
Fast and Efficient Evolutionary Algorithms Based
on Bayesian Networks

Youlong Yang, Yanying Li, Wensheng Wang and Wenming Yang

Abstract—Evolutionary algorithms are powerful search tech-
niques which have been used successfully in many different
domains. Parallel evolutionary algorithm has become a research
focus due to its easy implement and promise substantial gains
in performance. In this paper a framework of tree-model-
based parallel evolutionary algorithm (T-PEA) is proposed.
The presented method employs Bayesian Dirichlet metric to
construct a tree model from a set of potential solutions, which
is then used to model potential solutions and guide exploration
in the search space. The correctness and rationality of the
proposed method for learning tree models are analyzed and
proved in the context of genetic and evolutionary. The method
is important not only for T-PEA, but also for machine learning
and data mining. The experimental results show that the
proposed algorithm can efficiently and rapidly converge and
obtain the optimal solution from all test functions.

Index Terms—evolutionary algorithms, parallel algorithms,
graphical models, tree models, Bayesian Networks

I. INTRODUCTION

Motivated by the analogy of evolution and population
genetics, evolutionary algorithm (EA) is proposed to solve
optimization problems by random searching. Its robustness
and efficiency have been demonstrated in searching higher
dimensional varied spaces in a wide field of applications,
including classification, forecasting, machine learning, eco-
logical, social systems and so on [1], [2], [3], [4], [5], [6].
Parallel evolutionary algorithms (PEAs) can be divided into
two types based on two basic ways, namely the standard par-
allel approach and the decomposition approach [7], [8], [9].
The first way is that a sequential EA model is implemented
on a parallel computer. To do this, we divide the mission
of evaluating the population among a lot of processors.
A single master processor is selected to control the total
population and do the selection. Some slave-processors are
used to receive individuals which are recombined to create
offsprings. Before returned to the master, these offsprings
should have been evaluated. All the processes are done
synchronously, where the master proceeds to next generation
after receiving the fitness values for all the population. The
main characteristic of the decomposition approach is that
the full population exists in a certain distributed form. This
method consists mostly of Coarse-Grained PEA (migration

Manuscript received April 24, 2015; revised June 23 , 2015. This work
was supported by the National Nature Science Foundation of China (No.
61403290, 11301408, 11401454), the Foundation for Youths of Shaanxi
Province (No.2014JQ1020) and the Foundation of Baoji University of Arts
and Sciences(No.ZK15081).

Youlong Yang, Wensheng Wang and Wenming Yang are with the School
of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi, 710126,
P.R. China. e-mail:ylyang@mail.xidian.edu.cn, 291980664@qq.com, yonth-
weiming@163.com

Yanying Li is with the School of Mathematics and Statistics, Xidian
University, Xi’an, Shaanxi, 710126 P.R. China and the College of Math-
ematics and Information Science, Baoji University of Arts and Sciences,
Baoji, Shannxi, 721013, P.R.China. e-mail: liyanying81@163.com.

model or island model [10], [11]) and Fine-Grained PEA (d-
iffusion model or neighborhood model [12]). In recent years,
some combinations of the previous methods are presented
with adding complexity in some situations, such as the hybrid
parallel algorithms [13], [14], [15], [16].

The goal in optimization is to find the best solution of an
optimization problem, with respect to one or more criteria. In
order to use an EA to solve optimization problems, a suitable
model should be firstly designed for representing those so-
lutions. Bayesian Network (BN) can do this work well. BNs
are graphical models which combine probability theory and
graph theory. So far a BN is one of the most effective tools to
deal with uncertainty problems. A BN consists of a directed
acyclic graph (DAG) and parameters. The DAG qualita-
tively represents the conditional independent relationships
among variables, and the parameters quantitatively show the
conditional independent relationships among variables. The
Bayesian optimization algorithm (BOA) is a typical scheme
that a BN is successfully embedded in solving optimization
problems. BOA uses BNs to model promising solutions
and subsequently guide the exploration of the search space
[17], [18], [19]. In the first step, BOA generates the initial
population of strings at random with a uniform distribution,
but the initial population can also be biased to a particular
region in the search space. From the current population, the
better strings are firstly selected by using one of the popular
selection methods [16], [20]. In the second step, a BN that
fits the selected set of strings is constructed. In the third step,
new strings are generated according to the joint distribution
encoded by the constructed network. Finally, the new strings
are incorporated into the original population, replacing some
of the old ones or all of them. The above four steps are
repeated until some termination criteria are met.

However, constructing a BN that fits a given dataset is
an NP-hard problem, and it also needs consuming mass
computational resources [21]. Besides, the methods used to
construct a BN have some flaws, and a rigorously theoretical
analysis on these methods is needed. In this paper a parallel
model is introduced that combines BOA with standard PEA
[22], [23], named T-PEA. Instead of constructing a general
Bayesian network, T-PEA constructs a tree model based on
Bayesian Dirichlet (BD) metric [24], [25]. We can easily built
a tree model compared with a general BN. This improve-
ment saves mass computational resources used in BOA. A
theoretical analysis is made to develop an effective method
for constructing a tree model. Two examples are constructed
to show how a tree model is built from a given data. The
experimental results show that T-PEA is able to solve all
tested problems with a proximate linear time. In comparison
with a simple parallel evolutionary algorithm (PEA), T-
PEA has the advantages of small iterations, fast and global
convergence. The difference of iterations until successful

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

convergence between the two algorithms would significantly
enlarge with the function size grows. The optimum returned
by T-PEA is more precise than that returned by PEA on
all tested problems. Furthermore, T-PEA succeeds BOA’s
advantages. T-PEA is independent of the ordering of the
variables in a string, therefore changing this would not affect
the performance of the algorithm.

The rest of the paper is organized as follows. The pseudo-
code of the presented algorithm is described in Section 2.
We introduce BD metric and make a theoretical analysis
on tree models in Section 3. In this theoretical part of the
paper, only binary variables that can obtain either 0 or 1
are considered. In Section 4, we discuss the algorithm and
construct a tree model based BD metric. The results of the
experiments are presented in Section 5. Finally, conclusions
and future research direction are given in Section 6.

II. OUTLINE OF THE ALGORITHM

The algorithm is summarized as follows.
Step 1. set t ← 0, randomly generate initial popula-

tion P1(0), P2(0), · · · , PN (0).
Step 2. parallel evolution of each population.
2.1 select a set of promising strings Si(t) from popula-

tion Pi(t) (1 ≤ i ≤ N) and exchanged individuals with
other populations.

2.2 construct tree model TB that fits the selected set of
strings Si(t) using a chosen metric system.

2.3 generate a set of new strings Oi(t) according to the
joint distribution encoded by tree model TB.

2.4 create a new population Pi(t+ 1) by replacing some
strings from Pi(t) with Oi(t), Set t← t+ 1.

Step 3. If termination criteria are not met, go to step 2.
We also draw up the flow chart of T-PEA (see Fig. 1).

It dose a descending sort by using the fitness size of the
individuals of population Pi(t) (1 ≤ i ≤ N), then the
individuals of Pi(t) are respectively assigned to the three
groups Ri1 (t), Ri2 (t) and Ri3 (t). And the three groups
contain of 10, 10 and 20 individuals, respectively.

III. BAYESIAN NETWORKS

A. Bayesian metrics

Bayesian metrics account for the uncertainty of the net-
work structure and its parameters by using the Bayes rule
and assigning prior distribution to both the network structure
and the parameters of each structure [26], [27], [28]. The
quality of a particular structure is measured by computing the
marginal likelihood of the structure with respect to the given
data. The marginal likelihood is computed by averaging the
likelihood of the models conditioned on the observed data
according to a prior distribution over all possible conditional
probabilities in the model:

p(B |D) =
p(B)p(D|B)

p(D)
=

p(B)
∫
θ

p(θ |B)p(D |B, θ)dθ

p(D)
(1)

where B is the evaluated Bayesian network structure (with-
out particular parameters), D is the dataset, and θ denotes a
set of possible parameters specifying the conditional prob-
abilities in the network B. Furthermore, p(B) is the prior

distribution of the network structures, p(θ |B) is the con-
ditional probabilities of the parameters given the particular
network structure, and p(D |B, θ) denotes the probability of
D given the network structure and its parameters. Here, p(D)
is computed as

p(D)=

∫
Θ

p(D|θ)p(θ)dθ (2)

where p(θ) be the prior probability distribution for the
Bayesian network, Θ is the space of all possible parameters.
Since p(D) is a normalizing constant, this term is usually
omitted. The computation of the marginal likelihood is
intractable in general. The Bayesian-Dirichlet (BD) metric
assumes that the conditional probabilities follow the Dirichlet
distribution and makes a number of additional assumptions,
which yields the following score:

BD(B) = p(B)
n∏

i=1

∏
πXi

Γ(m′(πXi
))

Γ(m′(πXi
)+m(πXi

))

·
∏
xi

Γ(m′(xi,πXi
)+m(xi,πXi

))

Γ(m′(xi,πXi
))

(3)

where the dataset D corresponds to a set of promising strings
S(t) from population P (t), B is the network matching with
S(t), Xi denotes the ith vertex of the network, the product
over xi runs over all instances of Xi (in binary case these
are 0 or 1), the product over πXi runs over all instances of
the parents

∏
i of Xi (all possible combinations of values of∏

i), m(xi, πXi) is the number of instances with Xi = xi

and
∏

i = πXi , and m(πXi) is the number of instances
with the parents

∏
i set to the particular values given by

πXi , which is computed as m(πXi) =
∑
xi

m(xi, πXi). Terms

m′(xi, πXi) and m′(πXi) denote prior information about
the values of the corresponding parameters m(xi, πXi) and
m(πXi), respectively. The cost of computing the metrics of
Bayesian networks using Eq.(3) increases considerably with
the number of vertices of networks increasing. However, the
search procedure is used to explore the space of all possible
networks in order to find the one (or a set of networks)
with the metric values as high as possible, but we only need
to know whether the metric value is increasing with links
among vertexes adding. Therefore, it is possible to reduce
computational complexity by exploring the Bayesian metric
of network based on greedy algorithm. Since Γ(p+1) = p!,
where p is an integer or zero, we have the following score
from

BD(B) = p(B)
n∏

i=1

∏
πXi

(m′(πXi
)−1)!

(m′(πXi
)+m(πXi

)−1)!

·
∏
xi

(m′(xi,πXi
)+m(xi,πXi

)−1)!
(m′(xi,πXi

)−1)!

(4)

Since prior information over the evaluated populations is
well-known, we consider the K2 metric which uses an
uninformative assignments and assign (in binary case).
m′(πXi

) =
∑
xi

m′(xi, πXi
) = 2 and m′(xi, πXi

) = 1. Now

we get the following K2 metric [29]:

p(B |D) =
n−1∏
i=0

∏
πXi

1

(m(πXi) + 1)!

∏
xi

m(xi, πXi)! (5)

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

1()P t 2()P t

1(1)P t+ 2(1)P t+

To sort the individuals by using its fitness sizeExchanging individuals and create promising strings Tree model Tree model
21-4011-201-1021-4011-201-10

20 individuals2()O t20 individuals1()O t
11-201-10 20 individuals1()O t 11-201-10 20 individuals2()O t

2 ()S t11-201-101()S t 11-201-10 Construct the tree model that fits the selected set of stringsGenerating new strings Population P�(t+1)

 Population P�(t)R11(t) R12(t) R13(t) R21(t) R22(t) R33(t)

R11(t) R12(t) R21(t) R22(t)
R11(t) R22(t) R12(t)R21(t)

Fig. 1. The structure of parallel evolutionary algorithms based on tree model. The populations Pi(t + 1) are evolved from the populations Pi(t) by
using tree models and exchanged individuals.

B. Theoretical Analysis

In this paper we only considered BD metric. Let xa=xi

be the number of chromosome with the ath locus of chro-
mosome in promising strings being xi; and let xb=xi be the
number of chromosome with the bth locus of chromosome
in promising strings being xi. In binary case, xi is either
0 or 1. Term xa=xia

b=xib
denotes the number corresponding to

the ath locus and the bth locus of chromosome in promising
strings being xia and xib.

Theorem 1: For two independent vertexes a and b, and a
binary dataset D, we consider the K2 metric, then

1. The inequation p(Ba→b |D) > p(Ba←b |D) is equiva-
lent to the following propositions. There is a): xa=0 > xb=0

and xa=0 > xb=1, or xa=1 > xb=0 and xa=1 > xb=1. And
b): |xa=0 − xa=1| > |xb=0 − xb=1|.

2. p(Ba→b |D) = p(Ba←b |D) if and only if there is either
xa=0 = xb=0 or xa=0 = xb=1.

Proof: Since

p(Ba→b |D) =
xa=0!xa=1!

(1 + n)!
· x

a=0
b=0 !x

a=0
b=1 !

(1 + xa=0)!
· x

a=1
b=0 !x

a=1
b=1 !

(1 + xa=1)!

and

p(Ba←b |D) =
xb=0!xb=1!

(1 + n)!
· x

a=0
b=0 !x

a=1
b=0 !

(1 + xb=0)!
· x

a=0
b=1 !x

a=1
b=1 !

(1 + xb=1)!

the inequation p(Ba→b |D) > p(Ba←b |D) gives

p(Ba→b |D)

p(Ba←b |D)
=

(1 + xb=0)(1 + xb=1)

(1 + xa=0)(1 + xa=1)
> 1

That is

(1 + xb=0)(1 + xb=1) > (1 + xa=0)(1 + xa=1)

Therefore

xb=0xb=1+xb=0+xb=1+1 > xa=0xa=1+xa=0+xa=1+1

and this inequation is equivalent to xb=0xb=1 > xa=0xa=1.
It is easy to prove the following propositions being equivalent
to xb=0xb=1 > xa=0xa=1.

So We have: a) there is xa=0 > xb=0 and xa=0 > xb=1,
or xa=1 > xb=0 and xa=1 > xb=1.

b) |xa=0 − xa=1| > |xb=0 − xb=1|.
2. From the above proof, It is easy to show p(Ba→b |D) =

p(Ba←b |D) if and only if xb=0xb=1 = xa=0xa=1.
Theorem 2: If p(Ba→b) ≥ p(Bempty) and p(Ba→c) ≥

p(Bempty), then

p(Ba→b,c) ≥ max{p(Bempty), p(Ba→b), p(Ba→c)}

Proof: Since

p(Ba→b) = BD(Ba→b |S(t)) = xa=0!xa=1!
(1+n)!

·[x
a=0
b=0 !x

a=0
b=1 !

(1+xa=0)!
· x

a=1
b=0 !x

a=1
b=1 !

(1+xa=1)!
] · xc=0!xc=1!

(1+n)!

p(Bempty) = BD(Bempty |S(t))
= xa=0!xa=1!

(1+n)! · xb=0!xb=1!
(1+n)! ·

xc=0!xc=1!
(1+n)!

we have

xa=0!xa=1!
(1+n)! · [x

a=0
b=0 !x

a=0
b=1 !

(1+xa=0)!
· x

a=1
b=0 !x

a=1
b=1 !

(1+xa=1)!
] · xc=0!xc=1!

(1+n)!

≥ xa=0!xa=1!
(1+n)! · xb=0!xb=1!

(1+n)! ·
xc=0!xc=1!

(1+n)!

Therefore,

xa=0
b=0 !x

a=0
b=1 !

(1 + xa=0)!
· x

a=1
b=0 !x

a=1
b=1 !

(1 + xa=1)!
≥ xb=0!xb=1!

(1 + n)!

Thus

p(Ba→b,c) =
xa=0!xa=1!

(1+n)! [
xa=0
b=0 !x

a=0
b=1 !

(1+xa=0)!
· x

a=1
b=0 !x

a=1
b=1 !

(1+xa=1)!
]

· [x
a=0
c=0 !x

a=0
c=1 !

(1+xa=0)!
· x

a=1
c=0 !x

a=1
c=1 !

(1+xa=1)!
]

≥ xa=0!xa=1!
(1+n)! · xb=0!xb=1!

(1+n)! · [
xa=0
c=0 !x

a=0
c=1 !

(1+xa=0)!
· x

a=1
c=0 !x

a=1
c=1 !

(1+xa=1)!
]

= P (Ba→c)
It is similar to obtain p(Ba→b,c) ≥ p(Ba→b) by proving

p(Ba→b,c) ≥ p(Ba→c)

Corollary 1: Let B be a network which consists of
n vertexes (n variables) X1, X2, · · · , Xn, Bempty be the
network with no links among these vertexes, and BXi→Xj

be the network with the link only from vertex Xi to Xj .

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

If p(BX1→X2) ≥ p(Bempty), p(BX1→X3) ≥ p(Bempty), · · ·,
p(BX1→Xk

) ≥ p(Bempty), then

p(BX1→X2,X3,···,Xk
) ≥ max{p(BX1→X2

), p(BX1→X3
),

· · · , p(BX1→Xk
), p(Bempty)}

The proof is similar to the above Theorem 2.
However, if p(Ba→c) ≥ p(Bempty) and p(Bb→c) ≥

p(Bempty), we do not have p(Ba,b→c) ≥ p(Bempty). An
example is given below to show this.

Exampl 1: Let n = 16, xc=0 = 4, xc=1 = 12,

xa=0
c=0 = xb=0

c=0 = xa=0
c=1 = xb=0

c=1 = xa=1
c=0 = xb=1

c=0 = 2

xa=1
c=1 = xb=1

c=1 = 10, x000 = x110 = 2, x001 = x011 =
x101 = 1, x010 = x100 = 0, and x111 = 9, where x101

denotes the number of chromosome corresponding to the ath
locus, the bth locus and the cth locus of chromosome in
promising strings being 1, 0 and 1, respectively (the other
symbols have similar meanings). Then we get

P (Bempty) = λ
xc=0!xc=1!

(1 + n)!
= λ

4!12!

17!
=

λ

30940

P (Ba→c) = P (Bb→c) = λ
xa=0
c=0 !x

a=0
c=1 !

(1+xa=0)!
· x

a=1
c=0 !x

a=1
c=1 !

(1+xa=1)!

= λ 2!2!
5! ·

2!10!
13! = λ

25740 > P (Bempty)

and

P (Ba,b→c) = λ x000!x001!
(1+xa=0

b=0
)!
· x010!x011!
(1+xa=0

b=1
)!
· x100!x101!
(1+xa=1

b=0
)!
· x110!x111!
(1+xa=1

b=1
)!

= λ
31680 < P (Bempty)

Hence, we cannot get P (Ba,b→c) > P (Bempty) by
P (Ba→c) > P (Bempty) and P (Bb→c) > P (Bempty).

IV. CONSTRUCTING TREE MODELS

In this part, we introduce the mechanism of constructing
tree models in detail by combining two examples. Let
X1, X2, · · · , Xn be n discrete variables, each variable corre-
spond to one position of a gene on a chromosome which be
transformed into binary coding. And let i1, i2, · · · , ir, · · · , in
are some unknown permutations of 1, 2, 3, · · · , n, ϕ maps
integer r to integer ϕ(r), where1 ≤ r ≤ n and 0 ≤ ϕ(r) < r.
For all 1 ≤ i ≤ n, P (Xi |X0) is by definition equal to
P (Xi), i.e., P (Xi |X0) = P (Xi). Therefore, we get the
joint probability distribution over tree model:

P (X1X2 · · ·Xn) =
n∏

r=1

P (Xir

∣∣Xiϕ(r)
) (6)

This means we confine our models to the networks in
which each node can have at most one parent. If there is
P (Xri |X0) in Eq.(6) for some ir, then Xri has no parent
and X0 is the root of the tree model. To find the optimal
tree model based on K2 metric, we give some promises and
definitions:

BD(Xi → Xj)
∆
=

xj=0
i=0 !x

j=1
i=0 !

(1 + xi=0)!
· x

j=0
i=1 !x

j=1
i=1 !

(1 + xi=1)!
(7)

BD(X0 → Xj) = BD(Xj)
∆
=

xj=0!xj=1!

(1 + n)!
(8)

We then create

BD(TBX1X2···Xn) =
n∏

r=1

BD(Xiϕ(r)
→ Xir)

1

2

34

5

6

Fig. 2. A dependency tree graph with 6 nodes.

where BD(TBX1X2···Xn) denotes BD metric value of
tree model TBX1X2···Xn , which consists of n vertexes
X1, X2, · · · , Xn. Our goal is to find out the tree model which
has the maximum metric value in a given dataset.

Example 2: Consider a dependency tree graph
TBX1X2X3X4X5X6 shown in Fig. 2. Map ϕ is defined
as: ϕ(2) = 0,ϕ(4) = 2,ϕ(3) = 2, ϕ(1) = 4, ϕ(5) = 4,
ϕ(6) = 4, and its BD metric value is

BD(TBX1X2X3X4X5X6)

=
n∏

r=1
BD(Xiϕ(r)

→ Xir)

= BD(X2) ·BD(X2 → X3) ·BD(X2 → X4)
·BD(X4 → X1) ·BD(X4 → X5) ·BD(X4 → X6)

Let I be a set which includes all variables, namely I =
{X1, X2, · · · , Xn}. The basic algorithm to construct the tree
model with the maximum BD metric value can be described
as follows.

Step 1. Select initial variable Xroot as root node of the
tree.

In our implementation we select the variable Xroot such
that

|xXroot=0 − xXroot=1|
≥ max { |xXi=0 − xXi=1|| i = 1, 2, · · · , n}

Step 2. Let Iin denote any variable already in the tree
and Iout = I − Iin be any variable not yet in the tree. For
Xi ∈ Iin and Xj ∈ Iout, we have maximum BD metric
value BD(Xin−i → Xout−j), that is

BD(Xin−i → Xout−j)
= max{BD(Xi → Xj) |Xi ∈ Iin, Xj ∈ Iout }

Step 3. Add Xout−j to the local tree Iin, with Xin−i as
its parent, such that the local tree gains a leaf, i.e. Iin ←
Iin ∪ {Xout−j}, Iout ← Iout − {Xout−j}

Step 4. Repeat Steps 2 and 3 until all the variables have
been added to tree such thatI = Iin.

Example 3: Consider constructing a tree model which has
8 variables, and dataset D is a set of promising strings S(t)
from P (t). The dataset is shown in Fig. 3 and consists of
20 chromosomes. Firstly, we can reduce the number of all
direct links among the 8 variables from A2

8 = 8!
(8−2)! = 56

to C2
8 = 8!

(8−2)!2! = 28 based on Theorem 1. Secondly, by
the above algorithm, we construct the tree model having the
maximum BD metric value. The initial root variable Xroot=e
is selected as root node of the tree. The first leaf is added
to the local tree (see Fig. 4(A)), then the second leaf (see
Fig. 4(B)) and so on until the last leaf to have the tree model
which matches dataset S(t).

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

Chromo-somea
gfedhc
b 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0ix 1ix 6 14 8 1215 5 9 1118 214 610 1016 4
20 Chromosomes

Fig. 3. A data set S(t) from P (t). S(t) consists of 20 chromosomes.

g

af

b

e

h

c

d

FE af

b

e

h

c

d

D af

e

h

c

d

C af

e

h

c

B
e

h

c

A
e

h

Fig. 4. Tree model generated by S(t) from P (t).

V. EXPERIMENTAL EVALUATION

The experiments are designed in order to show the perfor-
mance of the proposed algorithm on decomposable problems
with uniformly scaled deceptive building blocks [30], [31].
To evaluate the advantage of T-PEA, we select a simple PEA
based on genetic algorithms as the the contrast algorithm. In
the following sections, test problems are described and the
results are presented and discussed.

A. Test Function
To test T-PEA, four test problems for fixed-length binary

strings were considered. The first two problems, Dec-3
function and De Jong’s function 1, are uniformly scaled
decomposable problems of bounded difficulty for which
it is necessary that algorithms find an adequate problem
decomposition; if an adequate decomposition is not found,
the algorithm is expected to scale up exponentially. If T-
PEA finds an adequate function decomposition to solve Dec-
3 and De Jong’s function 1, it indicates that PEA should be
capable of solving other decomposable functions of bounded
difficulty and anything easier. The last two test problems
are typical multivariate multimodal function named Shubert
and Fun.4. A unitation function is a function whose value
depends only on the number of ones in a binary input
string. The function values for the strings with the same
number of ones are equal. Several functions of unitation can
be additively composed in order to form a more complex
function. Let us have a function of unitation defined for
strings of length k. Then, the function additively composed
of functions fk is defined as

F (X) =
l∑

i=1

fk(ui) (9)

where X is the set of n variables and for i ∈ {1, · · · , l}
are subsets of k variables from X . Sets ui can be either
overlapping or non-overlapping. They can be mapped onto
a string so that the variables from one set are either mapped
close to each other or spread throughout the whole string. It
is obviously that F (X) is additively decomposable. Several
simple and easily 3-bit deceptive functions are unitation
functions and can be additively composed and then form a
more complex Dec-3 function. For Dec-3 function, the input
string is first partitioned into independent groups of 3 bits
each. This partitioning does not change during the run. A
3-bit deceptive function is applied to each group of 3 bits
and the contributions of all deceptive functions are added
together to form the fitness of Dec-3 function. And a 3-bit
deceptive function is defined as

f3deceptive (u) =

0.9 if u = 0
0.8 if u = 1
0 if u = 2
1 otherwise

(10)

where u is the number of ones in an input string of 3 bits.
Therefore, an n-bit Dec-3 has one global optimum in the
string of all ones and 2

n
3 − 1 other local optima. In order to

avoid this situation that the optimization is misled away from
the optimum when each bit is considered independently, it
is necessary to consider interactions among the positions in
each partition [16].

De Jong’s function 1 [33] is defined to be a performance
index to be minimized, and is a simple n-dimensional
parabola with spherical constant-cost contours. It is a contin-
uous, convex, unimodal, low-dimensional quadratic function
with a minimum of zero at the origin. For testing the
performance, it is restricted to a bounded subspace of Rn of

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

the form −512 ≤ xi ≤ 512, i = 1, · · · , n, and is discretized
by specifying a resolution factor ∆xi=1 for each axis.
Therefore, the search space of the evolutionary algorithms
can be used a binary representation and be searched consisted
of (1024)n alternative solutions. For De Jong’s function, the
input string is first partitioned into independent groups of 10
bits each. This partitioning does not change during the run.
De Jongs function 1 is given by:

F (x) =

n∑
i=1

(
x2
i

)
(11)

where xi ∈ [−512, 512], i = 1, · · · , n.
Shubert function is defined as

F (X) =
n∏

l=1

5∑
i=1

i cos[(i+ 1)× xl + i] (12)

where xi ∈ [−10, 10], i = 1, · · · , n.
We specify the minimum of Shubert function. When

n = 2, F (X) is the standard Shubert function. Its known
that the standard Shubert function has 760 local optimal
solutions. Among which there are 18 optimums and the value
is -186.7310. For Shubert function, the input string is first
partitioned into independent groups of 10 bits each. This
partitioning does not change during the run.

The Fun. 4 is defined as

F (x, y) = xcos(2πy) + ysin(2πx) (13)

where x ∈ [−2, 2] and y ∈ [−2, 2]. The task is to search the
maximum of Fun. 4. In the domain of x and y, the optimal
solution is (1.7625,−2) and the maximum is 3.7563. For
Fun. 4, the input string is first partitioned into independent
groups of 20 bits each. This partitioning does not change
during the run.

B. Experimental Results

To study scalability, we consider a range of problem sizes
for the first three test problems and the problem size of Fun.
4 is set 2. The results are then used to investigate the growth
of the number of function evaluations until successful con-
vergence to the global optimum with respect to the problem
size. We also record the change in value of each problem.
For 3-deceptive, a population is said to have converged when
the proportion of some value on each position reaches 95%.
However, the criterion of convergence of De Jong’s function
1 is that the proportion of some value on each position of
some population reaches 99%. For the Shubert function, the
population is said to have converged when it contains over
a half of optimal solutions. We set two convergent criterions
for Fun.4. One is the maximum iterating times with 280. And
the other is that the minimum is greater or equal to 0.95×
maximum for some generation. The population sizes for all
problem instances have been determined empirically so that
the algorithms meet the criterion of convergence in all of 30
independent runs. The truncation selection has been set to
be 50%.

A simple PEA based on genetic algorithms is compared
to T-PEA on the three test functions. The simple PEA
starts with an initial population contained several randomly
subpopulation. In each iteration, the probability of crossover
has been set to 60%, and it applies bit flip mutation to the

TABLE I
CONTROL PARAMETERS

Function size(n) No. of subpop. Subpop. size

Dec-3 (30,60,90,120,150) (4,8,12,16,20) 200

De Jong (10,15,20,25,30) (2,6,12,20,30) 100

Shubert (2,6,10,14,18) (2,6,10,14,18) 200

Fun. 4 (2) (4,8,12,16,20) 60

20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

450

size of the function

no
. o

f e
va

lu
at

io
ns

T−PEA
PEA

Fig. 5. Results of Dec-3 Function: the average number of iterations in 30
independent runs with respect to the function size.

current binary string where each bit is flipped with a small
probability 1%.

In following simulations, two algorithms utilize the same
control parameters listed in Table 1. In each line, the numbers
of the two brackets are in accordance with the corresponding
sequence.

The results of the Dec-3 function are presented in Fig.5-
Fig.6. The building blocks are non-overlapping, and they
which are mapped tightly onto a string are not likely to be
disrupted by one-point crossover. Since it is independent of
the variable ordering in a string, T-PEA with the BD metric
performs better than the compared simple PEA algorithm
with one-point crossover in terms of the number of iterations
until successful convergence as the problem size grows. The
population sizes for the PEA the problem size grows. The
population sizes for the PEA and T-PEA ranged from N =
800 for n = 30 to N = 4000 for n = 150. At the same time, the
number of each population had been set to 200 to implement
the parallel evolutionary. Fig. 5 shows the average number of
iterations in 30 independent runs with respect to the function
size. In Fig. 6, a simulation results for Dec-3function with
function size =120 are presented. It is obviously that T-PEA
gives a much better performance in comparison to PEA on
Dec-3 function.

Fig. 7-Fig. 8 show the results of the De Jong’s function
1. The results of this function are similar to those of the
Dec-3 function. The population sizes for the PEA and T-
PEA ranged from N = 200 for n = 10 to N = 3000 for
n = 30. The number of each population had been set to
100 to implement the parallel evolutionary. In Fig. 7, the
overwhelming superiority with fewer iterations of T-PEA is
shown. Fig. 8 shows that T-PEA can converge rapidly when
function size takes 20.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

0 50 100 150 200 250 300 350 400
30

31

32

33

34

35

36

37

38

39

no. of iterations

fu
nc

tio
n

va
lu

e

T−PEA
PEA

Fig. 6. Results of Dec-3: the change of the average minima in 30
independent runs when the function size is 120.

10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

size of function

no
. o

f i
te

ra
tio

ns

T−PEA
PEA

Fig. 7. Results of De Jong’s Function 1: the average number of iterations
in 30 independent runs with respect to the function size.

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8
x 10

5

no. of iterations

fu
nc

tio
n

va
lu

e

T−PEA
PEA

Fig. 8. Results of De Jong’s Function 1: the change of the average minima
in 30 independent runs when the function size is 20.

Fig. 9-Fig.11 show results of Shubert function. The pop-
ulation sizes for the PEA and T-PEA ranged from N = 400
for n = 2 to N = 3600 for n = 18. The number of each
population had been set to 200 to implement the parallel
evolutionary. Fig. 9 shows the average number of iterations
with respect to the function size. Fig. 10 shows the change
of the average minima in 30 independent runs when the
function size is 2. As Shubert has many local minima, the
results show that PEA can not gain the real minima under
the convergent condition and falls into local optimum. Fig.
11 presents the average minima of T-PEA and PEA of 30
independent runs with respect to the five function size. The
vertical axis displays the absolute values of the average
minima in logs. Obviously, as the function size grows, the

20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

size of the function

no
. o

f e
va

lu
at

io
ns

T−PEA
PEA

Fig. 9. Results of Shubert function: the average number of iterations in
30 independent runs with respect to the function size.

0 5 10 15 20 25 30
−190

−180

−170

−160

−150

−140

−130

−120

−110

no.of iterations

fu
nc

tio
n

va
lu

e

T−PEA
PEA

Fig. 10. Results of Shubert function: the change of the average minima in
30 independent runs when the function size is 2.

Fig. 11. Comparison Results: T-PEA vs PEA in terms of average minima
of 30 independent runs with respect to the function size .The vertical axis
displays the absolute values of the average minima in logs.

difference between the optimums returned by PEA and T-
PEA increases markedly.

Fig. 12-Fig.14 show results of Fun. 4. The function size
of Fun. 4 is 2, that is the two independent variables x and y.
The population sizes for the PEA and T-PEA ranged from 4
to 20. And each population contains 60 individuals which is
formed by binary strings of length 40. T-PEA can find the
maximum 3.7563 for all population sizes and PEA can do
this only for sizes 8, 12, 16, 20. However, T-PEA only need
a few times of iteration. That is, within a short time, the
minimum is greater or equal to 0.95 × maximum at some
generation. With the same data sets, PEA requires iterations
as many as 280 times on population sizes 8 to 20. Although
on population size 4, there are only average 34.33 times of

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

no. of subpop

no
. o

f i
te

ra
tio

ns

T−PEA
PEA

Fig. 12. Comparison Results: T-PEA vs PEA in terms of average number of
iterations to achieve optimal value of 30 independent runs for each different
size of population.

0 10 20 30 40 50 60 70 80
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

no. of iterations

fu
nc

tio
n

va
lu

e

T−PEA
PEA

Fig. 13. Comparison Results: T-PEA vs PEA in terms of average maximum
of 30 independent runs with respect to the population size 4.

0 50 100 150 200 250 300
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

no. of iterations

fu
nc

tio
n

va
lu

e

T−PEA
PEA

Fig. 14. Comparison Results: T-PEA vs PEA in terms of average maximum
of 30 independent runs with respect to the population sizes 8, 12, 16, 20.

iteration for PEA, the convergent criterion has been reached
without finding a satisfactory solution. The optimal obtained
by PEA on population size 4 is 3.7142 which is less than the
global maximum 3.7563. Fig.12 shows the average number
of iterations to achieve optimal value for each different size
of population. It is obviously, T-PEA is a faster convergence
algorithm than PEA. Fig. 13 presents the average maximum
of T-PEA and PEA of 30 independent runs with respect to
the population size 4. PEA obtains the optimal 3.7142 with
75 iterations and T-PEA obtains the optimal 3.7563 with 16
times of iteration. Fig. 14 presents the average maximum of
T-PEA and PEA of 30 independent runs with respect to the
other four population sizes (8,12,16,20). These results once
again indicate T-PEA’s superiority.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that learning tree model
based on BD metric is not expansive, and given a theoretical
analysis to create tree model from data set. At the same time,
we described the frame of parallel evolutionary algorithms
based-on tree models. The experiments have shown that
the proposed algorithm outperforms the simple PEA on n-
dimensional parabola with spherical constant-cost contours
and even on decomposable problems with tight building
blocks as the function size grows. The gap of the number
of iterations until successful convergence between the two
algorithms would significantly enlarge with the function size
grows. In addition, T-PEA succeeds BOAs advantages that
T-PEA is independent of the ordering of the variables in
a string and therefore changing this would not affect the
performance of the algorithm. In our future research we will
try given some empirical results about parallel evolutionary
algorithms based-on tree models. And in addition, we will
try to describe difference to construct tree models between
based-on minimum description length metric and BD metric.

REFERENCES

[1] J. L. Andrews and P. D. McNicholas, “Using evolutionary algorithms
for model-based clustering, Pattern Recognition Letters, vol. 34, no. 9,
pp. 987-992, 2013.

[2] Jinxing Che, “Support vector regression based on optimal training
subset and adaptive particle swarm optimization algorithm,” Applied
Soft Computing, vol. 13, no. 8, pp. 3473-3481, 2013.

[3] E. G. Bekele, C. L. Lant, S. Soman and G. Misgna, “The evolution and
empirical estimation of ecological-economic production possibilities
frontiers, Ecological Economics, vol. 90, pp. 1-9, 2013.

[4] S. Nesmachnow, H. Cancela and E. Alba, “A parallel micro evolutionary
algorithm for heterogeneous computing and grid scheduling, Applied
Soft Computing, vol. 12, no. 2, pp. 626-639, 2012.

[5] J. Toutouh, S. Nesmachnow, E. Alba, “Fast energy-aware OLSR routing
in VANETs by means of a parallel evolutionary algorithm, Cluster
Computing, vol. 16, no. 3, pp. 435-450, 2012.

[6] L. Wang, Q. K. Pan, P. N. Suganthan, W. H. Wang and Y. M. Wang, “A
novel hybrid discrete differential evolution algorithm for blocking flow
shop scheduling problems, Computers & Operations Research, vol. 37,
no. 3, pp. 509-520,2010.

[7] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms, Calculateurs
paralleles, reseaux et systems repartis, vol. 10,no. 2, pp. 141-171,1998.

[8] E. Cantú-Paz and D. E. Goldberg, “Efficient Parallel Genetic Algo-
rithms: Theory and Practice, Computer Methods in Applied Mechanics
and Engineering, vol. 186, no. 2, pp. 221-238, 2000.

[9] E. Alba, J.M. Troya, “A Survey of Parallel Distributed Genetic Algo-
rithms, Complexity, vol. 4, no. 4, pp. 31-52, 1999.

[10] S.Yussof, R. A. Razali,. , Ong Hang See, A. A. Ghapar, M. M Din, “A
Coarse-Grained Parallel Genetic Algorithm with Migration for Shortest
Path Routing Problem, in 11th Conf. Rec. 2009 IEEE High Performance
Computing and Communications, pp. 615-621,2009.

[11] E. Alba, J. M. Troya, “An Analysis of Synchronous and Asynchronous
Parallel Distributed Genetic Algorithms with Structured and Panmictic
Islands, in Parallel and Distributed Processing, J. Rolim et al. (eds.),
Springer Berlin Heidelberg, 1999, pp. 248-256.

[12] Udo Kohlmorgen. FeinkÄornige, “parallele genetische Algorithmen,
Ph. D. thesis, Univ. of Karlsruhe, Germany, German, 1999.

[13] H. Mühlenbein and T. Mahnig, “Evolutionary optimization using
graphical models, New Generation Computing, vol. 18, no. 2, pp. 157-
166,2000.

[14] S. Baluja and S. Davies, “Using optimal dependency-trees for com-
binatorial optimization: learning the structure of the search space,
Carnegie Mellon University Technical Report No. CMU-CS-97-107,
1997.

[15] M. W. Hauschild, M. Pelikan, K. Sastry, D. E. Goldberg, “Using
Previous Models to Bias Structural Learning in the Hierarchical BOA,
Evolutionary Computation, vol. 20, no. 1, pp. 135-160, 2012.

[16] Martin Pelikan, David E.Golaberg and Erick Cantú-Paz, “The
Bayesian optimization algorithm, Univ. Illinois, Urbana-Champaign,
IlliGAL Report No. 98013, 1998.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

[17] M. Pelikan, D. E. Goldberg and E. Cantú-Paz, “The Bayesian
optimization algorithm, population sizing, and time to convergence,
Lawrence Livermore National Lab., CA (US), 2000.

[18] M. Pelikan and D. E. Goldberg, “Hierarchical Bayesian Optimization
Algorithm, Studies in Computational Intelligence, vol. 33, pp. 63-90,
2006.

[19] C. F. Lima, M. Pelikan, F. G. Lobo, D. E. Goldberg, “Loopy Substruc-
tural Local Search for the Bayesian Optimization Algorithm, in Lecture
Notes In Computer Science, LNCS 5752, 2009, pp. 61-75.

[20] L. Claudio, L. Fernando, P. Martin, G. David, “Model accuracy in
the Bayesian optimization algorithm, Soft Computing - A Fusion of
Foundations, Methodologies & Applications, vol. 15, no. 7, pp. 1351-
1371. 2011.

[21] D. Heckerman, D. Geiger and D. H. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Machine
learning, vol. 20, no. 3, pp. 197-243, 1995.

[22] D. M. Chickering, D. Heckerman and C. A. Meek, “A Bayesian
approach to learning Bayesian networks with local structure,” in Proc.
Thirteenth conf. on Uncertainty in artificial intelligence. Morgan Kauf-
mann, 1997, pp. 80-89.

[23] E. Alba and M. Tomassini, “Parallelism and Evolutionary Algorithms,
IEEE Transactions on Evolutionary Computation, vol. 6, pp. 443-462,
2002.

[24] C. K. Chow and C. N. Liu, “Approximating discrete probability
distributions with dependence trees, IEEE Transactions on Information
Theory, vol. IT-14, no. 3, pp. 462-467,1968.

[25] E. Cantú-Paz, “Markov chain models of parallel genetic algorithms,
IEEE Transactions on Evolutionary Computation, vol. 4, no.3, pp. 216-
226, 2000.

[26] Meilǎ M, “An Accelerated Chow and Liu Algorithm: Fitting Tree
Distributions to High-Dimensional Sparse Data,”Proceedings of the
Sixteenth International Conference on Machine Learning. Morgan
Kaufmann Publishers Inc. 1999,pp. 249-257.

[27] Bouckaert R R, “Properties of Bayesian belief network learning
algorithms,” in Proceedings of the Tenth international conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.
1994, pp. 102-109.

[28] Li Yanying, Yang Youlong, Zhu Xiaofeng, Dou Xiaoxia, “Towards
fast and efficient algorithm for learning markov blankets,” IAENG
International Journal of Computer Science, vol. 42, no. 1, pp. 17-22,
2015.

[29] Cooper G F, Herskovits E, “A Bayesian method for the induction of
probabilistic networks from data,” Machine learning, vol. 9, no. 4, pp.
309-347, 1992.

[30] D. Goldberg, “Simple Genetic Algorithms and the Minimal,Deceptive
Problem, in Genetic Algorithms and Simulated Annealing, Morgan
Kaufmann, 1987, pp. 74-88.

[31] L. D. Whitley, “Fundamental principles of deception in genetic search,
in Foundations of genetic algorithms, G. J. Rawlins, Ed. Morgan
Kaufmann, San Mateo, 1991, pp. 221-241.

[32] H. A. Simon, The Sciences of the Artificial. Cambridge, CA: MIT,
1968.

[33] K. A. De Jong, “An Analysis of the Behavior of a Class of Genetic
Adaptive Systems, Ph. D. Thesis, University of Michigan, 1975.

Youlong Yang was born in Pucheng, Shaanxi, China in 1967. He received
his B.S. degree, M.S. degree in the Department of Mathematics from
Shaanxi Normal University, in 1990 and 1993, respectively. And received the
Ph.D. degree at Northwestern Polytechnical University in 2003. In 2006, he
was out bounded post-doctoral mobile stations in Xidian University, and then
was sent to the United States University of Rochester as a national public
school student in 2007. His scientific interest is Probabilistic Graphical
Models and Time Series.

Youlong is full professor, PhD supervisor in Xidian University and
executive director of the Mathematical Association of Shaanxi Province.

Prof. Yang has published more than 40 papers. His papers were published
as the first-named author in journals such as Information Sciences, Inter-
national Journal of Approximate Reasoning, Acta Application Mathematic,
Control Theory and Applications. He has received one reward of Shaanxi
Provincial Science and Technology and two Bureau departmental level
research awards and so on.

Yanying Li was born in Songyuan, Jilin Province, China in 1981. She
received her B.S. degree, M.S. degree in the Department of Mathematics
from Jilin Normal University in 2004 and 2007 respectively. And began
work for a doctorate at Xidian University in 2011. She is interested in
Probabilistic Graphical Models and Time Series.

Yanying is a Ph.D in Xidian University and a lecturer in Baoji University
of Arts and Sciences.

Dr. Li has published 17 papers in English and in Chinese.
Wensheng Wang received his M.S. degree in School of Mathematics and

statistics at Xidian University in 2012. His scientific interest is Probabilistic
Graphical Models and Time Series.

Wenming Yang begins to work for a M.S. degree in School of Mathe-
matics and statistics at Xidian University in 2014. His scientific interest is
Probabilistic Graphical Models and Time Series.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_02

(Advance online publication: 10 July 2015)

__

