,
and opt-AlNet on each test function. We present the average
performance in terms of mean value, computational time,
and the percentage of successful convergence. Table |
illustrates the performance levels of the three algorithms,
and Fig. 3 compares the convergence results of the functions
using these three algorithms.
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TABLE 1.
PERFORMANCE COMPARISON RESULTS OF THE THREE ALGORITHMS

opt-AINet NICA MINA
Mean Time(s) Conv% Mean Time(s) Conv% Mean Time(s) Conv%
Sy -172.466 455 95 -175.220 96 -176.542 2.44 100
f, 2.54x10* 828 90 6.57X10° 94 0 3.75 100
/5 446x10* 1433 86 249X 107 91 1.79%X107  6.83 96
other two algorithms. MINA converged after 26, 55, and 88
100+ iterations of the functions f;, f, and f; respectively.
110 % MINA This finding can be attributed to hyper-cubic mutation
I X NICA and the use of the new immune selection operator. The
-120 N — . — . opt-AlNet former reduces the computational cost of the network
-130 | 5, algorithm, whereas the latter maintains population diversity
S0 i ‘N and enhances global search capability. Hence, MINA can
aso b i~ effectively solve complex problems of multimodal
160 | -, _ optimization.
ersannnann rany,
70y | | | ‘-F‘-L-.._..,‘ e T T e T VI. CONCLUSIONS
180 5 10 15 20 25 30 35 40 45 This study proposed a modified artificial immune
Iterations network algorithm (MINA) based on idiotypic immune
(a) network theory for multi-modal optimization. This
algorithm mainly differs from the original opt-AINet
1 r algorithm with respect to hyper-cubic mutation and the
09 %- MINA immune selection mechanism based on density and fitness.
o8l e NICA The modified algorithm not only retained the unique
07 -5_1\ — - — - opt-AlNet characteristics of opt-AINet, but it also considerably
06 — \ reduced the number of objective function evaluations
fro5F%T, required during optimization. The global convergence of the
041 4.~ algorithm was deduced using the method of pure probability
03} Y, and iterative formula. MINA was applied to several test
02} Fa . functions, and the results indicated that MINA can escape
o1l R . from the neighborhoods of local minima and can effectively
0 ! 1 L 1 R PR P s PYYY s PPV locate the global optimum. However, the ideas and the
0 10 2 30 I 4 50 60 70 80 90 algorithm proposed in this paper remain under development
terations and further analysis and applications will be addressed in
(b) our future work.
o fi
8:2 MINA ACKNOWLEDGMENT
o e— NICA
0.7 1 The authors would like to thank the editors and all of the
0.6 k1 = - = - opt-AlNet ' :
i anonymous reviewers for their valuable comments and
S5 05 'IL"-..+_ suggestions, which were strongly helped improve the
8: RS quality of the paper.
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