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Abstract—Finding the Markov blanket (MB) of a target
variable is an important step in many applications including
Bayesian network structure learning, optimal feature subset se-
lection and dimensionality reduction. Inspired by the algorithm
IPC-MB, we present a fast and efficient algorithm FEIPC-MB
to learn the MB. Unlike the previous algorithms, the condition
independence(CI) tests of FEIPC-MB is implemented according
to the strength of the correlation of variables, which reduces the
high order CI tests significantly. Simulations illustrated that the
proposed algorithm outperforms the competitors with respect
to the Precision, Recall, global Euclidean Distance, run time
and the number of CI test, respectively. The highest reduction
percentage of CI test can reach to 100 % by FEIPC-MB
compared to IPC-MB algorithm.

Index Terms—Bayesian network, Markov blanket, Learning
structure

I. INTRODUCTION

Due to the wide application of the classification, optimal
feature subset selection and the problem of explosion of high
dimensionality data sets, local learning of Markov blanket
(MB) [1] regained researchers attention after of the work
of KS [2]. MB plays an important role in many domains
such as feature selection for classification, casual discovery,
and Bayesian network (BN) leaning. Furthermore, large data
sets are becoming the norm and traditional methods designed
for data sets with a modest number of variables, which will
raise new challenges in practical environment. It is well
known that predictive models benefit from a compact, non-
redundant subset of features that improves the interpretability
and generalization. A principled solution to this problem
is to determine the MB of the target variable. In addition,
a majority of constraint-based methods for learning BN
structures fail to scale to more than a few hundred variables.
A reasonable compromise to learning the full BN is to
discover the local structure around a target variable or a set
of interest targets. Therefore, MB is undoubtedly the best
choise because the discovery of MB can be employed to
induce the full BN structure.

Over the last several decades, significant progress has been
made in the domain of discovering MB. The KS algorithm
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is the earliest algorithm to learn MB and it is heuristic and
gives no theoretical guarantee of correctness. Grow-shrink
(GS) algorithm [3] is the first sound algorithm for leaning
MB. As indicated by its name, it consists of the growing
and the shrinking two sequential stages. Since then, several
variants of GS, such as IAMB, interIAMB [4] and Fast-
IAMB [5] are proposed successively to improve the speed
and reliability. Given some broad assumptions and condi-
tions, these algorithms are perfect for theory, and indeed save
much time for learning MB, but they need a large number
of samples to ensure the correct and reliable results in this
process. In light of this case, a great quantity of efforts are
made to overcome above mentioned weaknesses, including
MMPC/MB [6], HITON-PC/MB [7], PCMB [8] and IPC-
MB [9]. More important, we must note that MMPC/MB
and HITON-PC/MB are not always correct and that both of
PCMB and IPC-MB are proved to be correct, scalable and
data-efficient. Besides, IPC-MB is stated with best trade-off
among all other algorithms for learning MB.

However, all the algorithms mentioned above have to
perform a large number of CI tests. In the worst case,
some of the algorithms require the number of CI tests that
increases exponentially with the number of variables. It is
also worthwhile noting that large conditioning sets usually
lead to errors of CI tests and result in a poorer estimation
of dependent relationships for a small sample size. Thus, we
tend to use CI tests of lower orders. Only in this way can
we obtain more reliable results of tests. Therefore, it is vital
to explore some measures to avoid or alleviate the potential
problem of combinatorial explosion for CI test.

In view of above discussions, we propose a novel MB
local learning algorithm, called FEIPC-MB which is based on
iterative Parent-Child based search of MB (IPC-MB). Unlike
the previous algorithms, the CI test of FEIPC-MB is based
on the strength of the correlation of variables. For a target
variable T , we first test variables with weak correlation with
T and take those variables which are strong correlation with
T as the conditioning sets. We can use partial correlation
analysis, covariance analysis and mutual information and so
on to evaluate the strength of correlation between variables.
In this paper we use mutual information to sort the variables
belonging to candidate PC(T ) of the target variable of
interest T , and then, based on the sort, use CI tests to
remove the (conditional) independent node X with order.
Here we also alter the pattern of selecting conditioning sets
for each CI test according to the sort. The ordered selection
of X and the ordered selection of the conditioning sets can
remove some false positive nodes as early as possible with
few number of CI tests. More important, we can reduce the
number of high order CI tests and increase the power of
tests. Thus we efficiently alleviate the problems discussed
above. Simulations illustrated that the proposed algorithms
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outperform their competitors with respect to computational
complexity, run-time and accuracy, respectively. The highest
reduction percentage of CI test is 100 % by FEIPC-MB
compared to IPC-MB algorithm.

The structure of this paper is as follows. In Section 2,
some important notations and definitions are given. Section
3 describes the details of our improvement on the IPC-MB
algorithm for learning MB of the target variable. Section 4
presents some simulation results and compares the improved
method with its closest competitor in details. Final section
provides conclusion.

II. DEFINITIONS AND PRELIMINARIES

In this section, we introduce some concepts and theorems
closely related to this paper. Some well-known concepts
can refer to books on Bayesian network and articles, e.g.
[1], [5], [10], [11], [16]. Let capital letters denote discrete
random variables and lower case denote states of variables.
We denote a set of variables by upper-case bold-face Z, and
we apply the corresponding lower-case bold-face z to denote
configurations of state to each variable in the set. In specific
distribution P , we denote the conditional independence of
the variables X and Y given Z with Indp(X;Y |Z).

A graph G = (U, E) consists of a set of nodes U =
{X1, X2, ..., Xn} and a set of directed edges E ⊆ U × U.
We denote the assertion that X is d-separated from Y given
Z with Dsep(X;Y |Z) in a given G. If (Xi, Xj) ∈ E and
(Xj , Xi) 6∈ E , then the edge (Xi, Xj) ∈ E is called
directed, which can be denoted by Xi → Xj . If both
(Xi, Xj) ∈ E and (Xj , Xi) ∈ E, the edge is called
undirected, we indicate it with Xi−Xj . Markov condition: a
node X is conditionally independent of its non-descendants
given its Pa(X). Bayesian networks (G,P ), also known
as probabilistic belief networks or casual networks, are
graphical models that cover two components that respectively
codify qualitative and quantitative knowledge: (i) graphical
structure, more precisely, a directed acyclic graph (DAG).
As above mentioned, the nodes correspond to random vari-
ables from problem studied by us and the edges represent
dependence relationship among the variables, and (ii) A set
of numerical parameters Θ consists a series of conditional
probability distributions P (Xi|Pa(Xi)) which can be drawn
from the structure of graph, where Pa(Xi) denotes any com-
bination of the values of the parents of variable Xi. Combine
these conditional distribution and Markov condition, we can
recover the joint probability distribution over U:

P (X1, X2, ..., Xn) =
∏

P (Xi|Pa(Xi))

This property gives rise to important savings in storage
requirements and also facilitates performance of probability
inference. A node or variable X is called a collider in a path
π if X having two incoming edge, denoted as Y → X ← W .
A collider node is also known as a head to head vertex. A
v-structure in a DAG is a triple of nodes X, Y, Z such that
there exist directed edges X → Z, Y → Z, and X and Y
are not connected. The skeleton of a DAG is the undirected
graph which can be obtained from G by dropping the arrows
of directed edges.

It is well known that for the same distribution P generated
by a DAG G, there is a whole equivalence class of DAGs

corresponding to P . In some extent, even there exist infinitely
many observations, we cannot distinguish among the differ-
ence of DAGs of an equivalence class. We can characterize
equivalent classes: Two DAGs are equivalent if and only if
they are equipped with the same skeleton and the same v-
structures. Therefore, we can use a partially directed acyclic
graph (PDAG) to represent the underlying DAG.

Definition 1(blocked path) A path between node X and
Y is blocked by a set of vertices Z, if there exists a node W
on the path for which one of the following conditions holds:
(i) W is not a collider and W ∈ Z, or
(ii) W is a collider and neither W nor its descendants are
in Z;

Of course, a path that is not blocked is active or open. In
DAG, two nodes X and Y are d-separated by a set Z if and
only if every path from X to Y is blocked by Z, which is
denoted as DsepG(X;Y |Z).

Definition 2(Conditional independence) Two variables X
and Y are conditionally independent given Z, denoted as
IndP (X;Y |Z), if and only if ∀x, y, z and P (Z = z) > 0,
the following formula holds,

P (X = x, Y = y|Z = z)

= P (X = x|Z = z)P (Y = y, Z = z)

Definition 3(Faithfulness ) A directed acyclic graph G is
faithful to a joint probability distribution P over variable set
U if and only if every independence present in P is entailed
by G and the Markov condition. A distribution P is faithful
if and only if there exists a directed acyclic graph G such
that G is faithful to P . [9]

Definition 4(Markov blanket) Given the faithfulness as-
sumption, the Markov blanket of a target T , denoted as
MB(T), is a minimal set conditioned on which all other
variables are independent of T .

This concept implies that MB(T) can shield all effect of
other nodes on T . Therefore the information of the MB(T)
is enough to determine the probability distribution of T and
the knowledge of all rest of nodes become superfluous, then
the variables in the MB(T) are adequate for global optimal
feature combination for classification. From graphical view-
point, MB(T) consists of the parents, children and spouses
of T .

Theorem 1 A Bayesian network(BN) satisfies the faith-
fulness condition, then

DsepG(X;Y |Z) ⇔ IndP (X;Y |Z)

In the paper,according to Theorem 1, the terms conditional
independence and d-separation are used interchangeably.

III. FAST AND EFFECTIVE ALGORITHM: FEIPC-MB

This section lists the Pseudo code of FEIPC-MB and
describes the major steps in details.

It is worthwhile to noting that the iterative Parent-Child
based on search of MB (IPC-MB) [9] algorithm for learning
Markov blanket of variable T is stated with the best trade-
off among all published works of this family in terms of
soundness, time and sample efficiency. In our proposed
algorithm of fast and efficient IPC-MB (FEIPC-MB), we
alleviate the complexity of IPC-MB and improve its ac-
curacy. What is important is that we try to avoid CI tests
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Algorithm RecognizePC
Input: target variable T adjacency set ADJT

dataset D threshold ε;
Output: PC(T ).

1. NonPC(T ) = ∅.
2. Cand PC = ADJT \ {T}
3. Rank the variables X ∈ Cand PC(T ) in ascending

order according to I(X, T ) and remove X

from Cand PC(T ) if I(X, T ) ≤ ε

4. Test conditioning set consists of variables
X ∈ Cand PC(T ) in reverse orderbased on step 3

5. Sepsetsize = 0

6. while |Cand PC| > Sepsetsize

7. for every X ∈ Cand PC(T )

8. for each S ⊆ Test conditioning set \ {X}
with |S| = Sepsetsize

9. if Indp(X⊥T |S), then
10. NonPC = NonPC ∪ {X}
11. SepsetT,X = S

12. break
13. end if
14. end for
15. end for
16. if |NonPC| > 0, then
17 Cand PC(T ) = Cand PC(T ) \NonPC and

Test conditioning set

= Test conditioning set \NonPC

18 Sepsetsize = Sepsetsize + 1

19. NonPC = ∅
20. else
21. break
22. end if
23. end while
24. return Cand PC(T )

with large conditioning sets and reduce the number of CI
tests by using a greedy-search method. According to the
strength of the correlation with a target variable T , we
sort the variables in candidate PC(T ) and then reduce the
conditional independent variables from current PC(T ) with
smaller and compact conditioning sets. We use the mutual
information to evaluate the correlation of variables. The
following procedure describes the details.

The Algorithm RecognizePC, learning the parents and
children set of variables, is central to the whole FEIPC-MB
algorithm, because the identification of spouses of target T
is based on its parents and children. So we try our best
to take some measures to determine the correct PC(T )
as far as possible. The algorithm RecognizePC consists of
two shrinking phases to remove the non-PC nodes from
the candidate PC set of T . The first phase computes the
mutual information values between T and the nodes in its
adjacency set ADJT (initial state is all nodes except T ),
and then rank these variables in ascending order by the
mutual information values and remove X from the current
candidate PC set (Cand PC(T )), if I(X, T ) ≤ ε. The
sort is vital important for the next shrinking phase. It is
well known that larger value of mutual information between
X and T implies that X is more likely to be directed
neighborhood of T for graphical models. In contrast, smaller
mutual information between X and T means that T is weakly

Algorithm FEIPC-MB
Input: dataset D threshold ε

Output: MB(T).

1. CanADJT = U \ T

2. Call RecognizePC(T, ADJT , D, α) to get PC(T )

3. MB = PC(T )

4. for every X ∈ PC(T ) do
5. CanADJX = U \X

6. Cand SP = RecognizePC(X, CanADJX , D, ε)

7. if T 6∈ CandSP , then
8. MB = MB \ {X}
9. continue
10. end if
11. for each Y ∈ Cand SP and X 6∈ MB do
12. if ¬Indp(T, Y | SepsetY,T ∪X) then
13. MB = MB ∪ {Y }
14. end if
15. end for
16. end for
17. return MB

related to X or X is marginal or conditional independent
of T . Thus, in the second shrinking phase, we first check
the independence relationship between target node and its
adjacent variables with smaller mutual information values
in Cand PC(T ). In this process, we use variable(s) with
larger mutual information value(s) with target T from ADJT

as the conditioning sets for CI tests. In other words, we
first select these nodes sorted at the end of the sequence
as the conditioning sets, which is different from the general
methods that randomly select node or sets from the candidate
PC set. The ordered selection of X and the ordered selection
of the conditioning sets can remove some false positive nodes
as early as possible with few number of CI tests. More
important, we can reduce the number of high order CI tests
and increase the power of tests.

Next, the second stage, see the Algorithm FEIPC-MB,
which determines the spouses of target variable is identical to
the original phase of the IPC-MB. Note that we don’t change
the criterion for determining the condition independence
relation of two variables in the proposed algorithm, so the
soundness of IPC-MB still stands in FEIPC-MB.

IV. EXPERIMENTS AND ANALYSIS

In this section, we compare the FEIPC-MB method with
other state-of-the-art and prototypical algorithms which deal
with the same problems, respectively. The experiments are
run on a Pentium 3.19GHz with 1.96GB RAM using Win-
dows XP system and Matlab in version R2009a.

Because IPC-MB has been proved to be the best trade-
off among the family of methods to learn Markov blanket
of target node, we only compared FEIPC-MB with IPC-MB.
We test both of them on three well-known networks. The first
is Alarm network [12] which is a widely accepted benchmark
for evaluating the performance of many algorithms. The
second is Insurance network [13] which is for estimating the
expected claim costs for a car insurance policyholder, con-
sists of 27 vertices. And the last is Hailfinder network [14],
a BN with 56 variables used for modeling and predicting
the weather. To guarantee the reliability of the experimental
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results and fair for comparison, we use different size of
samples which are randomly generated by true networks,
respectively. Meanwhile, the number of data sets with the
same size and the same network are ten. We introduce the
common and classical criterions such as Precision, Recall
and Distance to evaluate the performance of IPC-MB and
FEIPC-MB. The Precision is the ratio of the number of true
positive in the MB(T) over the size of MB(T) in the output;
Recall is the number of the true positives in the MB(T) in
the output divided by the size of true positives in the true
BN; and the global Euclidean distance metric assessing the
quality of the learned Markov blanket, was expressed as

√
(1− precision)2 + (1− recall)2 (1)

In addition, the complexity of the involved algorithms is
measured by the number of CI test and run time.

Notice that, the significance level α for the conditional
independence test is set to 0.05 and threshold ε = 0.001 for
all algorithms used in this paper. Besides, our implementation
is based on the Bayesian network toolbox written by Murphy
[15].

Foremost, the experiments are carried out on the database
of the Alarm network. The average accuracy of different
aspects employed by each algorithm is reported in Fig. 1.
Of course, the value of every point is the average over 10
databases with the same size. The size of the data sets is
varied from 1000 to 15000. k = 1000 is the basic of the
horizontal axis in each subgraphs in Fig.1. Fig. 1.(a) and
Fig. 1.(b) show the values of precision and recall returned
by FEIP-MB compared to that of the IPC-MB. Obviously,
FEIPC-MB achieves a satisfactory performance in above
metrics, individually.
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Fig. 1. Results relative to the average precisions, recalls, distances and
time consumption returned by FEIPC-MB and IPC-MB for learning Markov
blankets of Alarm network. Higher values imply a better performance
for both sub-figures (a) and (b), on the contrary, lower values indicate
outstanding performance for (c) and (d).

Fig. 1.(c) depicts the distances between true BN and output
obtained by IPC-MB and FEIPC-MB. Its worth noting that
the smaller value of distance, the closer the result of an
algorithm is to the true local neighborhood. In addition,
these measured metrics were calculated for each variable
of the Alarm network independently and then averaged. As

shown Fig. 1.(d), FEIPC-MB saves much time than IPC-MB.
Overall, we can draw conclusions that FEIPC-MB is data
efficient and FEIPC-MB is super to IPC-MB in all aspects
in our experiments.

It is common to consider the number of CI test and the
highest orders of tests performed by an algorithm as the
main criterion of computational complexity and a major
contributors to the algorithm run-time. This is because that
run-time relies on the orders of CI tests and the number of
states of each nodes included in the conditioning set. Fig.
2 shows the average number of CI tests on eight sample
sizes returned by FEIPC-MB and IPC-MB, respectively. The
horizontal axis is the the order of CI test in each subgraph.
The percentages of saved CI tests by FEIPC-MB compared
to IPC-MB with increasing orders are depicted in Fig. 3 on
different sizes of samples. The horizontal axis is the the order
of CI test in each subgraph in Fig. 3. And the sample sizes
of the eight subgraphs are ranged from 1000 to 15000 in Fig.
3.
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Fig. 2. Results relative to the average number of CI tests returned by
FEIPC-MB and IPC-MB on Alarm network, respectively. The horizontal
axis is the the order of CI test in each subgraph, and the sample sizes of
the eight subgraphs are ranged from 1000 to 15000

Furthermore, since many algorithms just perform well
for Alarm, it is necessary to examine the performance on
other networks. Hence, we conduct similar experiments on
Insurance network. As shown below, we show similar results
of IPC-MB and FEIPC-MB.

Fig. 4 (a), Fig. 4 (b) and Fig. 4 (c) show the values
of precision, recall and the distances between true BN and
output obtained by IPC-MB and FEIPC-MB, respectively.
Results of precision and recall returned by FEIPC-MB are
higher than that of IPC-MB and distance is lower again. As
indicated in Fig. 4 (d), it can be seen that the time complexity
of the FEIPC-MB algorithm is lower than that of IPC-MB.
Obviously, FEIPC-MB achieves a satisfactory performance
in above metrics individually. Besides, they show that the
run-time consumed by the FEIPC-MB algorithm increase
more slowly with the size of samples compared to that of
the IPC-MB algorithm and that this advantage is much more
obvious for large database.

Fig. 5 shows the average number of CI tests of each order
required by FEIPC-MB and IPC-MB for learning MB of all

IAENG International Journal of Computer Science, 42:1, IJCS_42_1_03

(Advance online publication: 17 February 2015)

 
______________________________________________________________________________________ 



0 1 2 3 4
0

50

100

 C
I t

es
t r

ed
uc

tio
n 

(%
)

(a) condition set size and N=1000
0 1 2 3 4

0

50

100

 C
I t

es
t r

ed
uc

tio
n 

(%
)

(b) condition set size and N=3000

0 1 2 3 4
0

50

100

 C
I t

es
t r

ed
uc

tio
n 

(%
)

(c) condition set size and N=5000
0 1 2 3 4

0

50

100

 C
I t

es
t r

ed
uc

tio
n 

(%
)

(d) condition set size and N=7000

0 1 2 3 4
0

50

100

 C
I t

es
t r

ed
uc

tio
n 

(%
)

(e) condition set size and N=9000
0 1 2 3 4

0

50

100

 C
I t

es
t r

ed
uc

tio
n 

(%
)

(f) condition set size and N=11000

0 1 2 3 4
0

50

100

 C
I t

es
t r

ed
uc

tio
n 

(%
)

(g) condition set size and N=13000
0 1 2 3 4

0

50

100

 C
I t

es
t r

ed
uc

tio
n 

(%
)

(h) condition set size and N=15000

Fig. 3. Results relative to the average percentage of the number of CI
tests reduced by FEIPC-MB compared to IPC-MB on Alarm network. The
horizontal axis is the the order of CI test in each subgraph, and the sample
sizes of the eight subgraphs are ranged from 1000 to 15000
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Fig. 4. Results relative to the average precisions, recalls, distances and
time consumption returned by FEIPC-MB and IPC-MB for learning Markov
blankets of Insurance network. Higher values imply a better performance
for both sub-figures (a) and (b), on the contrary, lower values indicate
outstanding performance for (c) and (d).

nodes in Insurance network with sample sizes N = 500,
N = 1000, N = 3000, N = 5000 and N = 10000.
The FEIPC-MB algorithm performs less tests than the IPC-
MB algorithm. Fig. 6 demonstrates the average reduction
percentage on CI tests obtained by the FEIPC-MB algorithm
compared with the IPC-MB algorithm on the five different
sample sizes.

In order to further compare the complexity of our proposed
method with original method, we conduct simulations on
Hailfinder network. In Fig. 7, the results of the four metrics
precision, recall the distances and the run-time are showed.
They indicate the good performance of FEIPC-MB again.
As are shown in Fig. 8, we can see that FEIPC-MB did not
employ the CI test of orders over 4 compared with IPC-MB
in the same experimental environment. In addition, FEIPC-
MB performs fewer CI tests of orders from 0 to 4 than that
of IPC-MB.

All the experimental results reported above demonstrate
that FEIPC-MB use relatively fewer or conquer CI tests and
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Fig. 5. Results relative to the average number of CI tests returned by
FEIPC-MB and IPC-MB on Insurance network, respectively. The horizontal
axis is the the order of CI test in each subgraph, and the sample sizes of
the five subgraphs are ranged from 500 to 10000
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Fig. 6. Results relative to the average percentage of the number of CI tests
reduced by FEIPC-MB compared to IPC-MB on Insurance network. The
horizontal axis is the the order of CI test in each subgraph, and the sample
sizes of the five subgraphs are ranged from 500 to 10000

lower orders to obtain better results than that of IPC-MB. In
fact, it is well known that tests of high orders have significant
effect on computational time and accuracy of results obtained
by CI test. Therefore, our proposed method is superior to
IPC-MB in all aspects such as complexity of time, reliability
of tests, precision of results and so on.

V. CONCLUSIONS

In this paper, we proposed the algorithm FEIPC-MB
which successfully avoid CI tests with large conditioning
sets and use as few CI tests as possible. Here using mutual
information to sort the nodes in the candidate PC set of T
is the key steps for the algorithm. By the sort, we can not
only select the possible non-PC nodes X in a specific sort,
but also select the conditioning sets for X and T in a fixed
sort. These non-random selection can efficiently reduce the
orders CI tests and the number of high order of CI tests and
remove false positive nodes as early as possible.
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Fig. 7. Results relative to the average precisions, recalls, distances and
time consumption returned by FEIPC-MB and IPC-MB for learning Markov
blankets of Hailfiander network. Higher values imply a better performance
for both sub-figures (a) and (b), on the contrary, lower values indicate
outstanding performance for (c) and (d).
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Fig. 8. The average number of CI tests for each order required by both
of the algorithms with sample size 3000, 5000, 7000 and 9000 for learning
the MB of all nodes of the Hailfinder Network.

In addition, we compared the proposed algorithm with
IPC-MB on some standard networks. Simulations results
demonstrate that the proposed method outperforms its com-
petitive algorithm with respect to accuracy, run-time and
complexity.

We plan to extend our study on several aspects. Firstly, we
explore how to determine appropriate conditioning sets for
CI tests. Secondly, we intend to study the ordering of nodes
adjacent to target variable for every tests.
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