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Abstract—In this paper we study a set of generalized shuffling
problems. The goal of each problem is to make a smallest
number of moves to reach the final state of the problem from
its initial state. We are interested in algorithms which, given
integers n, generate the corresponding move sequences to reach
the final state of the game with smallest number of steps. In
this paper we present the optimal algorithms to generate the
optimal move sequences of the problems consisting of n black
coins and n white coins, and finally, we present the explicit
solutions for all of the generalized shuffling problems of size n.

Index Terms—Computer games, shuffling problems, optimal
algorithms, explicit solutions.

I. INTRODUCTION

The shuffling problem is actually a single player computer
game similar to the moving coins puzzle [2], [3], [9], which
is played by rearranging one configuration of unit disks in
the plane into another configuration by a sequence of moves,
each repositioning a coin in an empty cell that touches at least
two other coins. In our shuffling problem, there are two types
of objects, black coins b and white coins w. A sequence of
2n + 2 cells numbered 0, 1, · · · , 2n − 1, and n black coins
and n white coins are given. The 2n coins are put on the
cells from left to right in a row. Initially, the n black coins
are put on the cells 0, 1, · · · , n−1, and the n white coins are
put on the cells n, n−1, · · · , 2n−1. The rightmost two cells
2n and 2n+1 are vacant, denoted as O. In the final state of
the game, the cells of even number 2, 4, · · · , 2n are occupied
by white coins, and the cells of odd number 3, 5, · · · , 2n+1

are occupied by black coins, leaving the two cells 0 and 1

vacant.
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A move of the game consists of shifting two adjacent
coins, keeping their order, into the current two vacant cells.
The shuffling problem is to make a smallest number of

moves to rearrange the initial state

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·wOO to the

final state OO

2n︷ ︸︸ ︷
wb · · ·wb. This original shuffling problem

can be denoted as S(n, n, r), because the vacant cells are
located rightmost in its initial state. The problem S(n, n, l)

is a variant of S(n, n, r). The problem S(n, n, l) is to

rearrange its initial state OO

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·w to its final state

2n︷ ︸︸ ︷
wb · · ·wbOO. Another variant of S(n, n, r) is its inverse
problem S−1(n, n, r). The inverse problem is to rearrange

inversely from OO

2n︷ ︸︸ ︷
wb · · ·wb to

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·wOO. Similarly,

the inverse problem S−1(n, n, l) is to rearrange inversely

from

2n︷ ︸︸ ︷
wb · · ·wbOO to OO

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·w.

In this paper, we will discuss more new variants of the
problem of S(n, n, r) and their inverse problems. These
new variants of S(n, n, r) are S(n, n− 1, r), S(n− 1, n, r),
S(n, n−1, l) and S(n−1, n, l). The definitions of these new
variants of S(n, n, r) are similar to the original shuffling
problem. For example, the problem S(n, n − 1, r) is to

rearrange its initial state

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·wOO to its final state

OO

2n−1︷ ︸︸ ︷
bwb · · · bwb. The others are defined similarly, as shown

in Table 1.
In a recent paper [9], an optimal algorithm to generate

an optimal move sequence of the problem S(n, n, r) was
presented. Based on the optimal algorithm of the problem
S(n, n, r), we can build new optimal algorithms for all the
new variants of the shuffling problem listed above in this
paper.

This paper is structured as follows.
In the following 4 sections we describe our new algorithms

for the generalized shuffling problems. In section 2 we prove
the lower bounds of the generalized shuffling problems.
The optimal recursive construction algorithms are proposed
in section 3. Based on the recursive algorithm proposed
in section 3, the explicit solutions for the optimal move
sequence of the general problems are presented in section
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Table I
THE GENERALIZED SHUFFLING PROBLEMS

Problem Initial State Final State

S(n, n, r)

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·wOO OO

2n︷ ︸︸ ︷
wb · · ·wb

S(n, n, l) OO

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·w

2n︷ ︸︸ ︷
wb · · ·wbOO

S−1(n, n, r) OO

2n︷ ︸︸ ︷
wb · · ·wb

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·wOO

S−1(n, n, l)

2n︷ ︸︸ ︷
wb · · ·wbOO OO

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·w

S(n, n− 1, r)

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·wOO OO

2n−1︷ ︸︸ ︷
bwb · · · bwb

S(n− 1, n, r)

n−1︷ ︸︸ ︷
w · · ·w

n︷ ︸︸ ︷
b · · · bOO OO

2n−1︷ ︸︸ ︷
bwb · · · bwb

S(n, n− 1, l) OO

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·w

2n−1︷ ︸︸ ︷
bwb · · · bwbOO

S(n− 1, n, l) OO

n−1︷ ︸︸ ︷
w · · ·w

n︷ ︸︸ ︷
b · · · b

2n−1︷ ︸︸ ︷
bwb · · · bwbOO

S−1(n, n− 1, r) OO

2n−1︷ ︸︸ ︷
bwb · · · bwb

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·wOO

S−1(n− 1, n, r) OO

2n−1︷ ︸︸ ︷
bwb · · · bwb

n−1︷ ︸︸ ︷
w · · ·w

n︷ ︸︸ ︷
b · · · bOO

S−1(n, n− 1, l)

2n−1︷ ︸︸ ︷
bwb · · · bwbOO OO

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·w

S−1(n− 1, n, l)

2n−1︷ ︸︸ ︷
bwb · · · bwbOO OO

n−1︷ ︸︸ ︷
w · · ·w

n︷ ︸︸ ︷
b · · · b

4. Some concluding remarks are in section 5.

II. THE LOWER BOUNDS OF THE PROBLEMS

It has been proved that the problems S(n, n, r), S(n, n, l),
S−1(n, n, r), and S−1(n, n, l) cannot be solved in fewer
than n moves [1], [6], [7]. Similar results for the problems
S(n, n− 1, r), S(n, n− 1, l), S(n− 1, n, r), S(n− 1, n, l),
S−1(n, n − 1, r), S−1(n, n − 1, l),S−1(n − 1, n, r),and
S−1(n− 1, n, l) are also true.

Theorem 1: The problems S(n, n − 1, r), S(n, n − 1, l),
S(n− 1, n, r), S(n− 1, n, l), S−1(n, n− 1, r), S−1(n, n−
1, l),S−1(n− 1, n, r),and S−1(n− 1, n, l) cannot be solved
in fewer than n moves.
Proof. We consider the problem S(n, n− 1, r) first.

we count the number of variations, bw and wb, similarly to
the counting of changes of sign in Descarte’s rule of signs. In
the initial state of the problem S(n, n−1, r), there is only one
variation. But, In the final state of the problem S(n, n−1, r),
there are total 2n− 2 variations. It is readily to see that the
variations are increased by 2n−3 from initial state to the final
state of the problem S(n, n−1, r). In the first step of move, at
most one variation can be added and in the subsequent moves
at most two variations can be added in each step except the
last step. We have noticed that if the problem is solved, the
last step of move must be removing the two adjacent coins
xy located at cells 0 and 1 to the current vacant cells located
at cells i and i+ 1, 2 ≤ i < 2n. There are two cases of the

two adjacent coins xy to be distinguished. It is readily seen
that if xy = bw then the last move produces no increment
in variations. In the case of xy = wb, exactly one variation
will be added by the last step of move. Therefore, at most
one variation can be added in the last step.

If the final state is reached after m steps, then at most
2(m− 2) + 2 = 2m− 2 variations are added. Therefore, we
have, 2m− 2 ≥ 2n− 3 and so m ≥ n− 1/2. Since m is an
integer, we have m ≥ n.

In other words, it needs at least n steps to reach the final
state of S(n, n− 1, r) from its initial state.

The proofs for the other 7 problems are similar. �

III. THE OPTIMAL RECURSIVE ALGORITHMS

In the following discussion, we will use a vector x =

(x1, x2, · · · , xn) to denote the solution of the problem. For
i = 1, 2, · · · , n, the move of step i is xi. This means that
in the move of step i, we move the adjacent pair of coins
located at cells xi and xi +1 to the current vacant cells and
leaving the cells xi and xi + 1 the new vacant cells.

A. The Solutions for the Problems of Type (n, n)

1) The Solution for the Problem S(n, n, r): We discuss
the problem S(n, n, r) first. It is not difficult to generate
all optimal solutions of the problem with small size by a
backtracking algorithm.

For example, in the cases of n = 4, 5, 6, 7, the corre-
sponding optimal solutions are x = (1, 4, 7, 0), (1, 7, 4, 9, 0),
(1, 7, 3, 8, 11, 0) and (1, 10, 4, 9, 6, 13, 0) respectively.

The Decrease-and-Conquer strategy [4], [5] for algorithm
design can be exploited to design the optimal recursive
algorithms for our purpose. For the cases of n ≥ 8, we can
find one optimal solution for the game recursively as follows.

We first make 2 moves x1 = 1 and x2 = 2n − 4. The
status is changed to

bwwb

n−4︷ ︸︸ ︷
b · · · b

n−4︷ ︸︸ ︷
w · · ·wOOwwbb

Now, the coins located at the cells 4, 5, · · · , 2n − 3

are exactly the same as the initial state of the problem
S(n − 4, n − 4, r). We can use our recursive algorithm to
this subproblem to get

bwwbOO

2n−8︷ ︸︸ ︷
wb · · ·wbwwbb

We finally make 2 moves xn−1 = 2n− 1 and xn = 0 to
get the final status

OO

2n︷ ︸︸ ︷
wb · · ·wb

The recursive algorithm can be described as follows.
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Algorithm III.1: SNNR(first, k)

if k < 8

then construct the solution directly

else



comment: first 2 moves

xi ← first+ 1

xi+1 ← first+ 2 ∗ k − 4

i← i+ 2

comment: recursive moves

SNNR(first+ 4, k − 4)

comment: last 2 moves

xi ← first+ 2 ∗ k − 1

xi+1 ← first

i← i+ 2

In the algorithm described above, the parameters first
and k describe the initial state of the subproblem of size k
starting at cell first. The current step of move is stored in
a global variable i which is initialized with 1.

It is obviously that the above algorithm uses n moves to
get the the final status. The algorithm is an optimal algorithm,
since n is a lower bound of the problem S(n, n, r).

2) The Solution for the Problem S(n, n, l): The prob-
lem S(n, n, l) is symmetric to the problem S(n, n, r). The
solutions for the problem in the cases of n = 4, 5, 6, 7,
are x = (7, 4, 1, 8), (9, 3, 6, 1, 10), (11, 5, 9, 4, 1, 12) and
(13, 4, 10, 5, 8, 1, 14) respectively. It can be verified that if
y = (y1, · · · , yn) is an optimal solution for the problem
S(n, n, r), then x = (2n−y1, · · · , 2n−yn) is also an optimal
solution for the problem S(n, n, l).

For the cases of n ≥ 8, the optimal solution for the
problem can also be found recursively.

We first make 2 moves x1 = 2n − 1 and x2 = 4. The
status is changed to

wwbbOO

n−4︷ ︸︸ ︷
b · · · b

n−4︷ ︸︸ ︷
w · · ·wwbbw

Then the subproblem S(n − 4, n − 4, r) is solved recur-
sively to get

wwbb

2n−8︷ ︸︸ ︷
wb · · ·wbOOwbbw

We finally make 2 moves xn−1 = 1 and xn = 2n to get
the final status

2n︷ ︸︸ ︷
wb · · ·wbOO

The recursive algorithm can be described as follows.

Algorithm III.2: SNNL(first, k)

if k < 8

then construct the solution directly

else



comment: first 2 moves

xi ← first+ 2 ∗ k − 1

xi+1 ← first+ 4

i← i+ 2

comment: recursive moves

SNNL(first+ 4, k − 4)

comment: last 2 moves

xi ← first+ 1

xi+1 ← first+ 2 ∗ k
i← i+ 2

It is obviously that the above algorithm uses n moves to
get the the final status. The algorithm is an optimal algorithm,
since n is a lower bound of the problem S(n, n, l).

3) The Solutions for the Problems S−1(n, n, r) and
S−1(n, n, l): The problem S−1(n, n, l) is an inverse prob-
lem of S(n, n, l). For the cases of n ≥ 8, the optimal solution
for the problem can also be found recursively.

We first make 2 moves x1 = 1 and x2 = 2n − 4. The
status is changed to

wwbb

2n−8︷ ︸︸ ︷
wb · · ·wbOOwbbw

Then the subproblem S−1(n − 4, n − 4, l) is solved
recursively to get

wwbbOO

n−4︷ ︸︸ ︷
b · · · b

n−4︷ ︸︸ ︷
w · · ·wwbbw

We finally make 2 moves xn−1 = 2n− 1 and xn = 0 to
get the final status

OO

n︷ ︸︸ ︷
b · · · b

n︷ ︸︸ ︷
w · · ·w

Compared to the solution for the problem S(n, n, r), we
have found that the solution for the problem S−1(n, n, l) is
exactly the same as the solution for the problem S(n, n, r).
Similarly, we can conclude that the solution for the problem
S−1(n, n, r) is exactly the same as the solution for the
problem S(n, n, l).

B. The Solutions for the Problems of Type (n, n− 1)

1) The Solution for the Problem S(n, n − 1, r): The
problem S(n, n − 1, r) can be reduced to the problem
S(n, n, l) as follows.
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The solutions for the problem in the cases of n =

3, 4, 5, 6, are x = (1, 4, 0), (0, 3, 6, 0), (2, 6, 1, 8, 0), and
(1, 7, 2, 5, 10, 0) respectively.

For the cases of n ≥ 7, we first make 1 move x1 = 1.

The initial status

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·wOO is changed to

bOO

n−3︷ ︸︸ ︷
b · · · b

n−3︷ ︸︸ ︷
w · · ·wwwbb

Then the subproblem S(n− 3, n− 3, r) is solved to get

b

2n−6︷ ︸︸ ︷
wb · · ·wbOOwwbb

We finally make 2 moves xn−1 = 2n− 2 and xn = 0 to

get the final status OO

2n−1︷ ︸︸ ︷
bwb · · · bwb.

The algorithm can be described as follows.

Algorithm III.3: SNN1R(n)

if n < 8

then construct the solution directly

else



comment: first move

x1 ← 1

comment: reduced to S(n, n, l)

SNNL(1, n− 3)

comment: last 2 moves

xn−1 ← 2n− 2

xn ← 0

Since the algorithm SNNL(1, n − 3) needs n − 3 moves,
the algorithm SNN1R(n) requires n moves.

2) The Solution for the Problem S(n − 1, n, r): The
problem S(n − 1, n, r) can be reduced to the problem
S(n, n, r) as follows.

The solutions for the problem in the cases of n = 3, 5, 6,
are x = (1, 3, 0), (6, 1, 8, 5, 0), and (1, 8, 1, 4, 7, 0) respec-
tively.

For the cases of n ≥ 7, we first make 2 moves x1 = n−2

and x2 = 2n − 4. The initial status
n−1︷ ︸︸ ︷

w · · ·w
n︷ ︸︸ ︷

b · · · bOO is
changed to

n−2︷ ︸︸ ︷
w · · ·w

n−2︷ ︸︸ ︷
b · · · bOObwb

Then the subproblem S(n− 2, n− 2, r) is solved to get

OOb

2n−4︷ ︸︸ ︷
bw · · · bw bwb

This is the final status OO

2n−1︷ ︸︸ ︷
bwb · · · bwb.

The algorithm can be described as follows.

Algorithm III.4: SN1NR(n)

if n < 6

then construct the solution directly

else



comment: first 2 moves

x1 ← n− 2

x2 ← 2n− 4

comment: reduced to S(n, n, r)

SNNR(0, n− 2)

Since the algorithm SNNR(0, n − 2) needs n − 2 moves,
the algorithm SN1NR(n) requires n moves.

3) The Solution for the Problem S(n−1, n, l): The prob-
lem S(n− 1, n, l) can be reduced to the problem S(n, n, r)

as follows.

The solutions for the problem in the cases of n =

3, 4, 5, 6, are x = (4, 1, 5), (7, 4, 1, 7), (7, 3, 8, 1, 9) and
(10, 4, 9, 6, 1, 11) respectively.

For the cases of n ≥ 7, we first make 1 move x1 = 2n−2.

The initial status OO
n−1︷ ︸︸ ︷

w · · ·w
n︷ ︸︸ ︷

b · · · b is changed to

bbww

n−3︷ ︸︸ ︷
w · · ·w

n−3︷ ︸︸ ︷
b · · · bOOb

Then the subproblem S(n− 3, n− 3, r) is solved to get

bbwwOO

2n−6︷ ︸︸ ︷
bw · · · bw b

We finally make 2 moves xn−1 = 1 and xn = 2n− 1 to

get the final status

2n−1︷ ︸︸ ︷
bwb · · · bwbOO.

The algorithm can be described as follows.

Algorithm III.5: SN1NR(n)

if n < 7

then construct the solution directly

else



comment: first move

x1 ← 2n− 2

comment: reduced to S(n, n, r)

SNNR(4, n− 3)

comment: last 2 moves

xn−1 ← 1

xn ← 2n− 1

Since the algorithm SNNR(4, n − 3) needs n − 3 moves,
the algorithm SN1NR(n) requires n moves.

IAENG International Journal of Computer Science, 41:4, IJCS_41_4_04

(Advance online publication: 30 November 2014)

 
______________________________________________________________________________________ 



4) The Solution for the Problem S(n, n−1, l): The prob-
lem S(n, n− 1, l) can be reduced to the problem S(n, n, l)

as follows.
The solutions for the problem in the cases of n = 3, 5, 6,

are x = (4, 2, 5), (3, 8, 1, 4, 9) and (10, 3, 0, 7, 4, 11) respec-
tively.

For the cases of n ≥ 7, we first make 2 moves x1 = n+1

and x2 = 3. The initial status OO

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·w is changed

to

bwbOO

n−2︷ ︸︸ ︷
b · · · b

n−2︷ ︸︸ ︷
w · · ·w

Then the subproblem S(n− 3, n− 3, l) is solved to get

bwb

2n−6︷ ︸︸ ︷
wb · · ·wbOO

This is the final status

2n−1︷ ︸︸ ︷
bwb · · · bwbOO.

The algorithm can be described as follows.

Algorithm III.6: SN1NL(n)

if n < 7

then construct the solution directly

else



comment: first 2 moves

x1 ← n+ 1

x2 ← 3

comment: reduced to S(n, n, l)

SNNL(3, n− 2)

Since the algorithm SNNL(3, n − 2) needs n − 2 moves,
the algorithm SN1NL(n) requires n moves.

5) The Solution for the Problem S−1(n, n − 1, r): The
problem S−1(n, n − 1, r) can be reduced to the problem
S−1(n, n, l) as follows.

The solutions for the problem in the cases of n =

3, 4, 5, 6, are x = (4, 1, 5), (3, 6, 0, 7), (8, 1, 6, 2, 9) and
(2, 5, 10, 7, 1, 11) respectively.

For the cases of n ≥ 7, we first make 2 moves x1 =

2n− 2 and x2 = 2n− 5. The initial status OO

2n−1︷ ︸︸ ︷
bwb · · · bwb

is changed to

b

2n−6︷ ︸︸ ︷
wb · · ·wbOOwwbb

Then the subproblem S−1(n − 3, n − 3, l), which is
equivalent to S(n− 3, n− 3, r), is solved to get

bOO

n−3︷ ︸︸ ︷
b · · · b

n−3︷ ︸︸ ︷
w · · ·wwwbb

We finally make 1 move xn = 2n − 1 to get the final

status

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·wOO.

The algorithm can be described as follows.

Algorithm III.7: S−1NN1R(n)

if n < 7

then construct the solution directly

else



comment: first 2 moves

x1 ← 2n− 2

x2 ← 2n− 5

comment: reduced to S−1(n, n, l)

SNNR(1, n− 3)

comment: last move

xn ← 2n− 1

Since the algorithm SNNR(1, n − 3) needs n − 3 moves,
the algorithm S−1NN1R(n) requires n moves.

6) The Solution for the Problem S−1(n − 1, n, r): The
problem S−1(n − 1, n, r) can be reduced to the problem
S−1(n, n, r) as follows.

The solutions for the problem in the cases of n = 3, 5, 6,
are x = (3, 1, 5), (5, 8, 1, 6, 9) and (5, 8, 1, 6, 4, 11) respec-
tively.

For the cases of n ≥ 7, we first solve the subproblem
S−1(n−2, n−2, r), which is equivalent to S(n−2, n−2, l),
for the first 2n− 2 cells to get

n−2︷ ︸︸ ︷
w · · ·w

n−2︷ ︸︸ ︷
b · · · bOObwb

We finally make 2 moves xn−1 = n− 2 and xn = 2n− 1

to get the final status
n−1︷ ︸︸ ︷

w · · ·w
n︷ ︸︸ ︷

b · · · bOO.

The algorithm can be described as follows.

Algorithm III.8: S−1N1NR(n)

if n < 7

then construct the solution directly

else



comment: reduced to S−1(n, n, r)

SNNL(0, n− 2)

comment: last 2 moves

xn−1 ← n− 2

xn ← 2n− 1

Since the algorithm SNNL(0, n − 2) needs n − 2 moves,
the algorithm S−1N1NR(n) requires n moves.
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7) The Solution for the Problem S−1(n − 1, n, l): The
problem S−1(n − 1, n, l) can be reduced to the problem
S−1(n, n, r) as follows.

The solutions for the problem in the cases of n =

3, 4, 5, 6, are x = (1, 4, 0), (1, 4, 7, 0), (1, 8, 3, 7, 0) and
(1, 6, 9, 4, 10, 0) respectively.

For the cases of n ≥ 7, we first make 2 moves x1 = 1

and x2 = 4. The initial status

2n−1︷ ︸︸ ︷
bwb · · · bwbOO is changed to

bbwwOO

2n−6︷ ︸︸ ︷
bw · · · bw b

Then the subproblem S−1(n − 3, n − 3, r), which is
equivalent to S(n− 3, n− 3, l), is solved to get

bbww

n−3︷ ︸︸ ︷
w · · ·w

n−3︷ ︸︸ ︷
b · · · bOOb

We finally make 1 move xn = 0 to get the final status

OO

n−1︷ ︸︸ ︷
w · · ·w

n︷ ︸︸ ︷
b · · · b.

The algorithm can be described as follows.

Algorithm III.9: S−1N1NL(n)

if n < 7

then construct the solution directly

else



comment: first 2 moves

x1 ← 1

x2 ← 4

comment: reduced to S−1(n, n, r)

SNNL(4, n− 3)

comment: last move

xn ← 0

Since the algorithm SNNL(4, n − 3) needs n − 3 moves,
the algorithm S−1N1NL(n) requires n moves.

8) The Solution for the Problem S−1(n, n − 1, l): The
problem S−1(n, n − 1, l) can be reduced to the problem
S−1(n, n, l) as follows.

The solutions for the problem in the cases of n = 3, 5, 6,
are x = (2, 4, 0), (4, 1, 8, 3, 0) and (2, 5, 10, 1, 7, 0) respec-
tively.

For the cases of n ≥ 7, we first solve the subproblem
S−1(n−2, n−2, l), which is equivalent to S(n−2, n−2, r),
for the last 2n− 2 cells to get

bwb

2n−4︷ ︸︸ ︷
wb · · ·wbOO

We finally make 2 moves xn−1 = n + 1 and xn = 0 to

get the final status OO

n︷ ︸︸ ︷
b · · · b

n−1︷ ︸︸ ︷
w · · ·w.

Table II
SMALL TWO DIMENSIONAL ARRAY d

HH
HHHn

i
1 2 3 4 5 6 7

4 1 4 7 0 0 0 0
5 1 7 4 9 0 0 0
6 1 7 3 8 11 0 0
7 1 10 4 9 6 13 0

The algorithm can be described as follows.

Algorithm III.10: S−1NN1L(n)

if n < 7

then construct the solution directly

else



comment: reduced to S−1(n, n, l)

SNNR(3, n− 2)

comment: last 2 moves

xn−1 ← n+ 1

xn ← 0

Since the algorithm SNNR(3, n − 2) needs n − 2 moves,
the algorithm S−1NN1L(n) requires n moves.

IV. THE EXPLICIT SOLUTIONS OF THE PROBLEMS

A. The Explicit Solutions of the Problems of Type (n, n)

1) The Explicit Solutions of the Problem S(n, n, r): In
this section we will discuss the explicit expression of function
x. We will discuss the solution for the problem S(n, n, r)

first.

For the small size cases of n = 4, 5, 6, 7, the optimal
solutions of the problem can be listed as a small two
dimensional array d as follows.

For the problems of size n = 4, 5, 6, 7, the step i, 1 ≤ i ≤
n of the optimal solution can be expressed as d(n, i). For the
cases of the subproblems of size n− t = 4, 5, 6, 7, starting at
cell t, the corresponding step j, 1 ≤ j ≤ n− t of the optimal
solution can be expressed as t+ d(n− t, j). For the general
cases of the subproblems of size n, starting at cells t, if the
corresponding step j, 1 ≤ j ≤ n of the optimal solution is
denoted as α(n, t, j), then for the problem of size n, the
optimal move xi, 1 ≤ i ≤ n must be α(n, 0, i), 1 ≤ i ≤ n.

According to the recursive algorithm presented in previous
section, the function α(n, t, j) can be computed as follows.
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α(n, t, j) =



t+ d(n− t, j) 3 < n− t and n− t < 8

t+ 1 j = 1

2n− t− 4 j = 2

2n− t− 1 j = n− t− 1

t j = n− t
α(n, t+ 4, j − 2) otherwise

(1)
If i or n − i is a constant, then xi = α(n, 0, i) can be

computed in O(1) time by the formula given above. In other
cases, if both i and n− i are in O(n), then the time costs to
compute α(n, 0, i) by the formula given above must be O(n).
However, we can reduce the formula further to an explicit
formula to compute each of xi = α(n, 0, i), 1 ≤ i ≤ n in
O(1) time.

From the construction steps of the recursive algorithm
for the problem S(n, n, r), the optimal move steps can be
divided into three parts, the first 2 moves, recursive moves
and the last 2 moves. Thereby the n steps of the optimal
move sequence xi, 1 ≤ i ≤ n generated by the algorithm
can also be divided into thee parts accordingly. These three
parts are the first part 1 ≤ i ≤ 2k, the second part
2k < i < 2k + r + 3 and the third part 2k + r + 3 ≤ i ≤ n,
respectively, where k = bn/4c − 1, r = n mod 4.

Every move step i, 1 ≤ i ≤ n, corresponds to a subprob-
lem starting at cell t, and this starting cell t can also be
determined by the value of i.

In the first part of the optimal move steps, the moves are
generated by the first 2 moves of the algorithm. It is not
difficult to see that if i is odd then t = 2(i − 1) otherwise
t = 2(i−2). In this case, if i is odd then α(n, 0, i) = t+1 =

2(i− 1) + 1 = 2i− 1, otherwise, α(n, 0, i) = 2n− t− 4 =

2n− 2(i− 2)− 4 = 2(n− i).
Similarly, in the third part of the optimal move steps, the

moves are generated by the last 2 moves of the algorithm. In
this case, the starting cell t of the subproblem corresponding
to step i can be determined by the value of n − i. It is not
difficult to see that if n − i is odd then t = 2(n − i − 1)

otherwise t = 2(n− i). It can also be derived by formula (1)

that, if n−i is odd then α(n, 0, i) = 2n−t−1 = 2n−2(n−
i− 1)− 1 = 2i+ 1, otherwise, α(n, 0, i) = t = 2(n− i).

For the second part of the optimal move steps, the starting
cell t of the subproblem corresponding to step i is obviously
4k. There are 2k steps in the first part of the optimal
move steps generated before this part and thus the step i

corresponds to the step j = i − 2k of the subproblem.
It follows from n = 4bn/4c + r = 4k + r + 4 that
n− t = n− 4k = r + 4. It can now be derived by formula
(1) that α(n, 0, i) = t+ d(n− t, j) = 4k+ d(r+4, i− 2k).

Summing up, we have
where, k = bn/4c − 1, r = n mod 4.

Table III
SMALL TWO DIMENSIONAL ARRAY d1

H
HHHHn

i
1 2 3 4 5 6

3 1 4 0 0 0 0
4 0 3 6 0 0 0
5 2 6 1 8 0 0
6 1 7 2 5 10 0

It is obvious that the optimal move sequence xi, 1 ≤ i ≤ n
of the problem S(n, n, r) of size n can be easily computed
in optimal O(n) time, since for each individual step i, its
optimal move xi can be computed in O(1) time by the
explicit formula (2) described above.

2) The Explicit Solutions of the Problem S(n, n, l): For
the general cases of the subproblems of size n, starting
at cells t, if the corresponding step j, 1 ≤ j ≤ n of
the optimal solution is denoted as β(n, t, j), then for the
problem of size n, the optimal move xi, 1 ≤ i ≤ n

must be β(n, 0, i), 1 ≤ i ≤ n. We have noticed that if
y = (y1, · · · , yn) is an optimal solution for the problem
S(n, n, r), then x = (2n − y1, · · · , 2n − yn) is also an
optimal solution for the problem S(n, n, l). Therefore, the
two formulas (1) and (2) can be changed accordingly for
the problem S(n, n, l) as follows.

β(n, t, j) =



t+ 2n− d(n− t, j) 3 < n− t and n− t < 8

2n− t− 1 j = 1

t+ 4 j = 2

t+ 1 j = n− t− 1

2n− t j = n− t
β(n, t+ 4, j − 2) otherwise

(3)
where, k = bn/4c − 1, r = n mod 4.

3) The Explicit Solutions of the Problems S−1(n, n, r)

and S−1(n, n, l): It is obvious that the explicit solution for
the Problem S−1(n, n, r) is the formula (1) and the explicit
solution for the Problem S−1(n, n, l) is the formula (2).

B. The Explicit Solutions of the Problems of Type (n, n−1)

1) The Explicit Solutions of the Problem S(n, n− 1, r):
For the small size cases of n = 3, 4, 5, 6, the optimal
solutions of the problem S(n, n − 1, r) can be listed as a
small two dimensional array d1 as follows.

For the problems of size n = 3, 4, 5, 6, the step i, 1 ≤ i ≤
n of the optimal solution can be expressed as d1(n, i). For the
general cases of the subproblems of size n, starting at cells t,
if the corresponding step j, 1 ≤ j ≤ n of the optimal solution
is denoted as λ1(n, t, j), then for the problem of size n, the
optimal move xi, 1 ≤ i ≤ n must be λ1(n, 0, i), 1 ≤ i ≤ n.
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xi =



4k + d(r + 4, i− 2k) 2k < i < 2k + r + 3

2i− 1 i ≤ 2k and i odd
2(n− i) i ≤ 2k and i even
2i+ 1 i ≥ 2k + r + 3 and (n− i) odd
2(n− i) i ≥ 2k + r + 3 and (n− i) even

(2)

xi =



4k + 2n− d(r + 4, i− 2k) 2k < i < 2k + r + 3

2(n− i) + 1 i ≤ 2k and i odd
2i i ≤ 2k and i even
2(n− i)− 1 i ≥ 2k + r + 3 and (n− i) odd
2i i ≥ 2k + r + 3 and (n− i) even

(4)

Table IV
SMALL TWO DIMENSIONAL ARRAY d2

HH
HHHn

i
1 2 3 4 5 6

3 1 3 0 0 0 0
4 0 0 0 0 0 0
5 6 1 8 5 0 0
6 1 8 1 4 7 0

According to the algorithm presented in previous section,
the function λ1(n, t, j) can be computed as follows.

λ1(n, t, j) =



d1(n, j) 3 ≤ n and n ≤ 6

t+ 1 n > 6 and j = 1

2(n− t− 1) n > 6 and j = n− t− 1

t n > 6 and j = n− t
1 + β(n− 3, 0, j − 1) otherwise

(5)

where β(n− 3, 0, j−1) can be computed by formula (3).

If i or n − i is a constant, then xi = λ1(n, 0, i) can be
computed in O(1) time by the formula given above. By using
formula (4), we can reduce the formula further to an explicit
formula to compute each of xi = λ1(n, 0, i), 1 ≤ i ≤ n in
O(1) time.

where, k = b(n− 3)/4c − 1, r = (n− 3) mod 4.

2) The Explicit Solutions of the Problem S(n− 1, n, r):
For the small size cases of n = 3, 4, 5, 6, the optimal
solutions of the problem S(n − 1, n, r) can be listed as a
small two dimensional array d2 as follows.

For the problems of size n = 3, 4, 5, 6, the step i, 1 ≤ i ≤
n of the optimal solution can be expressed as d2(n, i). For the
general cases of the subproblems of size n, starting at cells t,
if the corresponding step j, 1 ≤ j ≤ n of the optimal solution
is denoted as λ2(n, t, j), then for the problem of size n, the
optimal move xi, 1 ≤ i ≤ n must be λ2(n, 0, i), 1 ≤ i ≤ n.

According to the algorithm presented in previous section,
the function λ2(n, t, j) can be computed as follows.

Table V
SMALL TWO DIMENSIONAL ARRAY d3

HH
HHHn

i
1 2 3 4 5 6

3 4 1 5 0 0 0
4 7 4 1 7 0 0
5 7 3 8 1 9 0
6 10 4 9 6 1 11

λ2(n, t, j) =


d2(n, j) 3 ≤ n and n ≤ 6

n− 2 n > 6 and j = 1

2n− 4 n > 6 and j = 2

α(n− 2, 0, j − 2) otherwise
(7)

where α(n−2, 0, j−2) can be computed by formula (1).

If i or n − i is a constant, then xi = λ2(n, 0, i) can be
computed in O(1) time by the formula given above. By using
formula (2), we can reduce the formula further to an explicit
formula to compute each of xi = λ2(n, 0, i), 1 ≤ i ≤ n in
O(1) time.

where, k = b(n− 2)/4c − 1, r = (n− 2) mod 4.

3) The Explicit Solutions of the Problem S(n− 1, n, l):
For the small size cases of n = 3, 4, 5, 6, the optimal
solutions of the problem S(n − 1, n, l) can be listed as a
small two dimensional array d3 as follows.

For the problems of size n = 3, 4, 5, 6, the step i, 1 ≤ i ≤
n of the optimal solution can be expressed as d3(n, i). For the
general cases of the subproblems of size n, starting at cells t,
if the corresponding step j, 1 ≤ j ≤ n of the optimal solution
is denoted as λ3(n, t, j), then for the problem of size n, the
optimal move xi, 1 ≤ i ≤ n must be λ3(n, 0, i), 1 ≤ i ≤ n.

According to the algorithm presented in previous section,
the function λ3(n, t, j) can be computed as follows.
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xi =



d1(n, i) 3 ≤ n ≤ 6

1 n > 6 and i = 1

2n− 2 n > 6 and i = n− 1

0 n > 6 and i = n

4k + d(r + 4, i− 2k − 1) + 1 2k + 1 < i < 2k + r + 4

2(n− i)− 2 i ≤ 2k + 1 and i even
2i− 1 i ≤ 2k + 1 and i odd
2(n− i)− 4 i ≥ 2k + r + 4 and (n− i) odd
2i− 1 i ≥ 2k + r + 4 and (n− i) even

(6)

xi =



d2(n, i) 3 ≤ n ≤ 6

n− 2 n > 6 and i = 1

2n− 4 n > 6 and i = 2

4k + d(r + 4, i− 2k − 2) 2k + 2 < i < 2k + r + 5

2i− 5 i ≤ 2k + 2 and i odd
2(n− i) i ≤ 2k + 2 and i even
2i− 3 i ≥ 2k + r + 5 and (n− i) odd
2(n− i) i ≥ 2k + r + 5 and (n− i) even

(8)

Table VI
SMALL TWO DIMENSIONAL ARRAY d4

HHH
HHn

i
1 2 3 4 5 6

3 4 2 5 0 0 0
4 0 0 0 0 0 0
5 3 8 1 4 9 0
6 10 3 0 7 4 11

λ3(n, t, j) =



d3(n, j) 3 ≤ n and n ≤ 6

2n− 2 n > 6 and j = 1

1 n > 6 and j = n− 1

2n− 1 n > 6 and j = n

4 + α(n− 3, 0, j − 1) otherwise
(9)

where α(n−3, 0, j−1) can be computed by formula (1).
If i or n − i is a constant, then xi = λ3(n, 0, i) can be

computed in O(1) time by the formula given above. By using
formula (2), we can reduce the formula further to an explicit
formula to compute each of xi = λ3(n, 0, i), 1 ≤ i ≤ n in
O(1) time.

where, k = b(n− 3)/4c − 1, r = (n− 3) mod 4.
4) The Explicit Solutions of the Problem S(n, n− 1, l):

For the small size cases of n = 3, 4, 5, 6, the optimal
solutions of the problem S(n, n − 1, l) can be listed as a
small two dimensional array d4 as follows.

For the problems of size n = 3, 4, 5, 6, the step i, 1 ≤ i ≤
n of the optimal solution can be expressed as d4(n, i). For the
general cases of the subproblems of size n, starting at cells t,
if the corresponding step j, 1 ≤ j ≤ n of the optimal solution

Table VII
SMALL TWO DIMENSIONAL ARRAY d5

HHH
HHn

i
1 2 3 4 5 6

3 4 1 5 0 0 0
4 3 6 0 7 0 0
5 8 1 6 2 9 0
6 2 5 10 7 1 11

is denoted as λ4(n, t, j), then for the problem of size n, the
optimal move xi, 1 ≤ i ≤ n must be λ4(n, 0, i), 1 ≤ i ≤ n.

According to the algorithm presented in previous section,
the function λ4(n, t, j) can be computed as follows.

λ4(n, t, j) =


d4(n, j) 3 ≤ n and n ≤ 6

n+ 1 n > 6 and j = 1

3 n > 6 and j = 2

3 + β(n− 2, 0, j − 2) otherwise
(11)

where β(n− 2, 0, j− 2) can be computed by formula (3).
If i or n − i is a constant, then xi = λ4(n, 0, i) can be

computed in O(1) time by the formula given above. By using
formula (4), we can reduce the formula further to an explicit
formula to compute each of xi = λ4(n, 0, i), 1 ≤ i ≤ n in
O(1) time.

where, k = b(n− 2)/4c − 1, r = (n− 2) mod 4.
5) The Explicit Solutions of the Problem S−1(n, n−1, r):

For the small size cases of n = 3, 4, 5, 6, the optimal
solutions of the problem S−1(n, n− 1, r) can be listed as a
small two dimensional array d5 as follows.

For the problems of size n = 3, 4, 5, 6, the step i, 1 ≤ i ≤
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xi =



d3(n, i) 3 ≤ n ≤ 6

2n− 2 n > 6 and i = 1

1 n > 6 and i = n− 1

2n− 1 n > 6 and i = n

4k + d(r + 4, i− 2k − 1) + 4 2k + 1 < i < 2k + r + 4

2i+ 1 i ≤ 2k + 1 and i even
2(n− i) i ≤ 2k + 1 and i odd
2i+ 3 i ≥ 2k + r + 4 and (n− i) odd
2(n− i) i ≥ 2k + r + 4 and (n− i) even

(10)

xi =



d4(n, i) 3 ≤ n ≤ 6

n+ 1 n > 6 and i = 1

3 n > 6 and i = 2

4k + d(r + 4, i− 2k − 2) + 3 2k + 2 < i < 2k + r + 5

2(n− i) + 4 i ≤ 2k + 2 and i odd
2i− 1 i ≤ 2k + 2 and i even
2(n− i) + 2 i ≥ 2k + r + 5 and (n− i) odd
2i− 1 i ≥ 2k + r + 5 and (n− i) even

(12)

n of the optimal solution can be expressed as d5(n, i). For the
general cases of the subproblems of size n, starting at cells t,
if the corresponding step j, 1 ≤ j ≤ n of the optimal solution
is denoted as λ5(n, t, j), then for the problem of size n, the
optimal move xi, 1 ≤ i ≤ n must be λ5(n, 0, i), 1 ≤ i ≤ n.

According to the algorithm presented in previous section,
the function λ5(n, t, j) can be computed as follows.

λ5(n, t, j) =



d5(n, j) 3 ≤ n and n ≤ 6

2n− 2 n > 6 and j = 1

2n− 5 n > 6 and j = 2

2n− 1 n > 6 and j = n

1 + α(n− 3, 0, j − 2) otherwise
(13)

where α(n−3, 0, j−2) can be computed by formula (1).

If i or n − i is a constant, then xi = λ5(n, 0, i) can be
computed in O(1) time by the formula given above. By using
formula (2), we can reduce the formula further to an explicit
formula to compute each of xi = λ5(n, 0, i), 1 ≤ i ≤ n in
O(1) time.

where, k = b(n− 3)/4c − 1, r = (n− 3) mod 4.

6) The Explicit Solutions of the Problem S−1(n−1, n, r):
For the small size cases of n = 3, 4, 5, 6, the optimal
solutions of the problem S−1(n− 1, n, r) can be listed as a
small two dimensional array d6 as follows.

For the problems of size n = 3, 4, 5, 6, the step i, 1 ≤ i ≤
n of the optimal solution can be expressed as d6(n, i). For the
general cases of the subproblems of size n, starting at cells t,
if the corresponding step j, 1 ≤ j ≤ n of the optimal solution
is denoted as λ6(n, t, j), then for the problem of size n, the

Table VIII
SMALL TWO DIMENSIONAL ARRAY d6

HHH
HHn

i
1 2 3 4 5 6

3 3 1 5 0 0 0
4 0 0 0 0 0 0
5 5 8 1 6 9 0
6 5 8 1 6 4 11

optimal move xi, 1 ≤ i ≤ n must be λ6(n, 0, i), 1 ≤ i ≤ n.
According to the algorithm presented in previous section,

the function λ6(n, t, j) can be computed as follows.

λ6(n, t, j) =


d6(n, j) 3 ≤ n and n ≤ 6

n− 2 n > 6 and j = n− 1

2n− 1 n > 6 and j = n

β(n− 2, 0, j) otherwise
(15)

where β(n− 2, 0, j) can be computed by formula (3).
If i or n − i is a constant, then xi = λ6(n, 0, i) can be

computed in O(1) time by the formula given above. By using
formula (4), we can reduce the formula further to an explicit
formula to compute each of xi = λ6(n, 0, i), 1 ≤ i ≤ n in
O(1) time.

where, k = b(n− 2)/4c − 1, r = (n− 2) mod 4.
7) The Explicit Solutions of the Problem S−1(n−1, n, l):

For the small size cases of n = 3, 4, 5, 6, the optimal
solutions of the problem S−1(n − 1, n, l) can be listed as
a small two dimensional array d7 as follows.

For the problems of size n = 3, 4, 5, 6, the step i, 1 ≤ i ≤
n of the optimal solution can be expressed as d7(n, i). For the
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xi =



d5(n, i) 3 ≤ n ≤ 6

2n− 2 n > 6 and i = 1

2n− 5 n > 6 and i = 2

2n− 1 n > 6 and i = n

4k + d(r + 4, i− 2k − 2) + 1 2k + 2 < i < 2k + r + 5

2i− 4 i ≤ 2k + 2 and i odd
2(n− i)− 1 i ≤ 2k + 2 and i even
2i− 2 i ≥ 2k + r + 5 and (n− i) even
2(n− i)− 1 i ≥ 2k + r + 5 and (n− i) odd

(14)

xi =



d6(n, i) 3 ≤ n ≤ 6

n− 2 n > 6 and i = n− 1

2n− 1 n > 6 and i = n

4k + d(r + 4, i− 2k) 2k < i < 2k + r + 3

2(n− i)− 3 i ≤ 2k and i odd
2i i ≤ 2k and i even
2(n− i)− 5 i ≥ 2k + r + 3 and (n− i) odd
2i i ≥ 2k + r + 3 and (n− i) even

(16)

Table IX
SMALL TWO DIMENSIONAL ARRAY d7

HHH
HHn

i
1 2 3 4 5 6

3 1 4 0 0 0 0
4 1 4 7 0 0 0
5 1 8 3 7 0 0
6 1 6 9 4 10 0

general cases of the subproblems of size n, starting at cells t,
if the corresponding step j, 1 ≤ j ≤ n of the optimal solution
is denoted as λ7(n, t, j), then for the problem of size n, the
optimal move xi, 1 ≤ i ≤ n must be λ7(n, 0, i), 1 ≤ i ≤ n.

According to the algorithm presented in previous section,
the function λ7(n, t, j) can be computed as follows.

λ7(n, t, j) =



d7(n, j) 3 ≤ n and n ≤ 6

1 n > 6 and j = 1

4 n > 6 and j = 2

0 n > 6 and j = n

β(n− 3, 0, j − 2) otherwise
(17)

where β(n− 3, 0, j−2) can be computed by formula (3).
If i or n − i is a constant, then xi = λ7(n, 0, i) can be

computed in O(1) time by the formula given above. By using
formula (4), we can reduce the formula further to an explicit
formula to compute each of xi = λ7(n, 0, i), 1 ≤ i ≤ n in
O(1) time.

where, k = b(n− 3)/4c − 1, r = (n− 3) mod 4.
8) The Explicit Solutions of the Problem S−1(n, n−1, l):

For the small size cases of n = 3, 4, 5, 6, the optimal

Table X
SMALL TWO DIMENSIONAL ARRAY d8

HHH
HHn

i
1 2 3 4 5 6

3 2 4 0 0 0 0
4 0 0 0 0 0 0
5 4 1 8 3 0 0
6 2 5 10 1 7 0

solutions of the problem S−1(n, n − 1, l) can be listed as
a small two dimensional array d8 as follows.

For the problems of size n = 3, 4, 5, 6, the step i, 1 ≤ i ≤
n of the optimal solution can be expressed as d8(n, i). For the
general cases of the subproblems of size n, starting at cells t,
if the corresponding step j, 1 ≤ j ≤ n of the optimal solution
is denoted as λ8(n, t, j), then for the problem of size n, the
optimal move xi, 1 ≤ i ≤ n must be λ8(n, 0, i), 1 ≤ i ≤ n.

According to the algorithm presented in previous section,
the function λ8(n, t, j) can be computed as follows.

λ8(n, t, j) =


d8(n, j) 3 ≤ n and n ≤ 6

n+ 1 n > 6 and j = n− 1

0 n > 6 and j = n

3 + α(n− 2, 0, j) otherwise
(19)

where α(n− 2, 0, j) can be computed by formula (1).
If i or n − i is a constant, then xi = λ8(n, 0, i) can be

computed in O(1) time by the formula given above. By using
formula (2), we can reduce the formula further to an explicit
formula to compute each of xi = λ8(n, 0, i), 1 ≤ i ≤ n in
O(1) time.
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xi =



d7(n, i) 3 ≤ n ≤ 6

1 n > 6 and i = 1

4 n > 6 and i = 2

0 n > 6 and i = n

4k + d(r + 4, i− 2k − 2) + 4 2k + 2 < i < 2k + r + 5

2(n− i) + 1 i ≤ 2k + 2 and i odd
2i i ≤ 2k + 2 and i even
2(n− i)− 1 i ≥ 2k + r + 5 and (n− i) even
2i i ≥ 2k + r + 5 and (n− i) odd

(18)

xi =



d8(n, i) 3 ≤ n ≤ 6

n+ 1 n > 6 and i = n− 1

0 n > 6 and i = n

4k + d(r + 4, i− 2k) + 3 2k < i < 2k + r + 3

2i+ 2 i ≤ 2k and i odd
2(n− i)− 1 i ≤ 2k and i even
2i+ 4 i ≥ 2k + r + 3 and (n− i) odd
2(n− i)− 1 i ≥ 2k + r + 3 and (n− i) even

(20)

where, k = b(n− 2)/4c − 1, r = (n− 2) mod 4.

V. CONCLUDING REMARKS

We have studied generalized shuffling problems of size
n. It has been proved that the minimum number of moves
needed to play the game of size n is n. In the section 3, the
optimal recursive construction algorithms which can produce
an optimal solution in n moves for very large size n is
presented. Finally, in the section 4, the extremely simple
explicit solutions for the optimal moving sequences of the 12
different generalized shuffling problems of size n is given.
The formula gives for each individual step i, its optimal move
in O(1) time.

For the interesting generalized shuffling problems, some
research problems are open. If some constraints are added to
the move sequences, then the problem become complicated.
For example, we can add a restriction to a move that only
two adjacent coins of different colors can be moved. For this
constraint shuffling problem, what is its optimal solution?
Can we find an efficient algorithm to generate optimal
solutions for the constraint shuffling problem in the time
proportional to the output size? This is also an open problem.
We will investigate the these problems further.
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