
 

 

Abstract—This paper addresses optimization of the 

integrated part type selection problem and machine loading 

problem that are considered as NP-hard problems in 

production planning of flexible manufacturing system (FMS) 

and strongly determine the system’s efficiency and 

productivity. The integrated problems are modelled and solved 

simultaneously by using Variable Neighbourhood Search 

(VNS). A new neighbourhood structure is designed to enable 

the VNS produces near optimum solutions in a reasonable 

amount of time. The proposed VNS improves the FMS 

performance by considering two objectives, maximizing system 

throughput and maintaining the balance of the system. The 

resulted objective values are compared to the optimum values 

produced by branch-and-bound method. The numerical 

experiments show the effectiveness of the proposed VNS for 

several test-bed problems. 

 
Index Terms—Flexible manufacturing system, production 

planning, part type selection problem, machine loading 

problem, variable neighborhood search 

 

I. INTRODUCTION 

LEXIBLE manufacturing system (FMS) is designed to 

address rapid changing customer needs on various high 

quality products. Flexibility is the main feature of FMS 

where a variety of products in low to medium volumes can 

be produced by using computer numerically controlled 

(CNC) machines and automatic transfer lines [1]. However, 

building such systems using high technology equipment 

requires a high initial investment. To enable early return on 

investment, an optimum resources utilization and system 

productivity must be achieved. These objectives can be 

achieved by establishing a good production planning [2] and 

a good scheduling to minimize energy consumption that 

lead to production cost reduction [3]. 

As a tool to survive in hard competition of global market, 

FMS are implemented in many manufacturing areas. The 

areas include defense industries, aerospace, metal-cutting 

machining, metal forming, various automotive part, and 

plastic injection molding [4]. 

The flexibility of FMS may be used to optimize the 

utilization of the production resources and also reduce the 
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production time [5, 6]. The flexibility of FMS refers to its 

ability to produce various products by using same resources 

(machines and tools). There are two categories of FMS 

flexibility which may be divided into several sub categories. 

The first is machine flexibility. By using high technology, 

machines setting can be reconfigured easily to produce new 

type of products for different market segments [7]. The 

second is routing flexibility that means one product may be 

produced by a number of alternative machining sequences. 

This flexibility enables manufacturers to increase and 

balance their machines utilization and decrease processing 

time [5]. 

There are several sub-problems in the production 

planning of FMS such as part type selection problem, 

machine grouping problem, production ratio problem, 

resource allocation problem, and machine loading problem 

[8]. However, due to the specific FMS environments, not all 

the sub-problems simultaneously exist. 

This study considers a plant that manufactures various 

models of products. Various types of components are 

assembled to build a product. For generality, the component 

is called a part type. The various part types are produced by 

using a same machines set called FMS. A process called 

aggregate production planning produces a master planning 

contains the number of each model of product that must be 

manufactured. Each model of product requires several part 

types. Thus, the quantity of parts types that must be 

produced can be calculated.  

As the FMS have technological constraints such as 

limited machines availability, limited tool magazines 

capacity of each machine, and limited number of tools, the 

part types must be produced in several batches. This 

decision process is called the part type selection. 

Specifically, the part type selection is concerned with 

selection of a set of part types (products) from a number of 

part types in the production order into a production batch. 

The selected part types in the batch will be manufactured 

immediately. 

The next production step is called the machine loading 

problem that deals with allocation of operations for the 

selected part types and loading required tool types to the 

machines magazine. The next stage is scheduling that 

determine order of operations of the selected part types in 

the machines. The scheduling also determines the starting 

time of each operation in the machine. To perform the final 

product, a process called assembly operations is carried out 
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to join related part types.  

The overall stages in FMS environment are depicted in 

Fig. 1. Problems addressed in this paper are shown in grey 

areas. The scheduling and assembly operations problems 

can be solved after solutions of the part type selection and 

machine loading problems are obtained. 

 

 

Fig. 1. Manufacturing processes 

Even if the part type selection and machine loading 

problems can be solved hierarchically in separated stages, 

solving them simultaneously will produce better solutions 

that are indicated by higher throughput and balance 

machines’ workload [9]. Moreover, a solution produced by 

the part type selection in the previous stage may become 

infeasible for the machine loading the next stage [4]. Thus, 

this paper focuses on the integrated part type selection and 

machine loading problems. 

The part type selection problem and the machine loading 

problem are strongly related problems and exist in most 

FMS environments. The problems also heavily determine 

the system’s efficiency [10]. Higher throughput and efficient 

allocation of production resources of the FMS will be 

achieved by simultaneously solving part type selection and 

machine loading problems [11]. 

The part type selection and machine loading problems 

are considered as strongly NP-hard problems with a very 

large search space and the optimum solution may not be 

obtained by exact methods or complete enumeration in a 

reasonable amount of time [7]. For a medium size problem 

with 36 part types and the average possible machining 

routes of 5, the total number of possible solutions for the 

integrated part type selection and machine loading problems 

is about         . For this kind of problem, a branch-and-

bound method run on personal computer equipped with 

Intel® Core™ i3-380 processor required more than 150 

hours to get the optimum solution [4]. This computational 

time cannot be accepted for daily operation of FMS. Thus, a 

good approach to achieve near optimum solutions on 

reasonable amount of time is required. While Mahmudy, et 

al. [12] proved that their real-coded genetic algorithm 

(RCGA) could effectively exploring a huge search space of 

the problems, a series of experiments was required to obtain 

the best parameters of the approach. In this paper, an 

efficient variable neighbourhood search (VNS) is proposed. 

Variable neighbourhood search (VNS) is meta-heuristic 

technique that manages a local search (LS) technique. Here, 

the LS is systematically iterated to explore larger 

neighbourhood until termination condition is achieved. The 

neighbourhood structure is designed to enable the LS 

exploring the search space from new starting points [13]. 

Thus, these properties enable the VNS to escape from local 

optimal areas and obtain optimum or near optimum solution. 

As a simple and effective method, the VNS have been 

successfully implemented to solve a various combinatorial 

problems such as maximum satisfiability problem [14], job 

scheduling [15], location routing problem with capacitated 

depots [16], transportation and distribution [17], bin packing 

problem [18], and  a number variants of travelling salesman 

problem [17, 19, 20]. 

To get more powerful VNS, the VNS is improved in 

various ways. For example, Parallel Variable Neighborhood 

Search (PVNS) was developed by running several instances 

of VNS on different processors [21]. The study tested 

various levels of parallelization strategies. The low level 

was developed by parallelizing the local search of 

neighborhoods. In the high level, parallelizing was done by 

running several VNSs and equipping a mechanism of 

cooperation (exchanging of information) among VNS 

instances. Parallel VNS was also developed by 

Eskandarpour, et al. [22] to solve the multi-objective 

sustainable post-sales network design problem. As previous 

work, the parallelization was done by running several 

instances of VNS to find better Pareto optimum points. 

Moreover, parallelizing the local search of neighborhoods in 

the sequential VNS was done in the study of S´anchez-Oro, 

et al. [23]. 

The VNS is also hybridized with other algorithms in 

several studies. For example, Li, et al. [24] combined the 

VNS with the chemical-reaction optimization (CRO) and the 

estimation of distribution (EDA) to solve the hybrid flow 

shop scheduling problem. Moreover, the VNS was 

hybridized with the greedy randomized adaptive search 

procedures to solve the targeted offers problem in direct 

marketing campaigns [25]. 

This paper attempts to develop a new neighbourhood 

structure for the VNS to effectively explore a large search 

space of the integrated part type selection and machine 

loading problems. This effort will enable the VNS produces 

near optimum solutions in a reasonable amount of time. 

II. RELATED WORKS 

As the part type selection and machine loading problems 

have an important role in determining the productivity and 

efficiency of FMS, an extensive research has been 

conducted in these areas. Various methods used in the 

literature to solve the problems will be briefly discussed in 

this section. The methods include mathematical 

programming based approach, heuristic and meta-heuristic 

approach, and hybrid approach. 

Mathematical programming-based approaches were used 

in few earliest studies. For instance, Stecke [8] applied a 

nonlinear integer programming to solve machine grouping 

and loading problems. Another study was conducted by 

Mgwatu [26] that formulated two mathematical models to 

solve the integrated part type selection, machine loading, 

and machining optimization. A commercial package 

software for mathematical programming was used to obtain 

solutions of the integrated problems. A similar approach was 

developed by Bilge, et al. [27] to solve the part type 

selection and machine loading problems in FMS with 

flexible process plans. 

Exact algorithms and analytical and mathematical-

programming-based methods are robust in applications [28]. 

However, even if the articles discussed in this section 

reported promising results, their approaches are only 

suitable and were used for small and medium size problems. 

They tend to become impractical when the problem size 

increases and the optimum solution may not be achieved in 

a reasonable amount of time [4]. Therefore, Stecke [8] 
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suggests to use an efficient heuristic algorithm to solve a 

larger and more complex problem. 

Due to their efficient computational time, heuristic based 

approaches were frequently used in the production planning 

of FMS. However, the heuristics were only successful in 

solving problems of limited complexity. They used only 

small size problems in the experiment. For example, Kim, et 

al. [29] developed two-stages heuristic to address the 

machine loading problem. In the first stage, a modified bin-

packing algorithm was used to produce an initial solution. In 

the second stage, the initial solution was improved by 

implementing a simple search algorithm. The study used 

test-bed problems that had maximum number of part type of 

15. By using complete enumeration [30] or branch-and-

bound methods [31] that produce the optimum solution, the 

small size problems may be easily and quickly solved. 

Therefore, even though they reported good results, their 

heuristics are not likely to produce promising results in large 

scale problems. 

To address the limitations of heuristic methods, meta-

heuristic approaches were proposed in several studies. The 

meta-heuristic simultaneously manages several heuristic 

procedures to deal with the large space of the integrated part 

type selection and machine loading problems. The 

approaches included genetic algorithms [2, 31-33], particle 

swarm optimization [7, 34, 35], ant colony optimization 

[36], immune algorithm [37, 38], harmony search algorithm 

[39], and symbiotic evolutionary algorithm [40]. The studies 

reported that the meta-heuristic approaches were efficient 

and produced near-optimum solutions. 

As powerful population-based algorithms, genetic 

algorithms and particle swarm optimization were frequently 

used to solve the production planning problem in FMS. For 

example, a study by Mahmudy, et al. [2] equipped a 

specialized genetic algorithm with various crossover and 

mutation operators to enable exploring the very large search 

space of the integrated part type selection and machine 

loading problems. Genetic algorithm was also used in a 

study by Abazari, et al. [31]. In this study, a mixed-integer 

linear mathematical programming model was firstly 

developed and then integer-based chromosome was used to 

represent the solution. 

Other type of genetic algorithms was implemented by 

Yusof, et al. [32]. The study developed constraint-

chromosome genetic algorithm to solve the machine loading 

problem. The chromosome was designed to produce only 

feasible solution. This effort reduced a high computational 

time that is required to repair infeasible solutions. 

Furthermore, knowledge-based genetic algorithm was 

developed to solve machine loading problem [33]. The 

proposed approach exloited tacit and explicit knowledge that 

was obtained from the problem. The knowledge was used in 

the stage of generating initial population and also in 

applying genetic operators such as crossover, mutation, and 

selection. Thus, the genetic algorithm could explore the 

large search space more efficient. 

Particle swarm optimization was used in several studies. 

For example, Biswas and Mahapatra [7] modified particle 

swarm optimization to solve the part type selection and 

machine loading problems. Modification was done by 

adding a mechanism to prevent early convergence. They 

reported that the mechanism was effective to obtain better 

solutions. A similar approach was proposed by Mahmudy 

[34] that adopted chromosome representation of genetic 

algorithm in [12] for his particle swarm optimization. 

Another type of population-based algorithm, immune 

algorithm, was also implemented to solve the part type 

selection and machine loading problems. For instance, 

Prakash, et al. [37] modified immune algorithm by adding a 

new hypermutation operator to improve the driving forces of 

the immune algorithm. A similar improvisation was done by 

Dhall, et al. [38] that developed several special operators for 

immune algorithm. 

The complexity level of the integrated part type selection 

and machine loading problems become a reason for the 

researchers to develop more powerful approaches by 

combining two methods. For example, Yusof, et al. [41] 

combined genetic algorithm and harmony search algorithm. 

The study used test-bed problems that had maximum 

number of part type of 8. Furthermore, hybrid genetic 

algorithm with simulated annealing was developed by 

Yogeswaran, et al. [1]. Genetic algorithm also combined 

with a local search as shown in works by Basnet [30] and 

Mahmudy, et al. [10]. 

To produce satisfactory results, preliminary experiments 

are required by heuristic and meta-heuristic methods to 

determine their optimum parameters [42, 43]. Parameters of 

several methods are shown in Table 1. The table clearly 

shows that VNS has fewest parameters compare to other 

methods. Thus, it will reduce computational time required in 

the preliminary experiments. Fewer parameters also enable 

to give more efforts on designing the best neighbourhood 

structure for VNS. 
TABLE I 

PARAMETERS OF HEURISTIC AND META-HEURISTIC METHODS 

method parameters 

genetic algorithms - population size 

- crossover rate 

- mutation rate 

- termination condition 

simulated annealing - initial temperature 

- cooling factor 

- inner iteration 

- probability of accepting worse 

solution 

- termination condition 

particle swarm 

optimization 
- number of particles 

- inertia vector (w) 

- self-recognition component (c1) 

- social component (c2) 

- termination condition 

tabu search - size of tabu list 

- termination condition 

variable 

neighbourhood search 
- number of neighborhoods  

- termination condition 

 

The integrated part type selection and machine loading 

problems is known as NP-hard problems and finding 

reasonable solutions is more difficult if other flexibilities are 

addressed. An example of such flexibility is the possibility 

of processing an operation in alternative machines with 

different tool types [7, 10]. 

Due to the complexity of the problems, several 

simplicities were adopted in the existing researches. For 

example, Yusof, et al. [32], Basnet [30], and Biswas and 
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Mahapatra [7] ignored the tool allocation problem as the 

integral part of the machine loading problem. They did not 

mention specific tool types and its availability and only 

mentioned the number of slots needed by the tools. This 

paper attempts to fill these knowledge gaps by addressing 

the machine flexibility and the occurrence of specific tool 

types for the specific operations. 

III. PROBLEM FORMULATION 

A FMS under consideration is arranged by a number of 

computer numerically controlled (CNC) machines. Each 

machine has a tool magazine with limited tool slot capacity. 

Thus, only limited number of tools can be attached to the 

machine.  

Production requirement of each part type is stated as 

sequence of operations. Different set of tool types are 

required by different operations. This paper considers the 

flexibility of machining operations where several alternative 

machines with several alternative tool types are available for 

each operation. Different processing times are required for 

these alternative machines. 

A production process is started when production orders 

that consist several part types are arrived. The system must 

select which part type are loaded to the current batch due to 

the limited availability of tools attached in the machines. 

This approach is known as batching approach as several 

production batches is required to produce all part types [4]. 

Several assumptions are made as follows: 

- All machines are available at time 0 and never 

breakdown. 

- Machines are independent from each other. 

- Part types are independent from each other and there 

are no precedence constraints among operations of 

different part types. 

- A machine can only execute one operation at a given 

time. 

A. Subscripts and parameters 

Several subscripts are used in the model as follows: 

p = 1,…,P part type 

o = 1,…,Op operation of part type p 

t = 1,…,T tool type 

m = 1,…,M machine type 

Parameters of the model are defined as the following: 

Cm = tool slot capacity of machine m 

Nt = number of tools type t 

St = number of slots required by tool type t 

Bp = batch size of part type p 

Vp = value (price) of part type p 

µpo = set of possible machines on which operation o of part 

type p can be performed 

      {   }: 1 if tool type t is required for processing 

operation o of part type p on machine m, 0 otherwise 

tpom = processing time of operation o of part type p on 

machine m 

B. Decision variables 

Two objectives of the model are defined as follow: 

   {   }: 1 if part type p is selected in the current batch, 0 

otherwise 

     {   }: 1 if machine m is selected for operation o of 

part type p, 0 otherwise 

The depending variable for this model is stated as follow: 

    {   }: 1 if tool type t is loaded to the machine m, 0 

otherwise 

The value of depending variable is determined once the 

values of the decision variables are obtained. 

C. Objectives 

To measure the performance of FMS production 

planning, a number of objectives were used such as 

minimizing part movement [40] and minimizing tool 

changeovers [40]. However, most of the studied addressed 

two common objectives, maximizing system throughput and 

maintaining the balance of the system. The objectives may 

contribute to the other criteria of system’s performance such 

as the completion time of all part types’ operations [9]. 

Maximizing system throughput is obtained by 

maximizing the value (price or profit) of selected part types 

as expressed in (1).  

          ∑       
 
    (1) 

Maintaining the balance of the system is obtained by 

minimizing system unbalance as shown in (2). Wm is 

workload of machine m and W  is the average machine 

workload. Here, length of scheduling period for each 

machine (Lm) is predetermined and overloading of the 

machines is allowed. 

          ∑ |     |
 
    (2) 

         ∑ ∑           
  

   

 

   
 

     ̅  
∑   
 
   

 
 

The two objective functions in the problem must be 

converted to a single objective function which is used to 

measure the goodness of the solution produced by VNS. 

Equation (2) should be converted into (3) to produce value 

between 0 and 1. 

 

   
∑       
 
   

∑     
 
   

 (3) 

 

Minimizing system unbalance in (2) can be converted as 

maximizing (4) as follow: 

 

     
∑ |     |
 
   

∑   
 
   

 (4) 

 

Finally, the objective function can be formulated as in 

Equation (5). The values of α1 and α2 can be determined 

according to the decision maker’s preference. 

 

                      (5) 

                         
 

D. Constraints 

While considering the objectives of the system, several 

constraints must be satisfied as follows: 

∑ ∑     
 
   

  
                      (6) 
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∑                              (7) 

                                    (8) 

∑    
 
                     (9) 

∑      
 
                     (10) 

 

Constraint (6) ensures that all operations of the selected 

part types are performed on proper machines. Constraint (7) 

guarantees that each operation of the selected part types 

must be completed on only one machine. The machine must 

be determined as the operation can be processed on several 

alternative machines. Constraint (8) is used to ensure that all 

required tools are attached to the selected machine for an 

operation. Constraint (9) guarantees that number of tools 

assigned to the machines must not exceed its availability. 

Constraint (10) ensures that the number of tool slots 

occupied on a machine must not exceed the machine’s tool 

slot capacity. 

IV. NUMERICAL EXAMPLE 

A simple problem set is developed as an example of the 

problem formulation. The FMS have 3 different machines 

which have tool slot capacity of 15, 20 and 25 respectively. 

The machines have length of scheduling period (Lm) equal to 

2500. Here, overloading of the machines is permitted. 

Moreover, there are 10 different tool types and each tool 

type has several instances (copies) and occupies a number of 

tool slots on machines’ magazine as shown in Table 2. 

A production orders that consist seven part types are 

arrived. Each part type has specific production requirements 

as shown in Table 3. For example, part type 3 has 3 

operations. Operation 1 can be executed on machines 2 or 3. 

Machine 2 needs 30 unit times for processing and requires 

tool types 6, 7 and 8. Different processing times and tool 

types are required if machine 3 is chosen. In this case, 

machine 3 needs 40 unit times and requires tool types 8, 9 

and 10. Thus, it shows the occurrence of machine and tool 

flexibility in the production planning problem. 

 
TABLE II 

THE AVAILABILITY OF TOOL TYPES 

tool type 1 2 3 4 5 6 7 8 9 10 

availability 2 3 2 3 2 3 2 3 2 3 

number of 
slot needed 

3 3 4 4 5 5 5 3 3 3 

 

TABLE III 

PRODUCTION REQUIREMENT OF PART TYPES 

part 

type 

batch 

size 

value 

$ 
op mac time tools 

1 20 5 1 2 20 2 3 5 

   
2 1 30 4 5 

 

   
3 2 30 3 4 

 

    
3 30 5 

  
2 20 3 1 1 30 1 3 

 

   
2 2 20 3 4 

 

   
3 2 30 4 6 7 

3 40 2 1 2 30 6 7 8 

    
3 40 8 9 10 

   
2 2 20 1 10 

 

    
3 40 2 10 

 

   
3 1 20 1 2 

 

4 20 1 1 2 30 9 10 
 

    
3 20 9 10 

 

   
2 2 30 6 7 

 

    
1 40 6 7 

 

   
3 1 30 3 4 

 
5 30 4 1 2 40 1 2 3 

   
2 1 40 7 8 

 

    
2 30 3 4 

 
6 30 3 1 3 20 7 8 

 

   
2 2 50 9 10 

 

   
3 3 10 2 

  
7 30 5 1 1 50 1 2 3 

    
2 40 7 9 10 

   
2 3 30 4 6 

 
op:operation; mac:machine; time: unit time; tools: required tool types 

 

V. MODELING USING VNS 

A. Solution Representation 

A solution representation is required by VNS to 

determine how solutions can be obtained from the problem. 

A solution of VNS for the problem in Section 4 is shown in 

Table 4. Here, the solution is represented as an array of 

record contained with part type and machines sequence for 

all operation of the part type. 
 

TABLE IV 
AN EXAMPLE OF SOLUTION 

record part type machines 

1 7 1   3 

2 3 3   2  1 

3 5 2   2 

4 1 2   1   3 

5 4 3   1   1 

6 6 3   2  3 

7 2 1   2   3 

 

Table 4 shows that the first operation of part type 7 is 

performed on machine 1 and the second operation is 

processed in machine 3. Furthermore, part type 3 is 

processed in machines 3, 2, and 1 sequentially. 

After determining machines for operations, required 

tool types are attached to the machines. At this stage, all 

constraints such as the availability of tools and number of 

empty slots on the machines are checked. For example, after 

selecting part types 7, 3 and 5 according to the part type 

sequence as shown in second column of Table 4, adding part 

type 1 to the solution will not satisfy the constraints. Thus, 

the VNS solution states that only part types 7, 3, and 5 are 

selected for the current batch and the objective functions of 

the problem are calculated based on the selected part types. 

The other part types will be produced in the next batches. 

The calculation of system throughput is presented in 

Table 5. Here, the system throughput is obtained by 

summing all part types’ value.  

TABLE V 

CALCULATION OF SYSTEM THROUGHPUT 

part type 
batch 

size 
value $ 

total 

value 

7 30 5 150 

3 40 2 80 

5 30 4 120 

throughput 350 

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



 

 

Machines’ workload and assigned tool types are 

provided in Table 6. Here, used slot does not exceed the 

number of slot in each machine. 

 

TABLE VI 

MACHINES WORKLOAD  

mac workload unbalance 
number 
of slots 

used 
slot 

tools 
assigned 

1 2300 200 15 10 1 2 3 

2 2900 400 20 17 1 2 3 4 10 

3 2500 0 25 18 4 6 8 9 10 

System unbalance 600    

 

B. Neighborhood Structure 

Variable neighborhood search (VNS) works by iterating 

a local search (LS) technique. In each iteration, the LS 

explores the search space from a new starting point. The 

starting point is determined using a mechanism called 

neighborhood structure [13]. As the main feature of VNS, 

the neighborhood structure is used to produce new candidate 

solutions by changing initial/current solution. The changing 

mechanism involves swap, insert, and exchange operations. 

The neighborhood structures Nk (k=1,...,kmax) is adopted 

and Nk (x) is defined as the set of solutions in the k
th

 

neighborhood of x. Nk (x) is obtained by randomly changing 

order of k part types in the solution representation. kmax is 

determined according to the size of problems used in 

experiments. A large value of kmax will enable the VNS to 

get better solutions. However, higher computational time is 

required. 

A pseudo code for the VNS is shown in Fig. 2. The 

initial solution of the VNS is randomly generated. Thus, 

different instances of the VNS may produce different 

solutions. The value of k will be increased if there is no 

improvement in the best solution. The increase of k will 

drive the VNS to explore different area of the search space. 

However, the value will set to 1 if a better solution is found. 

This strategy will enable the VNS to exploit local optimum 

area. 

PROCEDURE VariableNeighborhoodSearch 

Input: 

curr: current/initial solution 

kMax: number of neighbourhoods 

Output: 

best: the best solution 

 

best  curr 

k  1 

WHILE k<=kMax DO 

   // change order of k part types  

   curr  ChangeOrder (best, k) 

   // find local optimum  

   bestLocal  LocalSearch (curr) 

   IF Fitness(bestLocal)> Fitness(best) THEN 

      best  bestLocal 

      k  1 

   ELSE 

      k  k + 1 

   END IF 

END WHILE 

END PROCEDURE 

Fig. 2. Pseudo code of the VNS 

The local search works by randomly replacing machine 

for each operation with other possible machines as shown in 

Fig. 3. If the new solution has better fitness value then it 

replaces the current solution. 

 
PROCEDURE LocalSearch  

Input: 

curr: current solution 

Output: 

best: the best solution 

 

best  curr 

// check each operation of the part type  

FOR EACH operation Oi IN curr DO 

   // Change a machine for Oi with other possible 

machine 

   curr  ChangeMachine (curr, Oi) 

   IF Fitness(curr)> Fitness(best) THEN 

      best  curr 

   END IF 

END FOR 

END PROCEDURE 

Fig. 3. Pseudo code of the local search 

An example of changing order of part types to provide a 

new starting point is depicted in Fig. 4. Here, k=3 so three 

records (records 2, 4, and 6) are randomly chosen as 

highlighted in the left part of the figure. Contents of the 

selected records are randomly exchanged and the result is 

depicted in the right part of the figure. 

 

 
An example of changing machines of operations by the 

local search is provided in Fig. 5. Here, second record is 

selected and machines for operations of part type 3 are 

replaced by other possible machines. 
 

 

VI. RESULT AND DISCUSSION 

A. Test-Bed Problems 

The performance of the proposed VNS is evaluated by 

using twelve test-bed problems taken form [12] available at 

‘http://lecture.ub.ac.id/anggota/wayanfm/ data_test/’. The 

optimum solutions for all test-bed problems are also 

record 
part 
type 

machines 

1 7 1 3 

2 3 2 3 1 

3 6 3 2 3 

4 1 2 1 3 

5 2 1 2 2 

6 5 2 1 

7 4 2 1 1 

before changing 

record 
part 
type 

machines 

1 7 1 3 

2 3 3 3 1 

3 6 3 2 3 

4 1 2 1 3 

5 2 1 2 2 

6 5 2 1 

7 4 2 1 1 

after changing 

Fig. 5. An example of changing machines of operations 

record 
part 

type 
machines 

1 7 1 3 

2 5 2 1 

3 6 3 2 3 

4 3 2 3 1 

5 2 1 2 2 

6 1 2 1 3 

7 4 2 1 1 

before changing 

record 
part 

type 
machines 

1 7 1 3 

2 3 2 3 1 

3 6 3 2 3 

4 1 2 1 3 

5 2 1 2 2 

6 5 2 1 

7 4 2 1 1 

after changing 

Fig. 4. An example of changing order of 3 part types 
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provided. The characteristics of the problems are shown in 

Table 7. The test-bed problems are divided into three 

different classes in terms of the number of part types, the 

number of machines, the number of tool types, the length of 

scheduling period, and the level of flexibility. Small size 

problems are represented by problems 1 to 4. Problems 5 to 

8 represent medium size problems whereas problems 9 to 12 

represent large size problems. All machines for each 

problem in the same class have an equal scheduling period 

(Lm) as shown in the last column in Table 7.  

TABLE VII 

TEST-BED PROBLEMS 

problem 
num. of 

part types 
num. of 

machines 
num. of 

tool types 
scheduling 
period (Lm) 

1 8 4 20 4000 

2 8 5 25 4000 

3 10 4 20 4000 

4 10 5 25 4000 

5 16 4 20 7000 

6 16 5 25 7000 

7 18 4 20 7000 

8 18 5 25 7000 

9 24 4 20 10000 

10 24 5 25 10000 

11 26 4 20 10000 

12 26 5 25 10000 

 

B. Experimental Design 

The VNS is implemented in Java and experiment is 

carried out on personal computer equipped with AMD 

Quad-Core processor working at speed 2.8 GHz and 4GB 

DDR3 memory. The first stage of the experiment is 

determining a proper value for kmax. For this purpose, 

problem 6 is used. VNS is a stochastic method and different 

solution is obtained in each run, so the VNS is run 10 times 

for each value kmax ranging from 1 to 16 (number of part-

types in this problem).  

TABLE VIII 

OBJECTIVE VALUE OF THE PROBLEM OVER DIFFERENT      VALUES 

kmax time F 

1 0.0024 0.640342 

2 0.0034 0.782617 

3 0.0038 0.802161 

4 0.0050 0.883821 

5 0.0048 0.937525 

6 0.0048 1.051203 

7 0.0060 1.015235 

8 0.0064 1.030236 

9 0.0074 1.048757 

10 0.0154 1.116403 

11 0.0070 1.032010 

12 0.0086 1.136945 

13 0.0100 1.210845 

14 0.0078 1.181168 

15 0.0106 1.167585 

16 0.0104 1.365191 

 

The result is provided in Table 8. Columns ‘time’ depicts 

the time required in seconds to complete the VNS’ cycle. 

Column ‘F’ denotes the objective value of the problem that 

is calculated using Equation 5. Table 8 and also Fig. 6 

clearly show that higher value of kmax will produce better 

results. Higher kmax will enable the VNS to explore wider 

area of the search space. However, the best result achieved 

in this stage is far below of the optimum result. By 

terminating the iteration of the VNS until a variable k 

reaches kmax, the cycle of the VNS run only less than 1 

second. Therefore, the cycle of the VNS that is depicted in 

Fig. 2 is modified. 

 

 

Fig. 6. Objective Value of the Problem over Different      Values 
 

The modified version of the VNS is presented in Fig 7. 

Here, rather than terminating the iteration until k reaches 

kmax, the cycle is stopped until predetermined running time. 

kmax is set equal to the number of part-types in the problem. 

If k reaches kmax, it value will be set to 1. 

PROCEDURE VariableNeighborhoodSearch 

Input: 

curr: current/initial solution 

kMax: number of part-types 

Output: 

best: the best solution 

best  curr 

k  1 

WHILE NOT termination_condition DO 

   // change order of k part types  

   curr  ChangeOrder (best, k) 

   // find local optimum  

   bestLocal  LocalSearch (curr) 

   IF Fitness(bestLocal)> Fitness(best) THEN 

      best  bestLocal 

      k  1 

   ELSE 

      k  k + 1 

   END IF 

   IF k=kMax THEN 

      k  1 

   END IF 

END WHILE 

END PROCEDURE 

Fig. 7. Pseudo code of the Modified VNS 

By determining 20 seconds of running time, the VNS is 

run again 10 times and the results are presented in Table 9. 

The comparison of the VNS and the modified VNS is 

depicted in Fig. 8. Table 9 and Fig. 7 clearly show that the 

modified VNS produce better and more stable results. 
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TABLE IX 

OBJECTIVE VALUE OF THE PROBLEM OVER DIFFERENT      VALUES OF 

MODIFIED VNS 

kmax F 

1 1.849487 

2 1.847529 

3 1.849819 

4 1.849487 

5 1.849819 

6 1.863265 

7 1.849819 

8 1.872933 

9 1.873597 

10 1.885486 

11 1.873431 

12 1.885652 

13 1.897209 

14 1.896877 

15 1.908766 

16 1.908600 

 

 

Fig. 8. Objective Value of the Problem over Different      Values of 
Modified VNS 

 

The next stage of the experiment is determining a proper 

running time of the VNS. The time should be determined so 

that the VNS have most likely achieved their convergence 

and have a very low chance to obtain better solution in the 

next iterations. For this purpose, the biggest problem for 

each class is chosen. For the small size problems, problem 4 

is chosen. Firstly, the VNS is run for 1 second. To obtain a 

fair result, the VNS is run 10 times and the average of the 

objective function (F) is calculated. Next, running of the 

VNS is repeated for 2 seconds, 3 seconds, and so on until 

there is no significance improvement of the average of F. 

The complete results are presented in Table 10 and their 

graph is depicted in Fig. 9. The table and the graph clearly 

show that for problem number 10 the VNS achieve it 

convergence in around 10 seconds. Thus, the VNS will be 

run 10 seconds for all small size problems. 

TABLE X 
THE AVERAGE OF THE OBJECTIVE VALUE OVER DIFFERENT RUNNING TIME 

FOR PROBLEM 4 

time average of F 

1 2.5102 

2 2.5166 

3 2.5298 

4 2.5298 

5 2.5315 

6 2.5281 

7 2.5315 

8 2.5298 

9 2.5298 

10 2.5315 

11 2.5315 

12 2.5315 

 

 

 

 

Fig. 9. The Average of the Objective Value over Different Running Time 

for Problem 4 

For the medium size problems, problem number 8 is 

chosen. The average of the objective value over different 

running time for problem 8 is depicted in Fig 10. The graph 

clearly shows that the VNS achieve it convergence in 

around 40 seconds. Thus, the VNS will be run 40 seconds 

for all medium size problems 

 

 

Fig. 10. The Average of the Objective Value over Different Running Time 

for Problem 8 

For the large size problems, problem number 12 is 

chosen. The average of the objective value over different 

running time for problem 12 is depicted in Fig 11. The 

graph shows that the VNS achieve it convergence in around 

80 seconds. After 80 seconds the VNS cannot obtain better 

results. Thus, the VNS will be run 80 seconds for all large 

size problems 
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Fig. 11. The Average of the Objective Value over Different Running Time 

for Problem 12 

The final stage of the experiment is running the VNS that 

has been modified for all test-bed problems. As obtained in 

the previous stage of experiment, the VNS is run 10, 40, and 

80 seconds for small, medium, and large size problems 

respectively. To obtain a fair result, the VNS is run 20 times 

for each test-bed problem and obtain results of value of 

objective function (F), system throughput (TH), and system 

unbalance (SU). 

The performance of the proposed VNS is measured by 

using number optimum solutions (NOS) and deviation of 

objective values resulted by the VNS to its optimum values 

(DEV). The optimum solutions are calculated by using a 

branch-and-bound method and are obtained from [12]. 

Equation (11) shows the deviation of average objective 

values from 20 runs of the VNS to optimum objective value. 

Fopt is objective value obtained by branch-and-bound 

method. FVNSr is objective value obtained by the VNS in 

run r. 

 

    |
     

(∑      
  
   )

  
⁄

    
|       (11) 

C. Numerical Results 

The complete computational result is provided in Table 

11. Columns ‘F’, ‘TH’ and ‘SU’ below column ‘VNS’ 

depict the average of fitness value, throughput and system 

unbalance obtained from 20 runs of the VNS 

Based on the empirical results of Table 11, perfect results 

are obtained by the proposed VNS in all small size problems 

(problems 1 to 4). Here, the VNS could achieve optimum 

solution in all runs so the value of DEV is 0%. The results 

indicate that the VNS may explore all possible solutions and 

the best solution is obtained easily. 

In the medium size problems (problems 5 to 8), the best 

result is obtained in problem 5 with DEV of 0.40% and the 

worst solution is occurred in problem 6 with DEV of 3.60%. 

In addition, the VNS could produce optimum solutions in 

several test-bed problems and the best result is achieved in 

problem 5 with NOS of 17. The average of DEV in the 

medium size problems is only 2.12% that are obtained in 

only 40 seconds of computational time. 

The VNS also obtains optimum solutions in several runs 

in all large size problems. The best result is achieved in 

problem 10 with DEV of 2.46% and the worst solution is 

obtained in problem 11 with DEV of 5.88%. Overall, in 

larger problems, DEV values tend to increase as the search 

space becomes very large and it is impossible for the VNS 

to explore all areas in limited computational time. Note that 

all DEV values in large size problems are below 7% which 

may be regarded as good results considering these results 

are achieved in only 80 seconds. 

Promising results in this research are achieved by using 

only simple VNS. The neighbourhood structure is designed 

to enable the VNS produces near optimum solutions in a 

reasonable amount of time. Other approaches may be 

supported by complex strategies to achieve good results 

which may need excessive computation time. Examples of 

such approaches are combining genetic algorithm with 

harmony search algorithm [41], enhancing the power 

genetic algorithm by combining with simulated annealing 

[1] equipping genetic algorithm with local search [30], and 

hybridizing particle swarm optimization with local search 

methods [7]. 

VII. CONCLUSION AND FUTURE STUDY 

A model for the integrated part type selection and 

machine loading problems is developed in this paper. The 
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TABLE XI 

COMPUTATIONAL RESULTS 

problem 
optimum values 

 

VNS 

F TH SU 

 

NOS F TH SU DEV(%) 

1 2.545 1,616 803 

 

20 2.545 1,616 803 0.00 

2 2.926 2,591 9,838 

 

20 2.926 2,591 9,838 0.00 

3 2.972 3,058 6,858 

 

20 2.972 3,058 6,858 0.00 

4 2.531 2,196 3,233 

 

20 2.531 2,196 3,233 0.00 

        average 0.00 

5 2.156 2,676 3,738 

 

17 2.148 2,649 3,613 0.40 

6 1.968 2,605 7,126 

 

8 1.897 2,508 8,077 3.60 

7 2.458 3,595 5,529 

 

2 2.404 3,258 2,722 2.23 

8 2.088 2,871 4,768 

 

9 2.041 2,787 5,164 2.25 

        average 2.12 

9 2.349 4,150 4,204 

 

2 2.201 3,814 5,424 6.30 

10 1.809 3,212 10,879 

 

7 1.765 3,083 11,043 2.46 

11 2.305 4,417 5,519 

 

2 2.169 4,134 7,253 5.88 

12 2.018 3,937 9,291 

 

5 1.909 3,837 13,192 5.38 

        average 5.01 
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model considers the flexibilities of operations which 

involves the availability of alternative machines and 

alternative tool types. The integrated model of the NP-hard 

problems is solved by using VNS. The proper 

neighbourhood structure could produce promising results in 

reasonable amount of time. By using 12 test bed problems 

available in the literature, the proposed VNS improves the 

FMS performance by considering two objectives, 

maximizing system throughput and maintaining the balance 

of the system. To measure the effectiveness of the proposed 

VNS, the obtained results are compared to the optimum 

values produced by branch-and-bound method. The 

numerical experiments prove that the proposed VNS could 

reach near optimum solutions in reasonable amount of time.  

More complex problem will be addressed in the next 

work. It includes the existence of alternative production 

plans which refer to possibility of producing part on 

alternative operation sequence and solving the problem for 

multiple batches. Here, new solution representation and 

neighbourhood structure for the VNS must be developed. 

Thus, a more powerful of VNS is required. Developing new 

local search methods and combining the VNS with other 

heuristics methods will be considered. 
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