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Abstract—In this paper, we give the properties of tensor
product and study the relationship between Hom functors
and left (right) exact sequences in FS-Act. Also, we get
some necessary conditions for equivalence of two fuzzy S-
acts category. Moreover, we prove that two monoids S and
T are Morita equivalent if and only if FS-Act and FT -Act are
equivalent.

Index Terms—fuzzy set, fuzzy semigroup, fuzzy S-act, Morita
equivalent, category.

I. INTRODUCTION

ZADEH [27] introduced the fuzzy set theory. In [20],
Negoita and Ralescu applied fuzzy set theory to mod-

ules theory. Muganda [19] studied free fuzzy modules. Also,
López-Permouth and Malik [13] gave some properties of
fuzzy module category. Now, many authors have applied
fuzzy set theory to semigroups, see [1], [9], [10], [11], [14],
[24]. Ahsan et al. [1] studied fuzzy subacts of an S-act. Ali,
Davvaz and Shabir [2] defined soft S-acts and characterized
(α, β)-fuzzy subacts using soft S-acts.

Morita theory characterizes the relationship of two rings
which preserves many ring properties. Morita theory plays
an important role in ring theory and algebra theory. There
are also many papers on Mortia theory for semigroups,
see [3], [7], [8], [25]. In these papers, authors have also
got equivalences between subcategories of S-acts. López-
Permouth [12] characterized Morita theory of two rings R
and S using fuzzy module categories. While, there is few
paper on Morita theory for the category of fuzzy S-acts.
The aim of this paper is to generalize the Morita theory in
the paper [12], [25] to the category of fuzzy S-acts. These
theory will be useful to the study of fuzzy semigroups and
fuzzy S-acts.

The content of the paper is constructed as follows. In
Section 2, we recall some definitions on semigroups and
fuzzy sets. In Section 3, we study the properties of Hom
sets and tensor products in the category of fuzzy S-acts.
Using these properties, we get some necessary conditions
for equivalences of FS-Act in Section 4. In Section 5, we
get that two monoids S and T have equivalent categories
of FS-Act and FT -Act if and only if S and T are Morita
equivalent.

II. PRELIMINARIES

Let S be a semigroup. A set A is called a (left) S-act,
if there is a scalar multiplication S × A −→ A, denoted by
(s, a) −→ sa and for all s, t ∈ S, a ∈ A, we have

(st)a = s(ta).

If A is a left S-act, we write SA. If S is a monoid with 1
and A is a left S-act, for all a ∈ A, we have 1a = a, then A
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is said to be unital. For SA and SB and a map f : A −→ B,
if for all s ∈ S, a ∈ A, we have

f(sa) = sf(a),

then f is a (left) S-morphism. Let HomS(A,B) be the set
of S-morphism from SA to SB. We denote the category of
left S-acts by S-Act.

Similarly, we can define right S-acts. We denoted by Act-
S the category of right S-acts.

Suppose that S is a commutative semigroup and M is a
left S-act, then it is obvious that M is also a right S-act.

If M is a left S-act and a right T -act, and for all s ∈
S, t ∈ T, x ∈ M, we have (sx)t = s(xt), then M is called
an S-T -biact. We write (S, T )-Act for the category of S-T -
biacts.

Let A be a left S-act. If a map α : A → [0, 1] satisfies
α(sa) ≥ α(a), ∀s ∈ S, a ∈ A, then αA is called a fuzzy
(left) S-act ([1]).

Similarly, the fuzzy right S-acts can be defined.
Let A be an S-T -biact. If a map α : A → [0, 1] satisfies

α(sa) ≥ α(a) and α(at) ≥ α(a), ∀s ∈ S, t ∈ T, a ∈ A,
then αA is called a fuzzy S-T -biact.

For two fuzzy S-acts αA and βB, if a map f̃ : A→ B is
an S-morphism and satisfies β(f̃(a)) ≥ α(a), ∀a ∈ A, then
f̃ is called a fuzzy S-morphism.

Let S be a semigroup. We denote the set of all fuzzy S-
morphisms from αA to βB by HomS(αA, βB). Let FS-Act
be the category of fuzzy left S-acts.

Let f̃ : αA → βB be a fuzzy S-morphism. 1) If f̃ is an
epimorphism (a monomorphism), then f̃ is a fuzzy epimor-
phism (monomorphism). 2) If β(f̃(a)) = 1, then α(a) = 1,
∀a ∈ A, f̃ is a fuzzy quasi-monomorphism. 3) If f̃ : A→ B
is an S-isomorphism, then f̃ is a fuzzy quasi-isomorphism.
4) If f̃ : A → B is an S-isomorphism and for all a ∈ A,
we have β(f̃(a)) = α(a), then f̃ is a fuzzy isomorphism. 5)
The kernel of f̃ is KER(f̃) = {a ∈ A|β(f̃(a)) = 1}.

If M ∈ S-Act, 0M represents the fuzzy S-act 0 : M −→
[0, 1] such that 0(m) = 0, for all m ∈ M. 1M represents
the fuzzy S-act 1 :M −→ [0, 1] such that 1(m) = 1, for all
m ∈M.

II
Proposition II.1 Let S be a semigroup. The category FS-

Act has coproduct.
Proof Suppose that {αiAi

|i ∈ I} are a family of fuzzy
S-acts. Then the coproduct

⨿
i∈I

Ai in S-Act is the disjoint

union
∪
i∈I

Ai. Define a map α :
⨿
i∈I

Ai −→ [0, 1] by putting

α(ai) = αi(ai), if ai ∈ Ai. Then α is the coproduct of
{αiAi

|i ∈ I} in FS-Act.
Definition II.2 For αA ∈ FS-Act, if for all ηC ∈ FS-Act,

there is an epimorphism α
(I)
A −→ ηC , where I is index set,

then αA is called a generator.
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III. HOM SETS AND TENSOR PRODUCTS IN FS-ACT

In this section, we shall study the properties of Hom sets
and tensor products in FS-Act.

The following lemma is useful in Proposition III.2.
Lemma III.1 [14] Let S be a commutative semigroup. For

two fuzzy S-acts αA and βB , we can make HomS(αA, βB)
to be a fuzzy S-act by the function γ̃ : HomS(αA, βB) −→
[0, 1], which is defined by γ̃(f̃) =

∧
{β(f̃(a))|a ∈ A}.

Proposition III.2 Let S be a commutative semigroup and
αA ∈ FS-Act. Then γ̃EndS(αA,αA) is a fuzzy monoid.

Proof Obviously, γ̃EndS(αA,αA) is a monoid. Assume
f̃1, f̃2 ∈ γ̃EndS(αA,αA) and a ∈ A. Since

α(f̃1(f̃2(a))) ≥ α(f̃2(a))

and the definition of γ̃ in Lemma III.1, we get

γ̃(f̃1f̃2) ≥ γ̃(f̃2) ≥
∧

{γ̃(f̃1), γ̃(f̃2)}.

Hence, we get that γ̃EndS(αA,αA) is a fuzzy monoid.
Let A ∈ Act-S, B ∈ S-Act and C be a set. If a map

φ : A × B −→ C satisfies φ(as, b) = φ(a, sb), for all
a ∈ A, s ∈ S and b ∈ B, then φ is called a bimap ([4]); If
for all set H and all bimap f : A × B −→ H, there exists
a unique map g : C → H such that gφ = f, then the pair
(C,φ) is called a tensor product of A and B ([4]). We write
A⊗S B for the tensor product of A and B. By Proposition
8.1.8 of [4], for a ⊗ b, c ⊗ d ∈ A ⊗ B, then a ⊗ b = c ⊗ d
⇐⇒ either (a, b) = (c, d), or there exist g1, · · · , gn−1 ∈
A, h1, · · · , hn−1 ∈ B, r1, · · · , rn, s1 · · · , sn−1 ∈ S such that

a = g1r1, r1b = s1h1,
g1s1 = g2r2, r2h1 = s2h2,

gisi = gi+1ri+1, ri+1hi = si+1hi+1,
i = 2, · · · , n− 2,
gn−1sn−1 = crn, rnhn−1 = d ([4]).

Let αA and βB be two fuzzy sets. Define αA × βB(a, b) =∧
{α(a), β(b)}, for all (a, b) ∈ A × B, then αA × βB is a

fuzzy set.
Let αA ∈ Act-FS, βB ∈ FS-Act and ηC be a fuzzy set.

Let f̃ : A×B −→ C be a map. If f̃ is a bimap and for all
(a, b) ∈ A×B, we have

ηf̃(a, b) ≥ (αA × βB)(a, b),

then f̃ is called a fuzzy bimap ([14]).
Theorem III.3 [14] Let αA ∈ Act-FS and βB ∈ FS-Act.

The tensor product of αA and βB exists, where the function
α⊗ β : A⊗B −→ [0, 1] is defined by

α⊗ β(a⊗ b) =
∨

{
∧

{α(a
′
), β(b

′
)}|a

′
⊗ b

′
= a⊗ b}.

Moreover, it is unique up to isomorphism.
We write αA ⊗ βB for the tensor product of αA and βB.
Denote by (FS, FT )-Act the category of fuzzy S-T -

biacts. In the following, we shall study the associativity of
the tensor product in fuzzy S-acts category.

Proposition III.4 Let 1A ∈ Act-FS, βB ∈ (FS, FT )-Act
and ηC ∈ FT -Act. There is a quasi-isomorphism 1A⊗(βB⊗
ηC) ∼= (1A ⊗ βB)⊗ ηC .

Proof In S-Act, there is an isomorphism f : 1A ⊗ (βB ⊗
ηC) → (1A ⊗ βB)⊗ ηC by f(a⊗ (b⊗ c)) = (a⊗ b)⊗ c.

For every a⊗ (b⊗ c) ∈ 1A ⊗ (βB ⊗ ηC), we have

1⊗ (β ⊗ η)(a⊗ (b⊗ c))

=
∨

{
∧

{1(a
′
), β ⊗ η(b

′
⊗ c

′
)}|a

′
⊗ (b

′
⊗ c

′
) =

a⊗ (b⊗ c)}
=

∨
{β ⊗ η(b

′
⊗ c

′
)|a

′
⊗ (b

′
⊗ c

′
) = a⊗ (b⊗ c)}

=
∨

{
∨

{
∧

{β(b
′
), η(c

′
)}}|a

′
⊗ (b

′
⊗ c

′
) =

a⊗ (b⊗ c)}
=

∨
{
∧

{β(b
′
), η(c

′
)}|a

′
⊗ (b

′
⊗ c

′
) = a⊗ (b⊗ c)}.

On the other hand, we can prove that

(1⊗ β)⊗ η((a⊗ b)⊗ c)

=
∨

{
∧

{(1⊗ β)(a
′
⊗ b

′
), η(c

′
)}|(a

′
⊗ b

′
)⊗ c

′
=

(a⊗ b)⊗ c}
=

∨
{
∧

{
∨

{
∧

{(1(a
′
), β(b

′
)}}, η(c

′
)}|(a

′
⊗ b

′
)⊗ c

′

= (a⊗ b)⊗ c}
=

∨
{
∧

{
∨

{β(b
′
)}, η(c

′
)}|(a

′
⊗ b

′
)⊗ c

′
=

(a⊗ b)⊗ c}.

Then ((1⊗β)⊗η)f(a⊗ (b⊗ c)) ≥ 1⊗ (β⊗η)((a⊗ b)⊗ c).
We get the desired result.

The following statement gives the relationship between the
tensor product and the coproduct in FS-Act.

Proposition III.5 Let ξM ∈ FS-Act and
⨿
i∈I

αiAi
∈

Act-FS. Then there is an isomorphism

(
⨿
i∈I

αiAi
)⊗ ξM ∼=

⨿
i∈I

(αiAi
⊗ ξM ).

Similarly, let ξM ∈ Act-FS and
⨿
i∈I

αiAi
∈ FS-Act. Then

there is an isomorphism

ξM ⊗ (
⨿
i∈I

αiAi
) ∼=

⨿
i∈I

(ξM ⊗ αiAi
).

Proof It is obvious by the definition of coproduct in
Proposition II.1 and the related results in the category of
S-acts.

Let φ̃ ∈ HomS(µL, νM ). If there is an element ψ̃ ∈
HomS(νM , µL) satisfying ψ̃φ̃ = 1, then φ̃ is split. Write
IMA(φ̃) = {φ̃(l)|l ∈ L}.

Definition III.6 A sequence

µL
φ̃−→ νM

ψ̃−→ ηN

is called left exact, if φ̃ is quasi-monic and IMA(φ̃) =
KER(ψ̃). Similarly, if ψ̃ is epic and IMA(φ̃) = KER(ψ̃),
then the sequence is called right exact.

Similar to Theorem 2 in [21], we can prove the following
theorems.

Theorem III.7 Let S be a commutative semigroup. Sup-
pose that

µL
φ̃−→ νM

ψ̃−→ ηN

is left exact. If φ̃ is split, then Hom(θP ,−) preserves the
sequence.

Proof Let H = Hom(θP ,−). We prove

αHom(θP ,µL)

Hφ̃−→ βHom(θP ,νM )

Hψ̃−→ γHom(θP ,ηN )
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is also left exact.
1) Suppose β(Hφ̃(f̃)) = 1, i.e. β(φ̃f̃) = 1, where f̃ ∈

Hom(θP , µL). By Lemma III.1, we have
∧
{ν(φ̃f̃(p)) | p ∈

P} = 1. That is, for all p ∈ P, we have ν(φ̃f̃(p)) = 1.
Since φ̃ is quasi-monic, we have µ(f̃(p)) = 1, ∀p ∈ P. This
concludes that α(f̃) = 1. Hence, Hφ̃ is quasi-monic.

2) IMA(Hφ̃) ⊆ KER(Hψ̃). For f̃ ∈ IMA(Hφ̃),
suppose g̃ ∈ Hom(θP , µL) and f̃ = Hφ̃(g̃) = φ̃g̃. Note that
IMA(φ̃) = KER(ψ̃). We have η(ψ̃φ̃g̃(p)) = 1,∀p ∈ P.
Hence, γ(Hψ̃(g̃)) = 1. Then g̃ ∈ KER(Fψ̃).

3) KER(Hψ̃) ⊆ IMA(Hφ̃). Suppose f̃ ∈ KER(Hψ̃)
and γ(Hψ̃(f̃)) = 1. Then η(ψ̃f̃(p)) = 1, ∀p ∈ P. Hence,
f̃(p) ∈ KER(ψ̃) = IMA(φ̃). Choose an element lp ∈ L
such that

µ(lp) =
∨

{µ(l) | φ̃(l) = f̃(p), l ∈ L}.

Suppose k̃ ∈ Hom(νM , µL) and k̃φ̃ = 1. Then

µ(lp) = µ(k̃φ̃(lp)) ≥ ν(φ̃(lp)) ≥ µ(lp).

Then µ(lp) = νφ̃(lp). Define g̃ : θP −→ µL by g̃(p) = lp.
Then Hφ̃(g̃) = φ̃g̃ = f̃ . Since

µ(g̃(p)) = µ(lp) = ν(φ̃(lp)) = ν(f̃(p)) ≥ θ(p),

this proves that g̃ is fuzzy.
Theorem III.8 Let S be a commutative semigroup. Sup-

pose that

µL
φ̃−→ νM

ψ̃−→ ηN

is right exact. If φ̃ is split, then the sequence

αHom(µL,θP )

Hom(φ̃,θP )−→ βHom(νM ,θP )

Hom(ψ̃,θP )−→ γHom(ηN ,θP )

is also right exact.

IV. PROPERTIES OF EQUIVALENT FUNCTORS

Notation In this section, we shall assume that S is a
commutative semigroup.

For a fuzzy left S-act αA, we have that γ̃HomS(0S ,αA) is
a fuzzy left S-act by Lemma III.1. For a ∈ A, we define a
map

ρ̃a : 0S −→ αA

by putting
ρ̃a(s) = sa.

Since αρa(s) = α(sa) ≥ 0 = 0(s), we have ρa ∈
γ̃HomS(0S ,αA). On the other hand, for all f̃ ∈ γ̃HomS(0S ,αA)

and s, q ∈ S, we have

(s · f̃)(q) = f̃(qs) = qf̃(s) = ρf̃(s)(q).

Hence, s · f̃ = ρf̃(s).
We now define a map as follows:

∆αA : 0S ⊗ γ̃HomS(0S ,αA) −→ αA,

s⊗ f̃ 7−→ f̃(s).

Lemma IV.1 Let S be a monoid and αA ∈ FS-Act. Then
∆αA

is a fuzzy S-epimorphism.
Proof The proof is similar to Lemma 4.1 in [25].

Suppose a ⊗ f̃ = c ⊗ g̃, where a, c ∈ S, f̃ , g̃ ∈
γ̃HomS(0S ,αA). By Proposition 8.1.8 of [4], we have (a, f̃) =

(c, g̃) or there exist a1, · · · , an−1 ∈ S, f̃1, · · · , f̃n−1 ∈
HomS(0S , αA), r1, · · · , rn, s1, · · · , sn−1 ∈ S such that

a = a1r1, s1 · f̃ = s1 · f̃1,
a1s1 = a2r2, s2 · f̃1 = s2 · f̃2,

aisi = ai+1ri+1, ri+1 · f̃i = ti+1 · f̃i+1,
i = 2, · · · , n− 2,

an−1sn−1 = crn, sn · f̃n−1 = g̃.

Hence we get

f̃(a) = γ̃(a1r1) = r1 · f̃(a1) = s1 · f̃1(a1)
= f̃1(a1s1) = · · · = g̃(c).

This concludes that f̃(a) = g̃(c) and so ∆αA
is well-

defined.
It is clear that ∆αA is an S-morphism. Since α∆αA(r ⊗

f̃) = α(f̃(r)) ≥ 0 = 0 ⊗ γ̃(r ⊗ f̃), we get that ∆αA
is a

fuzzy morphism.
Suppose a ∈ A. Then ρ̃a ∈ γ̃Hom(0S ,αA) and

∆αA
(1⊗ ρ̃a) = ρ̃a(1) = 1 · a = a.

It follows that ∆αA
is surjective and we get the desired result.

Lemma IV.2 Let S be a monoid and 0S ∈ S-Act. We
have 0S ⊗ γ̃HomS(0S ,0S)

∼= 0S .
Proof By Lemma IV.1, we know that ∆0S is a fuzzy

epimorphism. We have to prove that ∆0S is injective. Let
s, t ∈ S, f̃ , g̃ ∈ γ̃HomS(0S ,0S) and ∆0S (s⊗f̃) = ∆0S (t⊗g̃).
By the definition of ∆0S , we have f̃(s) = g̃(t). In
0S ⊗ γ̃HomS(0S ,0S), we have 1⊗ ρ̃f̃(s) = 1⊗ ρ̃g̃(t). Hence,
we get

s⊗ f̃ = 1 · s⊗ f̃ = 1⊗ s · f̃ = 1⊗ ρf̃(s) = 1⊗ ρg̃(t)
= 1⊗ t · g̃ = 1 · t⊗ g̃ = t⊗ g̃.

This concludes that ∆0S is injective and so is an isomor-
phism.

Remark IV.3 Denote by F0S-Act={0M |M ∈ S-Act}. Let
LS : F0S-Act −→ S-Act be a functor such that LS(0A) = A
and for every fuzzy morphism f̃ : αA −→ βB , LS(f̃) = f̃ .
Then F0S-Act and S-Act are equivalent and LS is invertible.

The following statement gives a characterization of objects
in F0S-Act.

Lemma IV.4 Let S be a semigroup. αA ∈ F0S-Act if
and only if for any fuzzy morphism f̃ : βB −→ αA, where
βB ∈ FS-Act, if f̃ is both monomorphism and epimorphism,
then f̃ is invertible.

Analogous to Lemma 5.3 in [12], we get the following
proposition.

Proposition IV.5 Let S and T be two semigroups. If
G : FS-Act −→ FT -Act induces an equivalence be-
tween FS-Act and FT -Act, then G induces an equivalence
G|F0S−Act : F0S-Act −→ F0T -Act.

Proof If 0A ∈ F0S-Act, by the Lemma IV.4, we have
G(0A) ∈ F0T -Act. Then we can get the desired result.

Let us denote by QFS-Act = {A ∈
FS-Act| ∆αA is a quasi-isomorphism}.

We now use the properties of equivalence to get various
necessary conditions. The following statement is similar to
Theorem 6.1 in [25].

Theorem IV.6 Let S and T be two commutative monoids.
If there exists equivalence: Φ : QFS-Act ⇀↽ QFT -Act :
Ψ. Write 0U = Ψ(0T ) and 0V = Φ(0S). Then 0U is a
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fuzzy unitary S-T -biact and 0V is a fuzzy unitary T -S-biact.
Moreover, the following conditions are satisfied:

(1) Φ ∼= 0T⊗γ̃HomS(0U ,−), Ψ ∼= 0S⊗β̃HomT (0V ,−);

(2) 0U ∼= 0S⊗γ̃HomT (0V ,0T ), 0V
∼= 0T ⊗ β̃HomS(0U ,0S)

as fuzzy biacts.
Proof We obviously have that 0V is naturally a fuzzy right

EndTV -act. Since EndSS ∼= EndTV, 0V is a fuzzy right
EndSS-act. Defining v · s = G(ρs)(v), then 0V is a fuzzy
T -S-biact. Similarly, we can check that 0U is a fuzzy S-T -
biact.

(1) If αM ∈ QFS-Act, then Φ(αM ) ∈ QFT -Act. That
is,

Φ(αM ) ∼= 0T ⊗ ∆̃HomT (0T ,Φ(αM )).

On the other hand, as Φ and Ψ are eqivalent functors, we
have

∆̃HomT (0T ,Φ(αM ))
∼= γ̃HomS(Ψ(0T ),αM ) = γ̃HomS(0U ,αM ).

Hence, we get Φ(αM ) ∼= 0T ⊗ γ̃HomS(0U ,αM ). Then Φ ∼=
0T⊗γ̃HomS(0U ,−). Similarly, Ψ ∼= 0S⊗β̃HomT (0V ,−).

(2) Let ξ̃ : Φ −→ 0T ⊗ γ̃HomS(0U ,−) be the natural
isomorphism. Then we have the following commutative
diagram

Φ(0S)(= 0V )
G(ρ̃s)→ Φ(0S)(= 0V )

ξ̃S ↓ ↓ ξ̃S
0T ⊗ γ̃HomS(0U ,0S)

1T⊗ρ̃s∗

→ 0T ⊗ γ̃HomS(0U ,0S),

where 1T ⊗ ρ̃s
∗(t⊗ f) = t⊗ ρ̃s(f) = t⊗ f · s = (t⊗ f)s.

That is, for all v ∈ 0V , we have

1T ⊗ ρ̃s
∗ξ̃S(v)) = ξ̃S(v) · s.

Hence, we get

ξ̃S(vs) = ξ̃S(G(ρ̃s)(v)) = ξ̃S(1S ⊗ ρs)(v) = (ξ̃S(v))s.

This shows that ξ̃S is a fuzzy right S-morphism. Therefore,
we have 0V ∼= 0T ⊗ HomS(0U , 0S) as fuzzy T -S-biact.
Similarly, we can get 0U ∼= 0S⊗SHomT (0V , 0T ).

V. EQUIVALENCE OF FUZZY S-ACT CATEGORIES

In this section, we will prove that two monoids are Morita
equivalent if and only if their fuzzy S-acts categories are
equivalent.

Definition V.1 [6] Two monoids S and T are Morita equiv-
alent if the two categories S-Act and T -Act are equivalent
by the functors Φ = U ⊗S − and Ψ = V ⊗T −, where TUS
and SVT are biacts.

Lemma V.2 Let S and T be two monoids and αA be a
fuzzy S-T -biact. Then αA ⊗− takes values in FS-Act.

Proof Let βB ∈ FS-Act. It is well-known that A⊗ B is
a left S-act. Since

(α⊗ β)(s(a⊗ b))

=
∨
{
∧
{α(a′

), β(b
′
)}|a′ ⊗ b

′
= sa⊗ b}

≥
∨
{
∧
{α(sa′′

), β(b
′′
)}|sa′′ ⊗ b

′′
= sa⊗ b}

≥
∨
{
∧
{α(a′′′

), β(b
′′′
)}|a′′′ ⊗ b

′′′
= a⊗ b}.

It follows that (α⊗ β)(s(a⊗ b)) ≥ (α⊗ β)(a⊗ b). Hence,
αA ⊗ βB is a fuzzy S-act.

We only need to show that if f̃ : βB −→ ηC is a fuzzy
S-morphism, then 1⊗ f̃ is a fuzzy S-morphism. Since

(α⊗ η)(1⊗ f̃)(a⊗ b)

= (α⊗ η)(a⊗ f̃(b))

≥
∨
{
∧
{α(a′

), η(f̃(b
′
))}|a′ ⊗ b

′
= a⊗ b}

≥
∨
{
∧
{α(a′

), β(b
′
)}|a′ ⊗ b

′
= a⊗ b},

we have that

(α⊗ η)(1⊗ f̃)(a⊗ b) ≥ (α⊗ β)(a⊗ b).

It follows that 1⊗ f̃ is a fuzzy S-morphism and we get the
desired result.

Analogous to Theorem 4.1 and 5.1 in [12], we get the
following three theorems.

Theorem V.3 Let S and T be Morita equivalent monoids.
Then FS-Act and FT -Act are equivalent.

Proof Let Φ = U ⊗S − : S-Act −→ T -Act and Ψ =
V ⊗T − : T -Act −→ S-Act be the inverse functors, where
U ⊗S V ∼= T and V ⊗T U ∼= S. Then Φ and Ψ induce two
functors Φ1 = 1U ⊗S − : FS-Act −→ FT -Act and Ψ1 =
1V⊗T− : FT -Act −→ FS-Act. We shall show that Φ1Ψ1 ≈
1FS-Act and Ψ1Φ1 ≈ 1FT -Act. First, we show that Ψ1Φ1 ≈
1FS-Act. Let αA ∈ FS-Act. There is an isomorphism π̃ :
1V ⊗ (1U ⊗ αA) −→ (1V ⊗ 1U ) ⊗ αA such that π̃(v ⊗
(u ⊗ a)) = (v ⊗ u) ⊗ a, where v ∈ V, u ∈ U, a ∈ A.
Let ω : V ⊗ U −→ S be a biact isomorphism. Then ω̃ :
1V ⊗ 1U −→ 1S is a fuzzy isomorphism and hence ω̃ ⊗ 1A
is also an isomorphism. Let φ̃ : 1S ⊗ αA −→ αA be a
fuzzy isomorphism with φ̃(r ⊗ a) = ra. We define a map
η̃A = φ̃ ◦ (ω̃ ⊗ 1) ◦ π̃ : 1V ⊗ (1U ⊗ αA) −→ αA, then it is
clearly a fuzzy isomorphism.

Because ΨΦ ≈ 1S-Act, for any f̃ : αA −→ βB , we have
the following commutative diagram

V ⊗ (U ⊗A)
ΨΦ(f̃)→ V ⊗ (U ⊗B)

η̃A ↓ ↓ η̃B
A

f̃→ B.

It follows that the following diagram

1V ⊗ (1U ⊗ αA)
Ψ1Φ1(f̃)→ 1V ⊗ (1U ⊗ βB)

η̃A ↓ ↓ η̃B
αA

f̃→ βB

is commutative and Ψ1Φ1 ≈ 1FS-Act. Similarly, we can
prove that Φ1Ψ1 ≈ 1FT -Act.

Theorem V.4 Let S and T be two monoids. If FS-Act and
FT -Act are equivalent, then S and T are Morita equivalent.

Proof Let Φ : FS-Act ⇀↽ FT -Act : Ψ be two equivalent
categories. Then the functor Φ = LT ◦ Φ ◦ L−1

S : S-Act ⇀↽
T -Act : Ψ = LS ◦ Ψ ◦ L−1

T are two inverse functors. Using
diagram chasing, we can easily prove that Φ ◦ Ψ ≈ 1T -Act
and Ψ ◦ Φ ≈ 1S-Act.

By Theorem V.3 and 5.4, we can ge the following main
theorem.

Theorem V.5 Let S and T be two monoids. Then S and
T are Morita equivalent if and only if FS-Act and FT -Act
are equivalent.
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VI. CONCLUSION

In this paper, we study the associativity of tensor product
in FS-Act. We give some necessary conditions for equiv-
alence of two fuzzy S-acts category. Moreover, we prove
that two monoids S and T are Morita equivalent if and only
if FS-Act and FT -Act are equivalent. The obtained results
generalized the related theory in S-Act. The results will be
helpful to study homological properties of FS-Act.

To conclude, there are still some questions on this topic. 1)
Is adjoint the Hom functors and the tensor product functors
in FS-Act? 2) Does the tensor product of any three fuzzy
S-acts satisfy associativity in FS-Act?
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