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Abstract—Characterizing the appearance of real-world sur-
faces is a fundamental problem in multidimensional reflec-
tometry, computer vision and computer graphics. For many
applications, appearance is sufficiently well characterized by the
bidirectional reflectance distribution function. BRDF is one of
the fundamental concepts in such diverse fields as multidimen-
sional reflectometry, computer graphics and computer vision.

In this paper, we treat BRDF measurements as samples of
points from high-dimensional non-linear non-convex manifolds.
We argue that any realistic statistical analysis of BRDF mea-
surements, or any parameter or manifold learning procedure
applied to BRDF measurements has to account both for
nonlinear structure of the data as well as for a very ill-behaved
noise. Standard statistical and machine learning methods can
not be safely directly applied to BRDF data.

We discuss the differences and the common points of data
analysis and modelling for BRDFs in both physical as well
as in virtual application domains. We outline a mathematical
framework that captures some important problems in both
types of application domains, and allows for application and
performance comparisons of statistical and machine learning
methods. For comparisons between the methods, we use criteria
that are relevant to both statistics and machine learning, as
well as to both virtual and physical application domains. This
outlines a possible unified approach to BRDF data analysis
and modelling relevant for the whole generality of application
domains.

Specifically, we apply the notion of Pitman closeness to
compare different estimators and learning procedures for BRDF
models. This criterion for comparison is loss function-free and
seems to be especially appropriate for applications in metrology
and in comparing different types of learning methods.

Additionally, we propose a class of multiple testing proce-
dures to test a hypothesis that a material has diffuse reflection
in a generalized sense. We treat a general case where the
number of hypotheses can potentially grow with the number
of measurements. Our approach leads to tests that are more
powerful than the generic multiple testing procedures.

Index Terms—BRDF, computer graphics, metrology, data
analysis, statistics of manifolds, learning manifolds.

I. INTRODUCTION

CHARACTERIZING the appearance of real-world sur-
faces is a fundamental problem in multidimensional

reflectometry, computer vision and computer graphics. For
many applications, appearance is sufficiently well charac-
terized by the bidirectional reflectance distribution function
(BRDF).
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In the case of a fixed wavelength, BRDF describes re-
flected light as a four-dimensional function of incoming
and outgoing light directions. In a special case of rotational
symmetry, isotropic BRDFs are are used. Isotropic BRDFs
are functions of only three angles. On the other hand, for
modelling or describing complicated visual effects such as
goniochromism or irradiance, an extra dimension accounting
for the wave length has to be added. The BRDF is applied
under the assumption that all light falls at a single surface
point. The classical device for measuring BRDFs is the
gonio-reflectometer, which is composed of a photometer and
light source that are moved relative to a surface sample under
computer control.

In computer graphics and computer vision, usually either
physically inspired analytic reflectance models [1], [2], [3],
or parametric reflectance models chosen via qualitative crite-
ria [4], [5], [6], [7] are used to model BRDFs. These BRDF
models are only crude approximations of the reflectance
of real materials. Moreover, analytic reflectance models are
limited to describing only special subclasses of materials.

In multidimensional reflectometry, an alternative approach
is usually taken. One directly measures values of the BRDF
for different combinations of the incoming and outgoing
angles and then fits the measured data to a selected ana-
lytic model using optimization techniques. There are several
shortcomings to this approach as well.

An alternative approach to fitting parametric models is in
constructing more realistic BRDFs on the basis of actual
BRDF measurements. This approach bridges the gap between
computer graphics and industrial reflectometry. For example,
[8] and [9] modelled reflectance of materials in nature as a
linear combination of a small set of basis functions derived
from analyzing a large number of densely sampled BRDFs
of different materials.

There were numerous efforts to use modern machine
learning techniques to construct data-driven BRDF models
as well. [10] proposed a method to generate new analytical
BRDFs using a heuristic distance-based search procedure
called Genetic Programming. In [11], an active learning
algorithm using discrete perceptional data was developed and
applied to learning parameters of BRDF models such as the
Ashikhmin - Shirley model [12].

In computer graphics, it is important that BRDF mod-
els should be processed in real-time. Computer-modelled
materials have to remind real materials qualitatively, but
quantitative accuracy is not as important. The picture in
reflectometry and metrology is almost the opposite: there
is typically no need in real-time processing of BRDFs, but
quantitative accuracy is the paramount. In view of this,
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some of the breakthrough results from computer vision and
animation would not fit applications in reflectometry and in
many industries.

Another difference with virtual reality models is that in
computer graphics measurement uncertainties are essentially
never present. This is not the case in metrology, reflectometry
and in any real-world based industry [13]. Since measure-
ment errors can greatly influence shape and properties of
BRDF manifolds, there is a clear need to develop new meth-
ods for handling BRDFs with measurement uncertainties.

In this paper, we treat BRDF measurements as samples of
points from a high-dimensional and highly non-linear non-
convex manifold. We argue that any realistic statistical anal-
ysis of BRDF measurements, or any parameter or manifold
learning procedure applied to BRDF measurements has to
account both for nonlinear structure of the data as well as
for a very ill-behaved noise. Standard statistical and machine
learning methods can not be safely directly applied to BRDF
data. Our study of parameters for generalized Lambertian
models in Sections IV and V clarifies certain pitfalls in
analysis of BRDF data, and helps to understand and develop
more refined estimates for generalized Lambertian models in
Section VI.

We introduce and apply in Section V the notion of Pitman
closeness to compare different estimators and parameter
learning methods that could be applied to BRDF models. To
the best of our knowledge, the present paper together with
[14] are the first works where the Pitman closeness criterion
was introduced to either fields of computer graphics as well
as metrology. This criterion for comparison of estimators
appeals to the actually observable precision of estimators
and is assumption-free and loss function-independent, and
thus seems to be especially appropriate for applications in
metrology, as well as for comparative studies of parame-
ter learning procedures derived for different types of loss
functions. Based on this and other criteria, we show that, in
the context of the BRDF model parameter estimation and
parameter learning, estimators based on either median or
trimmed mean are safer to use and are often more accurate
than estimators based on sample means.

We use the generalized Lambertian model parameter es-
timators from Section VI to build statistical tests to test a
hypothesis whether any particular material is diffuse, even if
in a weak sense, or not. Testing validity of BRDF models is
important for computer graphics, even though rarely done
in a rigorous way, with [15] being a notable exception
dealing with several types of tests for parametric models.
Perhaps surprisingly, rigorous hypothesis testing for BRDF
data is rarely studied in metrology and reflectometry as well.
Recent works [16] and [17] deals with hypothesis testing
for diffuse reflection standards. In this paper, we treat a
more general case of generalized Lambertian BRDFs, which
demands simultaneous testing for a set of stochastically
ordered hypotheses, where the number of those hypothesis is
the number of measured BRDF layers and so can potentially
grow with the number of measurements available. We build a
class of tests for this complicated set of hypotheses, and show
that our approach leads to tests that are more powerful than
the generic multiple testing procedures often recommended
by default in the literature.

II. MAIN DEFINITION

The bidirectional reflectance distribution function (BRDF),
fr(ωi, ωr)) is a four-dimensional function that defines how
light is reflected at an opaque surface. The function takes a
negative incoming light direction, ωi, and outgoing direction,
ωr, both defined with respect to the surface normal n, and
returns the ratio of reflected radiance exiting along ωr to
the irradiance incident on the surface from direction ωi.
Each direction ω is itself parameterized by azimuth angle
φ and zenith angle θ, therefore the BRDF as a whole is 4-
dimensional. The BRDF has units sr−1, with steradians (sr)
being a unit of solid angle.

The BRDF was first defined by Nicodemus in [18]. The
defining equation is:

fr(ωi, ωr) =
dLr(ωr)

dEi(ωi)
=

dLr(ωr)

Li(ωi) cos θi dωi
. (1)

where L is radiance, or power per unit solid-angle-in-the-
direction-of-a-ray per unit projected-area-perpendicular-to-
the-ray, E is irradiance, or power per unit surface area, and
θi is the angle between ωi and the surface normal, n. The
index i indicates incident light, whereas the index r indicates
reflected light.

In the basic definition it is assumed that the wavelength
λ is fixed and is the same for both the incoming and the
reflected light. In order to model complicated visual effects
such as iridescence, luminescence and structural coloration,
or to model materials such as pearls, crystals or minerals,
as well as to analyze the related data, it is necessary
to have an extended, wavelength-dependent definition of
BRDFs. Fortunately, formally this new definition is relatively
straightforward and is obtained by rewriting equation (1) for
fr(λi, ωi, λr, ωr), where λi and λr are the wavelengths of
the incoming and the reflected light respectively.

III. IMPORTANT MODELS OF DIFFUSE REFLECTION

A. Lambertian model

Lambertian model [4] represents reflection of perfectly
diffuse surfaces by a constant BRDF. Because of its sim-
plicity, Lambertian model is extensively used as one of the
building blocks for models in computer graphics. Most of
the recent studies of light reflection by means of advanced
machine learning methods still rely on the Lambertian model.
Examples include color studies [19], [20], analytic inference
[21], perception studies [22], and face detection [23].

It was believed for a long time that the so-called standard
diffuse reflection materials exhibit Lambertian reflectance,
but recent studies with actual BRDF measurements convinc-
ingly reject this hypothesis [24], [17], [16].

B. Oren-Nayar model

Oren-Nayar model [1] is a ”directed–diffuse” microfacet
model, with perfectly diffuse (rather than specular) micro-
facets. It can be viewed as a generalization of the Lambertian
model. This is a reflectance model for diffuse reflection from
rough surfaces. Oren-Nayar model is typically used to predict
the appearance of rough surfaces, such as concrete or sand.
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Resently, a more sophisticated model was proposed by
[25]. This new model includes as special cases both Lam-
bertian model and the Oren–Nayar model, as well as the
Torrance–Sparrow model with specular microfacets.

C. Lommel-Seeliger

Lommel-Seeliger model [26] is used to simulate the
brightening of a rough surface when illuminated from di-
rectly behind the observer. This is a physically inspired
model of a special class of reflections from diffuse surfaces.
This model is typically applied to model astronomical data,
such as lunar and Martian reflection.

IV. STATISTICAL ANALYSIS OF BRDF MODELS

In this section, we treat parameter estimation for BRDF
models of standard diffuse reference materials. These materi-
als are supposed to have ideal diffuse reflection with constant
BRDFs. Graphically, for each incoming anlge θi, ϕi, the
resulting BRDF fr(ωi, ωr) is a (subset of) two-dimensional
upper hemisphere. The radius ρ of this hemisphere is the
parameter that we aim to estimate in this paper.

As we mentioned before, the Lambertian model has been
shown to be inaccurate even for those materials that were
designed to be as close to perfectly diffuse as possible.
Therefore, parameter estimates determined for the Lamber-
tian model can hardly be used in practice. However, there
are two methodological reasons that make these estimators
worth a separate study.

First, BRDF measurements represent a sample of points
from a high-dimensional and highly non-linear non-convex
manifold. Moreover, these measurements are collected via a
nontrivial process, possibly involving random or systematic
measurement errors of digital or geometric nature. These
two observations suggest that any realistic statistical analysis
of BRDF measurements has to account both for nonlinear
structure of the data as well as for a very ill-behaved noise
and heavy-tailed noise. Any type of statistical inference
is more complicated in these conditions, see, e.g., [27].
Standard statistical methods typically assume nice situations
like i.i.d. normal errors, and can not be safely directly applied
to BRDF data. The same applies to statistical analysis of
image data in general [28]. Our study of parameters for
Lambertian models clarifies certain pitfalls in analysis of
BRDF data, and helps to understand and develop more
refined estimates for more realistic BRDF models that will
be studied in subsequent papers.

Second, we would use the Lambertian model parameter es-
timators to build statistical tests to test a hypothesis whether
any particular material is perfect diffuse or not. This will be
studied in a separate paper.

Suppose we have measurements of a BRDF available for
the set of incoming angles

Ωinc =
{
ω

(p)
i

}Pinc

p=1
=
{(
θ

(p)
i , ϕ

(p)
i

)}Pinc

p=1
. (2)

Here Pinc ≥ 1 is the total number of incoming angles where
the measurements were taken. Say that for an incoming angle{
ω

(p)
i

}
we have measurements available for angles from the

set of reflection angles

Ωrefl =

Pinc⋃
p=1

Ωrefl(p) , (3)

where

Ωrefl(p) =

{
ω(q)
r

}Prefl(p)

q=1

=

{(
θ(q)
r , ϕ(q)

r

)}Prefl(p)

q=1

,

where
{
Prefl(p)

}Pinc

p=1
are (possibly different) numbers of

measurements taken for corresponding incoming angles.
Overall, we have the set of random observations

{
f
(
θ

(p)
i , ϕ

(p)
i , θ(q)

r , ϕ(q)
r

) ∣∣ (
θ

(p)
i , ϕ

(p)
i

)
∈ Ωinc ,(

θ
(q)
r , ϕ

(q)
r

)
∈ Ωrefl(p)

}
.

Our aim is to infer properties of the BRDF funtion (1)
from the set of observations (4). In general, the connection
between the true BRDF and its measurements is described
via a stochastic transformation T , i.e.

f(ωi, ωr) = T
(
fr(ωi, ωr)

)
, (4)

where

T : M×P ×F4 → F4 , (5)

with M = (M,A, µ) is an (unknown) measurable space,
P = (Π,P,P) is an unknown probability space, F4 is
the space of all Helmholtz-invariant energy preserving 4-
dimensional BRDFs, and F4 is the set of all functions of
4 arguments on the 3-dimensional unit sphere S3 in R4.

Equations (4) and (5) mean that there could be errors of
both stochastic or non-stochastic origin. In this setting, the
problem of inferring the BRDF can be seen as a statistical
inverse problem. However, contrary to much literature on this
subject, we do not assume linearity of the transformation T ,
we do not assume that T is purely stochastic, and we do
not assume an additive model with zero-mean parametric
errors, as these assumptions do not seem realistic for BRDF
measurements.

Of course, this setup is intractable in full generality, but
for special cases such as inference for Lambertian model,
we would be able to obtain quite general solutions (see also
[29]).

It is also easily observable (see, e.g., [24]) that for all
materials their sub-BRDFs, consisting of measurements for
different incoming angles, look substantially different (no
matter if we believe in the underlying Lambertian model or
not). This suggests that different sub-BRDFs of the same
material still have different parameter values, and this in
turn calls for applying statistical procedures separately for
different sub-BRDFs and for combining the results via model
selection, multitesting and related techniques.
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V. MEANS, MEDIANS AND ROBUST ESTIMATORS

A. Basic properties of distributions in BRDF data

In our choice of estimators for parameters in BRDF
models, we have to take into account specific properties
of BRDF data. It is important to notice that, due to the
complicated structure of measurement devices, outliers are
possible in the data. Additionally, due to technical difficulties
in measuring peak values of BRDFs (see [30], [31]), we
have to count on the fact that certain (even though small)
parts of the data contain observations with big errors. This
also leads us to conclusion that, even for simplest additive
error models, we cannot blindly assume that random errors
are identically distributed throughout the whole manifold.
Additionally, missing data are possible and even inevitable
for certain angles. Measurement angles themselves can be
also arbitrary and non-uniformly distributed.

In view of the above arguments, a useful estimator for
any BRDF model has to exhibit certain robustness against
outliers and dependent or mixed errors.

An estimator has to be universal enough in the sense that it
has to be applicable to BRDF samples without requiring extra
regularity in the data set, such as uniformly distributed (or
other pre-specified) design points, pre-specified large number
of measurements, or absence of missing values. This obser-
vation suggests that simpler estimators are more practical for
BRDF data than complicated (even if possibly asymptotically
optimal) estimators, as the later class of estimators has to rely
on rather strict regularity assumptions about the underlying
model.

B. Pitman closeness of estimators

Let Ω be a probability space and let θ̂1 : Ω → R and
θ̂2 : Ω → R be estimators of a parameter θ ∈ R. Then
the Pitman relative closeness of these two estimators at the
point θ is defined as

P
(
θ̂1, θ̂2; θ

)
= P

(∣∣θ̂1 − θ
∣∣ < ∣∣θ̂2 − θ

∣∣) . (6)

The estimator θ̂1 is Pitman closer to θ than θ̂2, if

P
(
θ̂1, θ̂2; θ

)
> 1/2 .

While this criterion for comparison of estimators is much
less known as, say, unbiasedness or asymptotic variance, it
appeals to the actually observable precision of estimators,
and thus seems of much interest for applications in metrol-
ogy. To the best of our knowledge, the present paper together
with [14] are the first works where the Pitman closeness
criterion was introduced to either fields of computer graphics
as well as metrology.

The closeness criterion appeals to the actually observed
precision of estimators and is assumption-free and loss
function-independent, and thus seems to be especially appro-
priate for comparative studies of parameter learning proce-
dures derived for different types of loss functions. As a draw-
back, the Pitman closeness has some nontrivial properties
such as non-transitivity [32], which leads to counterintuitive
results in several examples [33]. On the other hand, these
nontrivial properties help to clarify some classic statistical
paradoxes such as the Stein paradox [34], [35].

We refer to [36] for an extensive discussion of the relative
closeness of estimators and other related notions and their
properties. Besides unbiasedness, asymptotic variance and
relative closeness, there are many other criteria for comparing
quality of statistical estimators. At least 7 of them can be
found in [37].

We apply the notion of Pitman closeness to compare
different estimators that could be used in BRDF models.
Based on this and other criteria, we show that, in the context
of the BRDF model parameter estimation and parameter
learning, procedures based on either median or trimmed
mean are safer to use and are often more accurate than
procedures based on sample means.

C. Definitions of basic estimators

To exemplify these arguments, we consider the following
basic estimators for the radius parameter of the Lambertian
model: sample mean; sample median; trimmed (truncated)
mean.

Let X1, X2, . . . , Xn be a sample from probability distri-
bution F . Then the sample mean is defined as

sm(X) =
1

n

n∑
i=1

Xi . (7)

Let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the order statistics of
the sample X1, X2, . . . , Xn. The sample median is defined
as

smed(X) =

{
X((n+1)/2), n is odd;
1
2

(
X(n/2) +X(n/2+1)

)
, n is even.

Let 0 ≤ α < 1/2 be a number, and let [·] denote the
integer part of a real number. Then the sample trimmed mean
is defined as

tmα(X) =
1

n(1− 2α)

{ n−[nα]−1∑
i=[nα]+2

X(i) +

([nα] + 1− nα)
(
X([nα]+1) +X(n−[nα])

)}
.

If Fn denotes the empirical distribution function of the
sample X1, X2, . . . , Xn, then we can write, equivalently,

tmα(X) =
1

1− 2α

∫ 1−α

α

F−1
n (t) dt . (8)

D. Mean and median

Sample mean is known to be an asymptotically efficient
estimator, as well as a uniformly minimum-variance unbiased
estimator, for the expected value of the random variable.
However, it is important to note that these nice properties
are guaranteed only for sufficiently ”nice” distributions (see
[38] or [39]), while sometimes even marginal deviations from
these nice models seriously spoil performance of the sample
mean estimator. Even if the regularity conditions are only
slightly violated, the sample mean estimator can lose its
efficiency or can become inconsistent.

In view of the above discussion of properties of BRDF
data, we conclude that it is not advisable to apply the sample
mean directly as an estimator of the Lambertian radius.
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Fig. 1. Mean beats median for the standard normal distribution

Here we bring some examples to illustrate our points.
An example from pp. 2 - 5 of [40] shows that, while the
sample mean is even finite sample efficient for estimating
parameters of normal distribution, this estimator loses its nice
performance properties already for mixtures of two normal
distributions. Moreover, even a mixture with 0.2 percent of
a different normal distribution can cause the sample mean to
lose its efficiency.

In this and in the next subsection, we present some
results of an extensive Monte Carlo experiment comparing
relative closeness of different types of basic nonparametric
estimators. Each of the graphs contains values of relative
closeness obtained for samples of all sizes ranging from 1 to
1000 observations. We performed 1000000 comparisons for
each sample size.

Figure 1 shows that for a sample of i.i.d. normal random
variables mean has better relative closeness than the median,
with the actual value being above 0.6. We notice that the
situation remains essentially the same regardless of the
variance of the underlying normal distribution.

However, if we are dealing with a heavy-tailed distribution,
the picture changes. Suppose we are presented with a Cauchy
distribution, and our goal is to estimate the mode (the mean
does not exist in this case). Then Figure 2 shows that the
relative closeness of the mean tends to 0 when compared
with the median.

Mean surprisingly loses its efficiency even in rather
smooth toy situations. Suppose that a sample from i.i.d.
standard normal distribution is contaminated with 5% of i.i.d.
normals with mean 0 and variance 10. The result is shown
on Figure 3. Mean’s closeness compared to median drops to
0.3. Even more surprisingly, if we start with a sample of i.i.d.
normals with mean 0 and variance 100 and contaminate this
sample with just 5% of i.i.d. normals with mean 0 and small
variance 1, the drop in mean’s closeness compared to median
is even worse. Figure 4 shows that the relative closeness of
mean drops to 0.1.

E. Truncated mean and mean

If our data are generated by sufficiently nice distribution
such as, say, a normal distribution, then the sample mean
possesses is an efficient estimator. In those cases, it can be
rigorously proven that Mean is better than Trimmed Mean
in the sense of both Pitman closeness, as well as asymptotic
relative efficiency.

The picture can be reversed when our data are allowed to
contain outliers or when the data can be, at least partially,
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Fig. 2. Median grossly outperforms mean for heavy-tailed distributions
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Fig. 3. Median can outperform mean for mixtures of normal distributions
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Fig. 4. Median can outperform mean for mixtures of normal distributions
with small errors

generated by a heavy-tailed distribution (which is the case
when large values of measurement errors are possible, as is
the case for BRDF measurements of specular peaks). We
give here a toy example with a Cauchy distribution. Figure
5 illustrates the relative efficiency of mean compared to
the trimmed mean with 10% of the extremes in data being
discarded. The unusual shape of the relative closeness curve
has no explanation at the moment.

Here the mean is an inconsistent estimator of the median
of the distribution, while the truncated mean is not only
a consistent estimator of the median, but, with a proper
choice of the truncation point, is capable of outperforming
the sample median in estimating the median [41]! One needs
to drop out about 76% of the data, though. In fact, even
more efficient estimators exist [42], but they require to drop
out almost all of the data, and we would not advise to use
them for estimation in BRDF models or for any work with
moderate sample sizes.
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Fig. 5. Trimmed mean totally dominates mean for Cauchy distributions

VI. PARAMETER ESTIMATION FOR GENERALIZED
LAMBERTIAN MODELS

For each ω
(p)
i from the set of incoming angles Ωinc, let

ρ(p) denote the Lambertian radius of the BRDF’s layer

{
f
(
θ

(p)
i , ϕ

(p)
i , θ(q)

r , ϕ(q)
r

) ∣∣ (θ(q)
r , ϕ(q)

r

)
∈ Ωrefl(p)

}
, (9)

where Ωrefl(p) is defined by (3). Thus, we are estimating
the Pinc-dimensional parameter vector{

ρ(p)

}Pinc

p=1

. (10)

For 1 ≤ p ≤ Pinc, let {
f

(p)
(i)

}Prefl(p)

i=1

(11)

be the non-decreasing sequence of order statistics of the
subsample (9). Then the sample median estimator of the
parameter vector (10) is defined as{

̂smed(p)

}Pinc

p=1

, (12)

where

̂smed(p)(f) =



f
(p)
((Prefl(p)+1)/2), ifPrefl(p) is odd;

1
2

(
f

(p)
(Prefl(p)/2) + f

(p)
(Prefl(p)/2+1)

)
,

ifPrefl(p) is even.

Let 0 ≤ α < 1/2 be a number, and let [·] denote the
integer part of a real number. Then the sample trimmed mean
estimator of the parameter vector (10) is defined as{

t̂m
(p)
α

}Pinc

p=1

, (13)

where

t̂m
(p)
α (f) =

1

Prefl(p)(1− 2α)
×

{(
[Prefl(p)α] + 1− Prefl(p)α

)(
f

(p)
([Prefl(p)α]+1) +

f
(p)
(Prefl(p)−[Prefl(p)α])

)
+

Prefl(p)−[Prefl(p)α]−1∑
i=[Prefl(p)α]+2

f
(p)
(i)

}
.

VII. HYPOTHESIS TESTING FOR GENERALIZED DIFFUSE
REFLECTION MODELS

It is rather straightforward to build a test for checking
whether any particular material is perfectly diffuse. Indeed,
the corresponding null hypothesis can be tested via a t-
statistic on the basis of the observed set of BRDF values.
However, as we noted above, testing this hypothesis is not
very informative as this null hypothesis will be rejected even
for those materials that serve as diffuse reflectance standards.

Therefore, it makes more sense to test a hypothesis that
a material has diffuse reflection in general, even though
not perfectly diffuse with the same level of reflection for
each incoming angle. This amounts to building a multiple
testing procedure for testing the joint hypothesis H0 =⋂

1≤p≤Pinc
Hp, where Hp is the p-th null hypothesis stating

that the p-th layer (9) is laying on a sphere.
As an application of the above estimators, we propose now

a class of tests for the compound hypothesis H0. Consider
any sequence of test statistics {MTp}1≤p≤Pinc

, where MTp
is used for testing the corresponding hypothesis Hp. For a
given sample of points from the BRDF, let us apply the test
based on MTp for testing the hypothesis Hp for all p. Denote
the corresponding resulting p-values by PV1, . . . , PVPinc

,
and let PV(1) ≤ . . . ≤ PV(Pinc) be the ordered set of these
p-values. Then one could suggest to reject H0 if PV(p) ≤
pα/Pinc for at least one p.

Under certain conditions, this multiple testing procedure is
asymptotically consistent and more powerful than the proce-
dure based on the Bonferroni principle applied to the same
sequence of test statistics {MTp}1≤p≤Pinc

, which is often
assumed to be the default way of testing several hypothesis
simultaneously. Our procedure capitalizes on the physical
fact that, as the incoming light angle grows, deviations
from diffuse reflection can only grow as well. Therefore,
in mathematical terms, the test statistics {MTp}1≤p≤Pinc

would be highly positively correlated for any reasonable
choice of these statistics. See [43] for details related to
rigorous analysis of this type of multiple testing methods.

To give a specific example, for simplicity of notation, we
use the median-based estimator. Consider the sequence of
test statistics {MTp}1≤p≤Pinc , where

MTp =

√
n

SSD(p)
× (14)

(
1∣∣Ωrefl(p)∣∣ ∑(

θ
(q)
r ,ϕ

(q)
r

)
∈Ωrefl(p)

f
(
θ

(p)
i , ϕ

(p)
i , θ(q)

r , ϕ(q)
r

)

− min
{ ̂smed(p) , 1/π

})
and SSD(p) denotes the sample standard deviation of the
p−th BRDF subsample (9). We pick this particularly simple
form of a test statistic only for illustrative purposes. In
fact, MTp is best suited for testing a hypothesis that the
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points of the true p−th layer of the BRDF belong to a
sphere, while they were measured with normally distributed
independent errors, versus the alternative that the points of
the p−th layer are not symmetric about the median and
tend to have bigger deviations from the median. We also
introduced the 1/π-correction in (14) in order to account for
the energy conservation law, as we are only interested in
testing against physically plausible alternatives. Depending
on the assumptions that we make about measurement errors,
it is possible to use any other appropriate test statistics
instead of {MTp}1≤p≤Pinc

. The principle of constructing
the multiple test remains the same.

Note that it is crucial to take into account the multi-
plicity of tests. Otherwise, irrespectively of what kind of
test statistics we use, if the decisions about each of the
basic hypothesis H0, . . . ,HPinc are made on the basis of
the unadjusted marginal p−values, then the probability to
reject some true null hypothesis will be too large and the test
will not be reliable. Unfortunately, this mistake is commonly
made in applications of multiple testing.

VIII. CONCLUSION

BRDF is one of the fundamental concepts in such diverse
fields as multidimensional reflectometry, computer graphics
and computer vision. Most of BRDF models are only crude
approximations of reflectance of real materials. In view of
this, some of the breakthrough results from computer vision
and animation would not fit applications in reflectometry and
in many industries.

Since measurement errors can greatly influence shape and
properties of BRDF manifolds, there is a clear need to
develop new methods for handling BRDFs with measurement
uncertainties. Moreover, analytic reflectance models are lim-
ited to describing only special subclasses of materials. In
computer graphics and vision, it is important that BRDF
models should be processed in real-time, but quantitative
accuracy is not as important. In reflectometry and metrol-
ogy, it is the opposite: there is typically no need in real-
time processing of BRDFs, but quantitative accuracy is the
paramount.

In this paper, we treated BRDF measurements as sam-
ples of points from high-dimensional non-linear non-convex
manifolds. We have shown that statistical analysis of BRDF
measurements has to account both for nonlinear structure of
the data as well as for ill-behaved noise. Standard statistical
methods can not be safely directly applied to BRDF data.
Our study of parameters for generalized Lambertian models
clarified certain pitfalls in the analysis of BRDF data. We
developed more refined estimators for BRDF models of
standard diffuse reference materials.

We also introduced the notion of Pitman closeness to
metrology and to computer graphics and applied this close-
ness criterion to compare different estimators for BRDF
models. This criterion for comparison of estimators seems to
be especially appropriate for applications in metrology, and
for comparing between statistical and machine learning pro-
cedures that can potentially rely on different loss functions or
different model assumptions. Based on this and other criteria,
we have shown that, in the context of BRDF model parameter
estimation, estimators based on either median or trimmed
mean are safer to use and are often more precise than

estimators based on sample means. Additionally, we outlined
an efficient approach to build multiple testing procedures for
testing composite hypotheses about BRDFs and their layers.
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