
 

 

Abstract—The multiple precision Greatest Common Divisor 

(GCD) computation is a key component in the field of computer 

algebra and in many cryptography applications such as public-

key cryptography; in the setup phase of RSA, and in the 

implementation of point operations (addition, subtraction, 

multiplication etc.) on Elliptic Curve Cryptography (ECC), for 

factorization attacks and in the statistical testing of pseudo 

random number generators. Multiple precision computations 

on the CPUs are computationally expensive, but substantial 

performance is achieved by using OpenMP with the GNU 

Multiple Precision Library (GMP) and Compute Unified 

Device Architecture (CUDA). In this paper, we have explored 

the computational power of NVIDIA Graphics Processing Units 

(GPUs). We have implemented the Multiple Precision Integer 

(MPI) operations on the GPU using C CUDA. We implemented 

the several GCD computation algorithms using MPIs 

operations. Implementation results based on the CPU and GPU 

indicate that a significant speedup is achieved by the GPU using 

CUDA and OpenMP with GMP, as compared with the single 

core CPU implementation. 
 

Index Terms— CUDA, GCD, GPU, OpenMP 

I. INTRODUCTION 

N today's High Performance Computing (HPC) era, 

Graphics Processing Units (GPUs) are becoming 

increasingly common to use in general purpose 

computations, which contain a set of streaming processors. 

General Purpose GPUs (GPGPUs) are widely used for 

parallelization of different categories of applications such as 

fluid dynamics, ray tracing, bioinformatics, and gaming etc. 

GPUs are best suited for high throughput computing 

applications that handle large amount of data and we can 

exploit the Single Instruction Multiple Data (SIMD) 

architecture of the GPU for data-parallel applications. We 

have to exploit the power of computing facilities available in 

the form of GPUs having many-cores for the computation of 

complex problems and the more time consuming problems 

which are often used in mathematical computation. In this 

work, we concentrate on the computation of a big number 

integer GCD. GCD computation is often used in many 

mathematical and cryptography applications such as 

primality testing, to find the multiplicative inverse, to find 

relatively prime numbers, for factorization attacks [1], and in 

public key cryptography algorithms such as RSA and ECC 
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[2], [3]. 

The tremendous computation power of the GPUs is 

provided by NVIDIA [4] and the GPU works on the 

principle of Single Instruction Multiple Data (SIMD). 

NVIDIA's GPU such as Quadro FX 3800 has 192 computing 

cores with 462.3 GFLOPS of computational horsepower. 

NVIDIA CUDA support the heterogeneous computation 

model, where the CPU and the GPU both work together to 

accomplish every computation. On the CPU, sequential part 

of the program is executed while, on the GPU parallel part 

of the program is executed. Host (CPU) initiates the program 

execution by allocating the memory on host and device 

(GPU) and calling the kernel on a device. At the time of 

kernel call, GPU generates multiple threads based on the on-

device kernel code, which runs concurrently along the 

threads. Moreover, all the threads have their own local 

memory and access to the shared and global memory for 

efficient data handling. 

We have been motivated by the GPU’s massively parallel 

computation which is achieved by a large number of cores 

available on the GPU. It is easy to achieve high performance 

on the GPU for the computation of multiple precision 

arithmetic operations as well as MPI GCD computations. 

The research work addresses the following issues: 

1) Design and implementation of parallel Multiple 

Precision Integer (MPI) arithmetic on the GPU using 

CUDA architecture. 

2) Design and implementation of parallel MPI GCD 

algorithms on CUDA. 

3) Design and implementation of parallel MPI GCD 

algorithms for CPU using OpenMP and GMP library. 

4) Performance analysis of parallel GCD algorithm on the 

CPU and GPU. 

The outline of the rest of the paper is as follows. Section 

II is dedicated to the review of previous work carried by the 

different researchers. Section III describes the OpenMP and 

CUDA architecture for parallel computation. In section IV, 

we have demonstrated the implementation of multiple 

precision operations on integers and the computation of 

GCD for a big number on the CPU and GPU. 

Implementation results based on the CPU and GPU and 

comprehensive experimental analysis are discussed in 

section V and in section VI conclusions drawn from the 

experimental results are presented. 

II. EXISTING WORKS 

Parallel implementation of any algorithm requires many 

processors to run concurrently. To execute an algorithm 

concurrently, we have to form an independent computation 
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step which will subsequently be performed. When the 

algorithmic steps are independent of data to be handled 

while computing than, the algorithm is suitable for the 

parallel implementation. In this paper, we are targeting to a 

parallel computation of GCD of big integers. In the past 

years, researchers were working on the implementation of 

the parallel GCD algorithm to achieve better time 

complexity of different models of computation such as 

EREW, CREW, and CRCW. The problem of computing 

GCD of two non-negative integers efficiently in parallel is 

one of the open problems in the theory of parallel 

computation. 

A simple parallel implementation of GCD of two n-bit 

integers on the Concurrent Read Concurrent Write (CRCW) 

computation model was proposed in [5]. The authors claim 

the parallel run-time of the algorithm in terms of bit 

operation is O (n /log n) by the use of n
1+Є

 processors, where 

Є is any positive constant. This implementation was the 

improvement of the algorithm proposed by KMR in [6], 

which is the first sub-linear GCD algorithm, runs on 

O(nloglogn/ logn) times using the same CRCW model. The 

extended GCD algorithm proposed in [2], [3] and [7] is very 

useful for data dependence test for any given code block to 

identify the data dependencies, if any. In 1994 Sorenson at 

el. [9], suggested the parallel extended GCD algorithm 

implementation on a CRCW SM MIMD (Multiple 

Instruction Multiple Data) model using O(n) processors and  

proposed to exploit the use of CRCW model. The aim of this 

paper was to speedup the process of checking data 

dependency in the given code block. Further, the GCD 

computation of MPIs using GMP for shared memory 

architecture was proposed in [8].  The accelerated integer 

GCD algorithm by Sorenson [9] is derived from the right-

shift k-ary GCD algorithm and has been shown to be very 

effective for computing the GCD of moderate to large sized 

integer numbers in a  sequential manner. Sedjelmaci [12], 

illustrated the parallel implementation of Schönhage’s 

algorithm [10] on distributed memory architectures. This 

algorithm uses the half-GCD algorithm, which has two 

MPIs. For fast computation author has exploited the parallel 

Karatsuba’s multiplication algorithm [11]. 

The main difficulty in the Euclid’s GCD algorithm is the 

expensive cost of the multiple precision divisions. In [12], 

[13] a Lehmer-Euclid GCD algorithm was proposed, where 

the MPIs reduce to a single precision integer after working 

with the leading bits of integers. Subsequently, extended 

Euclidean algorithm is applied to calculate the GCD from 

reduced single precision integers. 

Recently, the researchers exploited the use of parallel 

computer provided by the vendors like Intel, NVIDIA and 

AMD. With recent advances in parallel computing hardware, 

GPUs are coined as the general purpose programming model 

for performing faster computations. Moreover, it is not 

difficult to develop non-graphics applications using GPUs. 

NVIDIA provides a general purpose parallel programming 

model known as CUDA [4], [14], which uses the C or C++ 

programming languages for the development of general 

purpose applications. CUDA as a parallel computing model 

is gaining its place for speeding up a large number of 

applications such as [15], [16], [17], [18] and [19]. Due to 

its extensive popularity, we have chosen the CUDA for MPI 

GCD implementations. 

The MPI implementation of different arithmetic 

operations on the GPU has been demonstrated in [20], [21]. 

The author claims that significant speedup can be achieved 

by the GPUs as compared with the GNU Multiple Precision 

library on the CPUs. In addition, the performance of the 

multiple precision modular multiplications has been 

improved by 20% using MPI based computations. We would 

like to point out that, while implementing the multiple 

precision GCD, all the required arithmetic operations are 

needed to be implemented on the GPU using CUDA. 

In [22], the high throughput, multiple precision Binary 

GCD algorithm on CUDA architecture has been proposed. 

The fixed bit-length of integers were chosen to be 1024-bits. 

This algorithm computes the many GCDs at a time and the 

measure of speedup is calculated not on single GCD 

computation but on the many GCD computations. The 

author claims that the proposed GPU algorithm runs 11.3 

times faster than the CPU version of the algorithm. Another 

implementation of polynomial GCD computation on the 

GPU using Maple 13 has been proposed in [23]. In this 

work, the author has developed an algorithm to compute a 

GCD of univariate polynomials with integer coefficients on 

the GPU and conferred the significant speedup over CPU 

based GCD algorithm. 
The EREW PRAM model based parallel randomized 

algorithm to compute GCD of two n bits integers has been 

proposed which requires the computation time of O (n 

loglog n/ logn) [24]. On the contrary, a new parallel GCD 

algorithm has been proposed by Sedjelmaci [25] to compute 

the GCD of O(n) bits of n integers in time complexity of 

O(n/ log n) by using (n
2+ϵ

) processors, where ϵ > 0 for  a 

CRCW PRAM model of computation. The similar Binary 

GCD [22] based parallel big integers GCD computation on 

the shared memory model has been implemented for large 

integers of bits length ranging from 1024-bits to 4096-bits 

[26]. The speedup achieved was measured on the Intel Xeon 

Phi machine with 240 threads as compared with the single-

core CPU.  

III. OVERVIEW OF OPENMP AND CUDA 

A. OpenMP 

OpenMP (Open Multi-Processing) is a directive based 

language for expressing parallelism on the shared memory 

multiprocessor systems [27], [28]. OpenMP is a 

multithreaded platform implementation and a method for 

parallel program design whereby a master thread (a series of 

instructions executed consecutively) forks a specified 

number of slave threads and a task is divided amongst them. 

A team of threads runs in parallel, with the set of directives 

and runtime environment variables allocated to different 

processors. After the execution of the parallelized code, the 

threads join back into the master thread, which continues 

onward to the end of the program [27], [28], [29]. 

By default, each thread performs the execution of parallel 

section of the code independently. Work-sharing constructs 

like, #pragma omp for [clause], #pragma omp sections 

[clause] and #pragma omp single [clauses] can be utilized 
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to divide a task amongst the threads so that each thread 

executes its allocated part of the code. In this way, task 

parallelism and data parallelism both can be achieved using 

OpenMP. OpenMP is available for various platforms and the 

list of different compilers can be found at [30].  

B. CUDA 

NVIDIA introduced CUDA, a general purpose parallel 

computing architecture, with a new parallel programming 

model and instruction set architecture [4], [14] which 

leverages the parallel compute engine in NVIDIA GPUs to 

solve many complex computational problems in a more 

efficient way than on a CPU. CUDA comes with a software 

environment that allows developers to use C or C++ as a 

high level programming language. Moreover, it also 

supports other programming languages, application 

programming interfaces (API), or directives based 

approaches such as FORTRAN, OpenCL, OpenACC etc. 

The GPU as general purpose programming has evolved into 

a many core processor and massively parallel architecture 

with huge computational horsepower and very high memory 

bandwidth [31]. The reason behind the discrepancy in 

floating point capability between the CPU and the GPU is 

that the GPU is specialized for compute intensive, highly 

parallel computation and therefore designed such that more 

transistors are devoted to data processing rather than data 

caching and flow control. 

The architecture of the GPU supports CUDA enabled 

framework [4], which is organized into an array of highly 

threaded Streaming Multiprocessors (SMs). The number of 

SMs in a building block can vary from one generation of 

CUDA GPUs to another generation. In addition, each SM 

has a number of Streaming Processors (SPs) that share 

control logic and instruction cache. Each GPU currently 

comes with up to 32 gigabytes of graphics double data rate 

(GDDR) DRAM, referred to as global memory. For graphics 

applications, they hold, texture information, and video 

images for three-dimensional rendering, however, for 

computing their function as a very high bandwidth, off-chip 

memory. For massively parallel applications, higher 

bandwidth makes it up for the long latency time. The GPU 

follows the SIMD based execution model. The execution of 

a typical CUDA program is started by the host (CPU). When 

a kernel function is called or invoked, the complete 

execution is moved to a device (GPU), where a large 

number of threads within the thread-blocks are generated to 

take the advantage of abundant data parallelism. All the 

threads that are generated by a kernel during an invocation 

are collectively called a block of threads or thread block. 

The collection of thread blocks is called a grid. Threads 

running on the GPU are grouped into wraps consisting of 32 

threads. When all the threads of a kernel complete their 

execution, the grids terminate and the remaining part of 

execution continues on the host until another kernel is 

launched. Each thread contains own memories such as, 

register memory and local memory. The thread block 

contains shared memory for read and write, and the grid has 

global memory for read and write and  in addition, it 

contains read only memory called as constant memory. 

IV. MULTIPLE-PRECISION INTEGER ARITHMETIC 

A. Multiple Precision Integer (MPI) Arithmetic on GPU 

In this section, we present an implementation of different 

arithmetic functions of MPIs on the GPU using CUDA. In 

multiple precision arithmetic functions, we have chosen the 

decimal digit (i.e. base of the number is 10) but the same can 

be used for different radix representation of the number like 

binary etc. Non-negative integers can be represented in 

various ways, the most common form is base 10. For 

example, a = 243 base 10 means a = 2×10
2
 + 4×10

1 
+3×10

0
. 

The algorithms implemented on the GPU for multiple 

precision arithmetic operations are Addition (Add), 

Subtraction (Sub), Multiplication (Mul) and Division (Div) 

as mentioned in pseudo code from Algorithm 1 to Algorithm 

4 [2], [7], [32] which are the sequential MPI algorithms. 

Apart from these basic arithmetic integer operations, we 

have implemented the MPI comparison, left-shift, and right-

shift etc. and other supporting operations. 

 

Algorithm 1: Multiple-precision Addition 

Input: positive integers x and y, each having n base b digits. 

Output: x + y = (wnwn-1 …w1w0) b in radix b representation. 

1. c  0 //c is the carry 

2. For i from 0 to n-1 do 

    2.1 wi  (xi + yi + c) % b 

    2.2 If ( (xi + yi + c) < b) then c   0; Else  c  1 

3. wn  c 

4. return (wnwn-1 …w1w0)b 

Algorithm 2: Multiple-precision Subtraction 

Input: positive integers x and y, each having n base b digits, with x ≥ y. 

Output: x - y = (wnwn-1 …w1w0) b in radix b representation. 

1. c  0 

2. For i from 0 to n-1 do 

    2.1 wi  (xi − yi + c) % b 

    2.2 If ( (xi − yi + c) ≥ 0) then c  0;  Else  c  -1 

3. return (wnwn−1 …w1w0)b 

Algorithm 3: Multiple-precision Multiplication 

Input: positive integers x and y having n and m base b digits, 

respectively. 

Output: x × y = (wn+m+1 …w1w0) b in radix b representation. 

1. For i from 0 to (n + m + 1) do: wi  0 

2. For i from 0 to m do 

    2.1 c  0 

    2.2 For j from 0 to n do 

          temp  wi+j + xj × yi + c 

          wi+j   temp % b, c   temp / b 

    2.3 wi+n+1  c 

3. return (wn+m+1 …w1w0)b 

Algorithm 4: Multiple-precision Division 

Input: positive integers x = (xn … x1x0)b, y = (ym… y1y0)b with n ≥ m ≥ 1, 

ym ≠ 0. 

Output: the quotient q = (qn−m …q1q0)b and remainder r = (rm … r1r0)b 

such that x = q.y + r, 0 ≤ r < y. 

1. For j from 0 to (n − m) do: qj ← 0 

2. While (x ≥ y.bn−m)  

    2.1 qn−m  qn−m +1 

    2.2  x ←x – y.bn−m 

3. For i from n down to (m + 1) do 

    3.1 If (xi = ym) then qi−m−1 ← b – 1 

          Else qi−m−1 ← floor (xi.b+ xi−1) / ym) 

    3.2 While (qi−m−1 (ym b + ym−1) > xi b
2 + xi−1b + xi−2) 

           qi−m−1  qi−m−1 − 1 

    3.3 x   x − qi−m−1 y bi−m−1 

    3.4 If (x < 0) then  

          x ← x + y bi−m−1 

            qi−m−1 ← qi−m−1 - 1 

4. r ← x 

5. return (q, r) 
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A data structure used to represent the multiple precision 

integers is shown in Listing I. The MPI is stored in a 1D 

unsigned character array in the form of individual decimal 

digit.  

 
LISTING  I 

DATA STRUCTURE OF MULTIPLE-PRECISION INTEGER 

struct MPInteger { 

 unsigned char Digit[MAX_DIGITS_CAPACITY]; 

 int Length;  char Sign; 

}; 
 

 

The complexity of n-digit MPI operations such as 

addition and subtraction is O(n). But, due to data 

dependency at carries, borrows generation of these MPI 

operations is the biggest hurdle for parallel implementation. 

In Algorithm 1, x and y arrays stored input data ranging from 

0 to b-1, where b is the base of the MPI number and c is to 

store the carries. At step 2.1 and 2.2, the value of wi depends 

on the updated value of c. Since, we cannot parallelize the 

algorithm directly. Algorithm 5 shows the parallelization of 

Algorithm 1 by avoiding the propagation of carries. So, the 

MPI addition is performed in Step 2 without releasing the 

carries. In step 3.1 carries are computed, and in step 3.2 

carries are used to calculate the sum of the corresponding 

digits of MPIs. Here, we have to store all carries in the 

separate array. A digit normalization is used until all carries 

are generated. This process of normalization has been 

applied fewer times. Since, the carry propagation iterates, 

for example, 9…99 + 1…11, the carry-skip approach [33] 

has been adopted. 

In Algorithm 6, carry skipping approach is applied from 

steps 2.1 to 2.4 and from steps 2.5 to 2.7 respectively. 

Hence, MPI Add, Sub and Mul can be implemented using 

carry skip approach. 

The MPI multiplication algorithm implementation on the 

GPU is presented in Algorithm 7. This algorithm uses the 

MPI addition and Carry-Skip algorithm to compute the MPI 

multiplication. The normalization of MPI multiplication is 

similar to carry computation in MPI Add, Sub and Mul.  In 

addition, parallel implementation of the MPI division 

comprises of the implementation of MPI Add, Sub and Mul. 

Since, the time consumed by the MPI division is 

significantly longer than the MPI Add, Sub and Mul 

operations. The steps 1 to 3 in Algorithm 4 can be easily 

parallelized with the help of MPI Add, Sub and Mul. 

To implement “divide by 2” operation for the GCD 

computation algorithms, we have used the binary shift right 

method in parallel. The steps of the algorithm are as follows;  

 Partitioned the MPI into n 32-bit integer such as MPI1, 

MPI2,… MPIn, where n is the number of partitions of 

MPI. Represents MPI1, MPI2,… MPIn in the vector 

after (MPIi & 1) operation. 

 Copy all Least Significant Bit (LSB) of MPIi into 

LSB[1..n] array. 

 Perform MPIi (MPIi >> 1)   

 Copy LSB[2..n] at the Most Significant Bit (MSB) of  

MPIi from MPI1, MPI2,… MPIn-1 i.e. copy at 31st, 63rd 

and so on position of MPI. 

 Combined all MPI1, MPI2,… MPIn to get required MPI. 

However, the parallel left-shift is also implemented in a 

similar way, the way a right-shift is implemented, except 

the bit shift is towards the left direction.   

 
Algorithm 5: Parallel MPI Addition (ParMPIAdd) 

Input: positive integers x and y, each having n base b digits. 

Output: x + y = (wnwn-1 …w1w0)b in radix b representation. 

1. Forparallel i from 0 to n-1 do 

    wi  xi + yi 

3. While ( max(wi)0 ≤ i < n  ≥  b) 

    3.1 c0  0 

    3.2 Forparallel i from 0 to n-1 do 

          ci+1  wi / b 

    3.3 Forparallel i from 0 to n-1 

           wi  (wi % b) + ci 

    3.4 wn  cn 

5. return (wnwn-1 …w1w0)b 

 

Algorithm 6: Parallel Carry-Skip Algorithm (ParCK) 

Input: positive integers x and y, each having n base b digits. 

Output: x + y = (wnwn-1 …w1w0)b in radix b representation. 

1. Call ParMPIAdd(xi, yi) 

2. While ( max(wi)0 ≤ i < n-1 =  b) 

    2.1 Forparallel i from 0 to n-1 do 

          2.1.1 If (wi = b ) then hi  i;  Else hi  n – 1 

    2.2 k  min(hi)0 ≤ i < n 

    2.3 Forparallel i from k+1 to n-1 do 

          2.3.1 If (wi < b-1 ) then hi  i;  Else hi  n – 1 

    2.4 z  min(hi)k+1 ≤ i < n 

    2.5 wk  wk – b 

    2.6 Forparallel i from k+1 to z -1 do 

          2.6.1 wi  wi – (b -1) 

    2.7 wz  wz + 1 

3. return (wnwn-1 …w1w0)b 

 

Algorithm 7: Parallel MPI Multiplication (ParMPIMul) 

Input: positive integers x and y having n and m base b 

digits, respectively. 

Output: x × y = (wn+m+1 …w1w0)b in radix b representation. 

1. Forparallel i from 0 to (n + m + 1) do  

    wi  0; ci  0 

2. Forparallel i from 0 to m do 

    2.1 For j from 0 to n do 

          wi+j  wi+j + xj × yi 

3. While ( max(wi)0 ≤ i < n+m+1  ≥  b) 

     3.1 Forparallel i from 0 to (n + m + 1 - 1) do 

           ci+1   wi / b 

     3.2 Forparallel i from 0 to (n + m + 1 - 1) do  

           wi   (wi % b) + ci 

4. wn+m+1  cn+m+1 

5. return (wn+m+1 …w1w0)b 

 

V. GCD’S IMPLEMENTATION 

A. GCD Algorithms 

The GCD algorithms are considered for parallel 

implementation and performance measurement uses the 

simplest arithmetic operations as mentioned in section IV. 

The pseudo codes for MIPs GCD are indicated in Algorithm 

8, 9, 10 and, 11 respectively. 

Algorithm 8: Extended Euclidean Algorithm (EEA) 

Input: Non-negative integers a, b such that a ≥ b > 0. 

Output: GCD (a, b) = d, and integers x, y satisfying ax + by =d. 

1. If (b = 0) then set d  a;  x 1;  y  0;  return (d, x, y); 

2. Set x2  1;  x1  0;  y2  0;  y1  1; 

3. While (b > 0) 

    3.1 q  a/ b;  r  a – qb;  x  x2 - qx1;  y  y2 – qy1; 

    3.2 a  b;  b r;  x2  x1;  x1  x;  y2  y1;  y1  y; 

4. Set d  a;  x  x2;  y  y2;  return (d, x, y); 

Algorithm 9: Binary GCD (Bin) 

Input: Non-negative integers a, b such that a  ≥ b > 0 . 
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Output: GCD (a, b). 

1. g  1; 

2. While (a and  b even) { a   a /2;   b  b /2;  g  2×g; }      

3. While (a is even)   a   a/2;  

4. While (b  is even)  b    b/2; // now a and  b are both odd 

5. While (a ≠ b ) 

    5.1 (a, b )  (|a - b| , min( a, b)); 

    5.2 a  a/2ⱱ(a) ;  // ⱱ(a) is the 2-valuation of  a 

6. return (g × a); 

Algorithm 10: Extended Binary GCD (EBin) 

Input: Non-negative integers a, b such that a  ≥ b > 0 . 

Output: GCD (a, b) = v, and integers x, y satisfying ax + by= v. 

1. g  1; 

2. While (a and b is both even)   a  a/2;  b  b /2; g  2g; 

    2.1 u  a; v   b; A  1; B  0; C  0; D  1; 

3. While (u is even)  u   u /2; 

4. If (A ≡ B ≡ 0 (mod 2)) then A  A/2; B  B/2; 

    Else A  (A + y)/2;  B (B - x)/2; 

5. While (v is even)   

    5.1 v   v/2; 

    5.2 If (C ≡ D ≡ 0 (mod 2)) then C  C/2; D D/2; 

          Else C  (C + y)/2;  D (D - x)/2; 

6. If (u ≥ v)  then u  u – v;  A  A – C; B  B – D; 

    Else  v  v – u; C  C – A; D  D – B; 

7. If (u = 0) then x  C;  y D; return(x, y, g×v); 

    Else go to step 4 

Algorithm 11: Mixed Binary Euclid (MBE) 

Input: Integers a, b such that a ≥ b > 1, with b is odd. 

Output: GCD (a, b). 

1. While (b > 1) 

1.1 r  a mod b;  s  b r; 

1.2 While (r > 0 and r mod 2 = 0)  r  r/2; 

1.3 While (s > 0 and s mod 2 = 0)  s  s/2; 

          If (s < r) then u  r;  v  s; 

          Else u  s; v  r; 

2. If (b = 1) then return 1;  Else return u; 

B. GCD Implementation on CPU 

To implement GCD algorithms on the CPU is straight 

forward for small integers, like 32-bit or 64-bit computation, 

which is the maximum precision required and is supported 

by all the available CPU architectures. But,  the computation 

of the GCDs for bigger integers that are usually used in 

cryptographic applications is really challenging. In public-

key cryptography algorithms such as RSA, we need the large 

key values such as 1024-bits and more for secure encryption 

of confidential data. So, in order to handle big integers we 

have used the GMP [34, 35]. This is one of the fastest 

libraries to carry operations on big integers on the CPU. 

The steps to implement GCD computation are as follows; 

1. Generating two sets of MPIs before starting the GCD 

computation. We have randomly generated the integers by 

implementing two random number generation algorithms 

such as Multiply-with carry algorithm and Linear 

Congruential Generator (LCG) algorithm [36]. 

2. Implementing the GCD algorithm by using random 

numbers generated in step 1.  

The steps shown above are utilized to implement the 

sequential GCD computation. But, our target is to implement 

a parallel variant of GCD. To develop parallel 

implementation on the CPU, we used the OpenMP, which 

work on a shared memory architecture. In OpenMP, all the 

created threads shared global memory for the successive 

computation. Here, we have to decide the shared data, 

private data, number of threads, and scheduling scheme to 

schedule the parallel tasks with synchronization amongst the 

running threads. All these can be achieved by using the 

OpenMP directives. OpenMP eases the implementation by 

providing the large set of compile time directives.  

The Listing II shows the OpenMP implementation of 

parallel GCD computation on the CPU. The implementation 

uses the GMP library for MPIs to handle and perform many 

GCD computations in parallel by all the available cores on 

the CPU.  The for-loop at line 9 specifies N, the number of 

GCD computing integers. Line 17 shows the application of 

OpenMP directives to compute the GCDs in parallel by all 

threads. Each thread will perform its own GCD computation 

without intervening the work of other threads. The proposed 

OpenMP implementation is a direct application of OpenMP 

directives to compute GCD without any parallel algorithm 

optimization on arithmetic operations such as Add, Sub, Mul 

and Div. But, the same has been considered for the GPU 

implementation. All arithmetic operations on the CPU used 

the default GMP’s multiple precision library functions.  

 
LISTING  II 

GCD IMPLEMENTATION USING OPENMP AND GMP 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

// MAIN PROGRAM FOR GCD COMPUTATION 

main(){ 

 mpz_t *gcd, *u, *v; 

 //MEMORY ALLOCATION FOR MPZ 

 u = malloc(sizeof(mpz_t) * N); 

 v = malloc(sizeof(mpz_t) * N); 

 gcd = malloc(sizeof(mpz_t) * N); 

 //INITIALIZATION OF MPZ 

 for(i=0; i<N; i++){ 

     mpz_init(u[i]); mpz_init(v[i]); 

     mpz_init(gcd[i]); 

 }  

 //CALLING LCG ALGORITHM 

 RandLCG(); RandLCG(); 

 

//GCD COMPUTATION PARALLEL SEGMENT  

#pragma omp parallel for shared(u, v, gcd, 

N) private(i, result) num_threads(threads) 

default(none) schedule(dynamic,chunck_size) 

 for(i=0; i<N; i++){ 

     EEAGcd(result, u[i], v[i]); 

     mpz_set (gcd[i], result); 

 } 

 free(u);free(v);free(gcd); 

} 

C. GCD Implementation on GPU 

For the implementation of parallel GCD computation on 

the GPU, we have selected the N MPIs with variable bit 

length. We have chosen N as the multiple of 8, as we know 

the block dimension is also multiple of 8. Particularly , we 

can efficiently use the block dimension to carry the group of 

threads. Moreover, it is known from the specification of the 

GPU CUDA device, the computation is performed by the 

warp. However, for handling MPIs, we used the more 

optimized algorithm implementation discussed in section IV. 

The optimization applied to all these implementation’s 

performance improvements are listed as; 1) The algorithm 

listed in section IV and V uses some constant data frequently 

at the time of computation. Since, the constant data are 

stored in constant memory and access to these constant data 

via cache memory, this improves the computational 

efficiency and reading efficiency. 2) During implementation, 

we have observed that the use of temporary variables is 

frequent in the listed algorithms. So, rather than storing the 

temporary variables in global memory we have stored them 

in a shared memory to reduce reading latency on the GPU. 
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The parallel algorithm for Algorithm 5 is proposed in the 

form of Algorithm 12, with two 1D arrays handling n MPIs. 

The Algorithm  8 has the data dependencies which we  have 

identified, but it is not possible to remove completely. The 

proposed algorithm is parallelized to handle many pairs of 

MPIs and compute the GCDs for these pairs in parallel. The 

same approach holds true for all the GCD algorithms. 

Hence, they have been also parallelized in a similar way as 

proposed in the Algorithm 12. 

   
Algorithm 12: Parallel Extended Euclidean Algorithm (ParEEA) 
Input: Non-negative integers a[1..n], b[1..n] such that a[i] ≥ b[i] > 0. 

Where a, b are the arrays of n MPIs and i is the index referred to the 

individual MPI in the respective MPI array, a and b. 

Output: GCD (a[1..n], b[1..n]) = gcd[1..n] 

1. If (bi = 0) then     /* do in parallel */ 

    di  ai;  xi 1;  yi  0;  return; 

2. Set x2i  1; x1i  0; y2i  0; y1i  1;     /* do in parallel */ 

3. While (bi > 0)     /* do in parallel */ 

    3.1 qi  ai / bi;  ri  ai – qibi;  xi  x2i – qi x1i;  yi  y2i – qi y1i; 

    3.2 ai  bi;  bi ri;  x2i  x1i; x1i  xi;  y2i  y1i;  y1i  yi; 

4. Set di  ai;  xi  x2i;  yi  y2i;   

5. return; 
 

Listing III demonstrates the high level implementation of 

parallel GCD computation on the GPU wherein, we see the 

device function at line 1 and the kernel function at line 15, 

which will be launched on the GPU device with specified 

number of threads/block. The same kernel code will be 

executed by all the launched thread simultaneously on the 

GPU. For optimal and efficient memory usage, we have used 

the shared memory for fast access to data in the 

implementation. Moreover, we have investigated the data 

size, which can properly fit into the shared memory available 

on the GPU. The data type ullint in Listing III is 

corresponding to the MPInteger data structure specified in 

the Listing I. In device function __device__ ullint EEA( ) all 

the temporary variables are stored in shared memory. Kernel 

stored the pairs of MPIs into the shared memory and 

performs the computation of GCDs. The GCD of a pair of 

MPIs is computed by the single thread, i.e. first GCD is 

computed by thread0, second GCD is computed by thread1, 

and so on. Hence, the kernel computes many GCD in 

parallel for many pairs of MPIs.  

 
LISTING  III 

GCD IMPLEMENTATION ON GPU USING CUDA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

// DEVICE FUNCTION TO COMPUTE GCD(a, b) 

__device__ ullint EEAGCD(ullint *a, 

                         ullint *b){ 

  ullint x, x1, y, y1, temp, quotient; 

  x = 0; x1 = 1; y = 1; y1 = 0; 

  while(*b != 0){ 

    temp = *b;      quotient = *a / *b; 

    *b = *a % *b;   *a = temp; temp = x; 

    x = x1–quotient * x; x1=temp; temp=y; 

      y = y1–quotient * y; y1=temp;             

  } 

  return *a; 

} 

// GCD KERNEL 

__global__ void kernel(ullint *a, ullint *b, 

                       ullint *c, int N){ 

  //blockSize is the size of shared memory 

__shared__ ullint aShared[blockSize];   

  __shared__ ullint bShared[blockSize]; 

int id=threadIdx.x+blockSize * blockDim.x; 

21 

22 

23 

24 

25 

26 

27 

28 

int tid = threadIdx.x; 

if(id >= N ) {return;} 

aShared[tid] = a[id]; 

bShared[tid] = b[id]; 

__syncthreads(); 

 

if(id > 0)     

  c[id]=EEAGCD(aShared[tid],bShared[tid]); 

} 

VI. RESULTS AND DISCUSSIONS 

Experimental setup for the GCD computation based on 

the CPU and GPU is shown in Table I and Table II. The 

implementation of MPIs GCD on the CPU is straight 

forward. For the sequential implementation, we have used 

the GMP library, GMP 5.1.1. We have explored the shared 

memory architecture by using OpenMP for the parallel 

implementation of GCD algorithms and integrated with the 

GMP library for handling the multiple precision integers. 

The GMP library provides many functions for the 

implementation of multiple precision algorithms to handle 

integer or floating point operations. The OS used to be 

Linux OpenSUSE 12.1 with GCC compiler 4.5.1 and 

OpenMP 3.1 on the CPU side, and for compilation on the 

GPU we used NVIDIA Nsight Eclipse Edition 2.0 with 

CUDA 5.0 SDK. 

NVIDIA CUDA device Quadro FX 3800 supports the 

512 threads per thread block. So, to use the full power of the 

GPU CUDA device, we have selected the block size of 512 

threads per block for the data values starting from the range 

1048576 to 8388608.  

The figures from Fig. 1 to Fig. 4, the x-axis represents the 

number of  MPIs and the y-axis represents the computation 

time in milliseconds required to compute the GCDs. Here 

we have chosen the different group of data values of MPIs 

for the GCD computation. The groups of data values are 

1048576, 2097152, 4194304, and 8388608 MPIs 

respectively. We have also selected the different MPI bit-

length of each group as the 2048-bit, 4096-bit, and 8192-bit 

respectively.  All the GCD algorithms presented in section V 

are tested on all the chosen group of data values with 

varying bit-length of MPIs both on the CPU and GPU. 

 
TABLE I 

THE GPU SPECIFICATION 

NVIDIA CUDA specification 

CUDA Device Quadro FX 3800 

CUDA driver / runtime version 5.0 

No. of CUDA cores 192 

Memory Bandwidth 51.2 GB/sec 

GPU clock rate 1.2 GHz 

Global Memory 1 GB 

Max threads/ block 512 

Warp size 32 

 
TABLE II 

THE CPU SPECIFICATION 

HP Z600 Workstation 

Processor  2 Quad Core Intel Xeon 5650 

Series Processors with 12M 

cache, DDR3 1333 MHz, HT, 

Turbo 

CPU clock rate 2.66 GHz 

CPU cores 12 

Memory 4GB 
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Moreover, Fig. 1 to Fig. 8  also shows the performance 

evaluation of proposed parallel GCD algorithms on the 

GPU, OpenMP implementation on the CPU, and 

corresponding sequential CPU algorithms in case of 

randomly generated different bit-length MPIs. The execution 

time of the CPU is only the computation time to compute 

GCDs, and execution time of the GPU does not include the 

memory data transfer between CPU and GPU. 

The speedup ratio shown in Fig. 9 and Fig. 10 is the ratio 

of execution time of CPU to that of the GPU. The speedup 

ratio clearly indicates that the GPU algorithms and OpenMP 

algorithms are faster than the CPU algorithms. Moreover, 

we have observed that, for larger group of data values, we 

achieved more performance as compared to the small group 

of data values. Also, Fig. 9 and Fig. 10 show the speedup for 

GCD algorithms on varying bit-length of integers. The 

OpenMP implementation corresponding to GCD algorithms 

for maximum data values (8388608) achieves the speedup 

as, 12.12x for Extended Euclidean algorithm, 11.44x for 

Binary GCD, 12.71x for Extended Binary GCD, and 11.56x 

for MEB GCD compared with a single core of the CPU. We 

have achieved significant speedup on the GPU for various 

GCD algorithms as 15.75x for Extended Euclidean 

algorithm, 15.87x for Binary GCD, 15.24x for Extended 

Binary GCD, and 17.32x for MEB GCD compared to CPU 

implementation. 

 

 

 
Fig. 1. Binary GCD on CPU 

 

 
Fig. 2. Binary GCD Using OpenMP and GPU 

 

 

 
Fig. 3. EBin GCD on CPU 

 
Fig. 4. EBin GCD Using OpenMP and GPU 
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Fig. 5. EEA GCD on CPU 

 
Fig. 6. EEA GCD Using OpenMP and GPU 

 

 

 
Fig. 7. MBE GCD on CPU 

 
Fig. 8. MBE GCD Using OpenMP and GPU 

 

 

 
Fig. 9. OpenMP speedup 

 
Fig. 10. GPU speedup 
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VII. CONCLUSION 

In this paper, we have proposed the efficient parallel 

algorithm for the computation of GCD based on Extended 

Euclidean GCD, Binary GCD, Extended Binary GCD, and 

Mixed Binary-Euclid GCD algorithms.  The parallel 

algorithms for multiple precision integers GCD computation 

on the CPU using OpenMP and on the GPU using CUDA C 

programming language has been implemented on NVIDIA 

CUDA and Intel Xeon architectures. Moreover, the 

performance evaluation on the GPU has achieved significant 

high speedup in comparison with the single-core CPU. In 

addition, the speedup achieved by OpenMP compared with 

the single-core CPU is slightly lower than the speedup 

achieved by the GPU. Therefore, both OpenMP and GPU 

perform computation efficiently. This parallel 

implementation can be used in various cryptography and 

number theory applications where we need to handle big 

numbers and also to compute the GCD for big numbers. 
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