

Abstract—The multiple precision Greatest Common Divisor

(GCD) computation is a key component in the field of computer

algebra and in many cryptography applications such as public-

key cryptography; in the setup phase of RSA, and in the

implementation of point operations (addition, subtraction,

multiplication etc.) on Elliptic Curve Cryptography (ECC), for

factorization attacks and in the statistical testing of pseudo

random number generators. Multiple precision computations

on the CPUs are computationally expensive, but substantial

performance is achieved by using OpenMP with the GNU

Multiple Precision Library (GMP) and Compute Unified

Device Architecture (CUDA). In this paper, we have explored

the computational power of NVIDIA Graphics Processing Units

(GPUs). We have implemented the Multiple Precision Integer

(MPI) operations on the GPU using C CUDA. We implemented

the several GCD computation algorithms using MPIs

operations. Implementation results based on the CPU and GPU

indicate that a significant speedup is achieved by the GPU using

CUDA and OpenMP with GMP, as compared with the single

core CPU implementation.

Index Terms— CUDA, GCD, GPU, OpenMP

I. INTRODUCTION

N today's High Performance Computing (HPC) era,

Graphics Processing Units (GPUs) are becoming

increasingly common to use in general purpose

computations, which contain a set of streaming processors.

General Purpose GPUs (GPGPUs) are widely used for

parallelization of different categories of applications such as

fluid dynamics, ray tracing, bioinformatics, and gaming etc.

GPUs are best suited for high throughput computing

applications that handle large amount of data and we can

exploit the Single Instruction Multiple Data (SIMD)

architecture of the GPU for data-parallel applications. We

have to exploit the power of computing facilities available in

the form of GPUs having many-cores for the computation of

complex problems and the more time consuming problems

which are often used in mathematical computation. In this

work, we concentrate on the computation of a big number

integer GCD. GCD computation is often used in many

mathematical and cryptography applications such as

primality testing, to find the multiplicative inverse, to find

relatively prime numbers, for factorization attacks [1], and in

public key cryptography algorithms such as RSA and ECC

Manuscript revised on 20th August, 2015.

*Jitendra V. Tembhurne is with the Visvesvaraya National Institute of

Technology, Nagpur- 440010, Maharashtra, India (Corresponding author,

phone: +91-712-2801793; e-mail: dt11cse077@cse.vnit.ac.in).

S. R. Sathe is with the Visvesvaraya National Institute of Technology,

Nagpur-440010, Maharashtra, India (e-mail: srsathe@cse.vnit.ac.in).

[2], [3].

The tremendous computation power of the GPUs is

provided by NVIDIA [4] and the GPU works on the

principle of Single Instruction Multiple Data (SIMD).

NVIDIA's GPU such as Quadro FX 3800 has 192 computing

cores with 462.3 GFLOPS of computational horsepower.

NVIDIA CUDA support the heterogeneous computation

model, where the CPU and the GPU both work together to

accomplish every computation. On the CPU, sequential part

of the program is executed while, on the GPU parallel part

of the program is executed. Host (CPU) initiates the program

execution by allocating the memory on host and device

(GPU) and calling the kernel on a device. At the time of

kernel call, GPU generates multiple threads based on the on-

device kernel code, which runs concurrently along the

threads. Moreover, all the threads have their own local

memory and access to the shared and global memory for

efficient data handling.

We have been motivated by the GPU’s massively parallel

computation which is achieved by a large number of cores

available on the GPU. It is easy to achieve high performance

on the GPU for the computation of multiple precision

arithmetic operations as well as MPI GCD computations.

The research work addresses the following issues:

1) Design and implementation of parallel Multiple

Precision Integer (MPI) arithmetic on the GPU using

CUDA architecture.

2) Design and implementation of parallel MPI GCD

algorithms on CUDA.

3) Design and implementation of parallel MPI GCD

algorithms for CPU using OpenMP and GMP library.

4) Performance analysis of parallel GCD algorithm on the

CPU and GPU.

The outline of the rest of the paper is as follows. Section

II is dedicated to the review of previous work carried by the

different researchers. Section III describes the OpenMP and

CUDA architecture for parallel computation. In section IV,

we have demonstrated the implementation of multiple

precision operations on integers and the computation of

GCD for a big number on the CPU and GPU.

Implementation results based on the CPU and GPU and

comprehensive experimental analysis are discussed in

section V and in section VI conclusions drawn from the

experimental results are presented.

II. EXISTING WORKS

Parallel implementation of any algorithm requires many

processors to run concurrently. To execute an algorithm

concurrently, we have to form an independent computation

Multiple Precision Integer GCD Performance

Analysis on Parallel Architectures

*Jitendra V. Tembhurne, S. R. Sathe

I

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

step which will subsequently be performed. When the

algorithmic steps are independent of data to be handled

while computing than, the algorithm is suitable for the

parallel implementation. In this paper, we are targeting to a

parallel computation of GCD of big integers. In the past

years, researchers were working on the implementation of

the parallel GCD algorithm to achieve better time

complexity of different models of computation such as

EREW, CREW, and CRCW. The problem of computing

GCD of two non-negative integers efficiently in parallel is

one of the open problems in the theory of parallel

computation.

A simple parallel implementation of GCD of two n-bit

integers on the Concurrent Read Concurrent Write (CRCW)

computation model was proposed in [5]. The authors claim

the parallel run-time of the algorithm in terms of bit

operation is O (n /log n) by the use of n
1+Є

 processors, where

Є is any positive constant. This implementation was the

improvement of the algorithm proposed by KMR in [6],

which is the first sub-linear GCD algorithm, runs on

O(nloglogn/ logn) times using the same CRCW model. The

extended GCD algorithm proposed in [2], [3] and [7] is very

useful for data dependence test for any given code block to

identify the data dependencies, if any. In 1994 Sorenson at

el. [9], suggested the parallel extended GCD algorithm

implementation on a CRCW SM MIMD (Multiple

Instruction Multiple Data) model using O(n) processors and

proposed to exploit the use of CRCW model. The aim of this

paper was to speedup the process of checking data

dependency in the given code block. Further, the GCD

computation of MPIs using GMP for shared memory

architecture was proposed in [8]. The accelerated integer

GCD algorithm by Sorenson [9] is derived from the right-

shift k-ary GCD algorithm and has been shown to be very

effective for computing the GCD of moderate to large sized

integer numbers in a sequential manner. Sedjelmaci [12],

illustrated the parallel implementation of Schönhage’s

algorithm [10] on distributed memory architectures. This

algorithm uses the half-GCD algorithm, which has two

MPIs. For fast computation author has exploited the parallel

Karatsuba’s multiplication algorithm [11].

The main difficulty in the Euclid’s GCD algorithm is the

expensive cost of the multiple precision divisions. In [12],

[13] a Lehmer-Euclid GCD algorithm was proposed, where

the MPIs reduce to a single precision integer after working

with the leading bits of integers. Subsequently, extended

Euclidean algorithm is applied to calculate the GCD from

reduced single precision integers.

Recently, the researchers exploited the use of parallel

computer provided by the vendors like Intel, NVIDIA and

AMD. With recent advances in parallel computing hardware,

GPUs are coined as the general purpose programming model

for performing faster computations. Moreover, it is not

difficult to develop non-graphics applications using GPUs.

NVIDIA provides a general purpose parallel programming

model known as CUDA [4], [14], which uses the C or C++

programming languages for the development of general

purpose applications. CUDA as a parallel computing model

is gaining its place for speeding up a large number of

applications such as [15], [16], [17], [18] and [19]. Due to

its extensive popularity, we have chosen the CUDA for MPI

GCD implementations.

The MPI implementation of different arithmetic

operations on the GPU has been demonstrated in [20], [21].

The author claims that significant speedup can be achieved

by the GPUs as compared with the GNU Multiple Precision

library on the CPUs. In addition, the performance of the

multiple precision modular multiplications has been

improved by 20% using MPI based computations. We would

like to point out that, while implementing the multiple

precision GCD, all the required arithmetic operations are

needed to be implemented on the GPU using CUDA.

In [22], the high throughput, multiple precision Binary

GCD algorithm on CUDA architecture has been proposed.

The fixed bit-length of integers were chosen to be 1024-bits.

This algorithm computes the many GCDs at a time and the

measure of speedup is calculated not on single GCD

computation but on the many GCD computations. The

author claims that the proposed GPU algorithm runs 11.3

times faster than the CPU version of the algorithm. Another

implementation of polynomial GCD computation on the

GPU using Maple 13 has been proposed in [23]. In this

work, the author has developed an algorithm to compute a

GCD of univariate polynomials with integer coefficients on

the GPU and conferred the significant speedup over CPU

based GCD algorithm.
The EREW PRAM model based parallel randomized

algorithm to compute GCD of two n bits integers has been

proposed which requires the computation time of O (n

loglog n/ logn) [24]. On the contrary, a new parallel GCD

algorithm has been proposed by Sedjelmaci [25] to compute

the GCD of O(n) bits of n integers in time complexity of

O(n/ log n) by using (n
2+ϵ

) processors, where ϵ > 0 for a

CRCW PRAM model of computation. The similar Binary

GCD [22] based parallel big integers GCD computation on

the shared memory model has been implemented for large

integers of bits length ranging from 1024-bits to 4096-bits

[26]. The speedup achieved was measured on the Intel Xeon

Phi machine with 240 threads as compared with the single-

core CPU.

III. OVERVIEW OF OPENMP AND CUDA

A. OpenMP

OpenMP (Open Multi-Processing) is a directive based

language for expressing parallelism on the shared memory

multiprocessor systems [27], [28]. OpenMP is a

multithreaded platform implementation and a method for

parallel program design whereby a master thread (a series of

instructions executed consecutively) forks a specified

number of slave threads and a task is divided amongst them.

A team of threads runs in parallel, with the set of directives

and runtime environment variables allocated to different

processors. After the execution of the parallelized code, the

threads join back into the master thread, which continues

onward to the end of the program [27], [28], [29].

By default, each thread performs the execution of parallel

section of the code independently. Work-sharing constructs

like, #pragma omp for [clause], #pragma omp sections

[clause] and #pragma omp single [clauses] can be utilized

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

to divide a task amongst the threads so that each thread

executes its allocated part of the code. In this way, task

parallelism and data parallelism both can be achieved using

OpenMP. OpenMP is available for various platforms and the

list of different compilers can be found at [30].

B. CUDA

NVIDIA introduced CUDA, a general purpose parallel

computing architecture, with a new parallel programming

model and instruction set architecture [4], [14] which

leverages the parallel compute engine in NVIDIA GPUs to

solve many complex computational problems in a more

efficient way than on a CPU. CUDA comes with a software

environment that allows developers to use C or C++ as a

high level programming language. Moreover, it also

supports other programming languages, application

programming interfaces (API), or directives based

approaches such as FORTRAN, OpenCL, OpenACC etc.

The GPU as general purpose programming has evolved into

a many core processor and massively parallel architecture

with huge computational horsepower and very high memory

bandwidth [31]. The reason behind the discrepancy in

floating point capability between the CPU and the GPU is

that the GPU is specialized for compute intensive, highly

parallel computation and therefore designed such that more

transistors are devoted to data processing rather than data

caching and flow control.

The architecture of the GPU supports CUDA enabled

framework [4], which is organized into an array of highly

threaded Streaming Multiprocessors (SMs). The number of

SMs in a building block can vary from one generation of

CUDA GPUs to another generation. In addition, each SM

has a number of Streaming Processors (SPs) that share

control logic and instruction cache. Each GPU currently

comes with up to 32 gigabytes of graphics double data rate

(GDDR) DRAM, referred to as global memory. For graphics

applications, they hold, texture information, and video

images for three-dimensional rendering, however, for

computing their function as a very high bandwidth, off-chip

memory. For massively parallel applications, higher

bandwidth makes it up for the long latency time. The GPU

follows the SIMD based execution model. The execution of

a typical CUDA program is started by the host (CPU). When

a kernel function is called or invoked, the complete

execution is moved to a device (GPU), where a large

number of threads within the thread-blocks are generated to

take the advantage of abundant data parallelism. All the

threads that are generated by a kernel during an invocation

are collectively called a block of threads or thread block.

The collection of thread blocks is called a grid. Threads

running on the GPU are grouped into wraps consisting of 32

threads. When all the threads of a kernel complete their

execution, the grids terminate and the remaining part of

execution continues on the host until another kernel is

launched. Each thread contains own memories such as,

register memory and local memory. The thread block

contains shared memory for read and write, and the grid has

global memory for read and write and in addition, it

contains read only memory called as constant memory.

IV. MULTIPLE-PRECISION INTEGER ARITHMETIC

A. Multiple Precision Integer (MPI) Arithmetic on GPU

In this section, we present an implementation of different

arithmetic functions of MPIs on the GPU using CUDA. In

multiple precision arithmetic functions, we have chosen the

decimal digit (i.e. base of the number is 10) but the same can

be used for different radix representation of the number like

binary etc. Non-negative integers can be represented in

various ways, the most common form is base 10. For

example, a = 243 base 10 means a = 2×10
2
 + 4×10

1
+3×10

0
.

The algorithms implemented on the GPU for multiple

precision arithmetic operations are Addition (Add),

Subtraction (Sub), Multiplication (Mul) and Division (Div)

as mentioned in pseudo code from Algorithm 1 to Algorithm

4 [2], [7], [32] which are the sequential MPI algorithms.

Apart from these basic arithmetic integer operations, we

have implemented the MPI comparison, left-shift, and right-

shift etc. and other supporting operations.

Algorithm 1: Multiple-precision Addition

Input: positive integers x and y, each having n base b digits.

Output: x + y = (wnwn-1 …w1w0) b in radix b representation.

1. c 0 //c is the carry

2. For i from 0 to n-1 do

 2.1 wi (xi + yi + c) % b

 2.2 If ((xi + yi + c) < b) then c 0; Else c 1

3. wn c

4. return (wnwn-1 …w1w0)b

Algorithm 2: Multiple-precision Subtraction

Input: positive integers x and y, each having n base b digits, with x ≥ y.

Output: x - y = (wnwn-1 …w1w0) b in radix b representation.

1. c 0

2. For i from 0 to n-1 do

 2.1 wi (xi − yi + c) % b

 2.2 If ((xi − yi + c) ≥ 0) then c 0; Else c -1

3. return (wnwn−1 …w1w0)b

Algorithm 3: Multiple-precision Multiplication

Input: positive integers x and y having n and m base b digits,

respectively.

Output: x × y = (wn+m+1 …w1w0) b in radix b representation.

1. For i from 0 to (n + m + 1) do: wi 0

2. For i from 0 to m do

 2.1 c 0

 2.2 For j from 0 to n do

 temp wi+j + xj × yi + c

 wi+j temp % b, c temp / b

 2.3 wi+n+1 c

3. return (wn+m+1 …w1w0)b

Algorithm 4: Multiple-precision Division

Input: positive integers x = (xn … x1x0)b, y = (ym… y1y0)b with n ≥ m ≥ 1,

ym ≠ 0.

Output: the quotient q = (qn−m …q1q0)b and remainder r = (rm … r1r0)b

such that x = q.y + r, 0 ≤ r < y.

1. For j from 0 to (n − m) do: qj ← 0

2. While (x ≥ y.bn−m)

 2.1 qn−m qn−m +1

 2.2 x ←x – y.bn−m

3. For i from n down to (m + 1) do

 3.1 If (xi = ym) then qi−m−1 ← b – 1

 Else qi−m−1 ← floor (xi.b+ xi−1) / ym)

 3.2 While (qi−m−1 (ym b + ym−1) > xi b
2 + xi−1b + xi−2)

 qi−m−1 qi−m−1 − 1

 3.3 x x − qi−m−1 y bi−m−1

 3.4 If (x < 0) then

 x ← x + y bi−m−1

 qi−m−1 ← qi−m−1 - 1

4. r ← x

5. return (q, r)

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

A data structure used to represent the multiple precision

integers is shown in Listing I. The MPI is stored in a 1D

unsigned character array in the form of individual decimal

digit.

LISTING I

DATA STRUCTURE OF MULTIPLE-PRECISION INTEGER

struct MPInteger {

 unsigned char Digit[MAX_DIGITS_CAPACITY];

 int Length; char Sign;

};

The complexity of n-digit MPI operations such as

addition and subtraction is O(n). But, due to data

dependency at carries, borrows generation of these MPI

operations is the biggest hurdle for parallel implementation.

In Algorithm 1, x and y arrays stored input data ranging from

0 to b-1, where b is the base of the MPI number and c is to

store the carries. At step 2.1 and 2.2, the value of wi depends

on the updated value of c. Since, we cannot parallelize the

algorithm directly. Algorithm 5 shows the parallelization of

Algorithm 1 by avoiding the propagation of carries. So, the

MPI addition is performed in Step 2 without releasing the

carries. In step 3.1 carries are computed, and in step 3.2

carries are used to calculate the sum of the corresponding

digits of MPIs. Here, we have to store all carries in the

separate array. A digit normalization is used until all carries

are generated. This process of normalization has been

applied fewer times. Since, the carry propagation iterates,

for example, 9…99 + 1…11, the carry-skip approach [33]

has been adopted.

In Algorithm 6, carry skipping approach is applied from

steps 2.1 to 2.4 and from steps 2.5 to 2.7 respectively.

Hence, MPI Add, Sub and Mul can be implemented using

carry skip approach.

The MPI multiplication algorithm implementation on the

GPU is presented in Algorithm 7. This algorithm uses the

MPI addition and Carry-Skip algorithm to compute the MPI

multiplication. The normalization of MPI multiplication is

similar to carry computation in MPI Add, Sub and Mul. In

addition, parallel implementation of the MPI division

comprises of the implementation of MPI Add, Sub and Mul.

Since, the time consumed by the MPI division is

significantly longer than the MPI Add, Sub and Mul

operations. The steps 1 to 3 in Algorithm 4 can be easily

parallelized with the help of MPI Add, Sub and Mul.

To implement “divide by 2” operation for the GCD

computation algorithms, we have used the binary shift right

method in parallel. The steps of the algorithm are as follows;

 Partitioned the MPI into n 32-bit integer such as MPI1,

MPI2,… MPIn, where n is the number of partitions of

MPI. Represents MPI1, MPI2,… MPIn in the vector

after (MPIi & 1) operation.

 Copy all Least Significant Bit (LSB) of MPIi into

LSB[1..n] array.

 Perform MPIi (MPIi >> 1)

 Copy LSB[2..n] at the Most Significant Bit (MSB) of

MPIi from MPI1, MPI2,… MPIn-1 i.e. copy at 31st, 63rd

and so on position of MPI.

 Combined all MPI1, MPI2,… MPIn to get required MPI.

However, the parallel left-shift is also implemented in a

similar way, the way a right-shift is implemented, except

the bit shift is towards the left direction.

Algorithm 5: Parallel MPI Addition (ParMPIAdd)

Input: positive integers x and y, each having n base b digits.

Output: x + y = (wnwn-1 …w1w0)b in radix b representation.

1. Forparallel i from 0 to n-1 do

 wi xi + yi

3. While (max(wi)0 ≤ i < n ≥ b)

 3.1 c0 0

 3.2 Forparallel i from 0 to n-1 do

 ci+1 wi / b

 3.3 Forparallel i from 0 to n-1

 wi (wi % b) + ci

 3.4 wn cn

5. return (wnwn-1 …w1w0)b

Algorithm 6: Parallel Carry-Skip Algorithm (ParCK)

Input: positive integers x and y, each having n base b digits.

Output: x + y = (wnwn-1 …w1w0)b in radix b representation.

1. Call ParMPIAdd(xi, yi)

2. While (max(wi)0 ≤ i < n-1 = b)

 2.1 Forparallel i from 0 to n-1 do

 2.1.1 If (wi = b) then hi i; Else hi n – 1

 2.2 k min(hi)0 ≤ i < n

 2.3 Forparallel i from k+1 to n-1 do

 2.3.1 If (wi < b-1) then hi i; Else hi n – 1

 2.4 z min(hi)k+1 ≤ i < n

 2.5 wk wk – b

 2.6 Forparallel i from k+1 to z -1 do

 2.6.1 wi wi – (b -1)

 2.7 wz wz + 1

3. return (wnwn-1 …w1w0)b

Algorithm 7: Parallel MPI Multiplication (ParMPIMul)

Input: positive integers x and y having n and m base b

digits, respectively.

Output: x × y = (wn+m+1 …w1w0)b in radix b representation.

1. Forparallel i from 0 to (n + m + 1) do

 wi 0; ci 0

2. Forparallel i from 0 to m do

 2.1 For j from 0 to n do

 wi+j wi+j + xj × yi

3. While (max(wi)0 ≤ i < n+m+1 ≥ b)

 3.1 Forparallel i from 0 to (n + m + 1 - 1) do

 ci+1 wi / b

 3.2 Forparallel i from 0 to (n + m + 1 - 1) do

 wi (wi % b) + ci

4. wn+m+1 cn+m+1

5. return (wn+m+1 …w1w0)b

V. GCD’S IMPLEMENTATION

A. GCD Algorithms

The GCD algorithms are considered for parallel

implementation and performance measurement uses the

simplest arithmetic operations as mentioned in section IV.

The pseudo codes for MIPs GCD are indicated in Algorithm

8, 9, 10 and, 11 respectively.

Algorithm 8: Extended Euclidean Algorithm (EEA)

Input: Non-negative integers a, b such that a ≥ b > 0.

Output: GCD (a, b) = d, and integers x, y satisfying ax + by =d.

1. If (b = 0) then set d a; x 1; y 0; return (d, x, y);

2. Set x2 1; x1 0; y2 0; y1 1;

3. While (b > 0)

 3.1 q a/ b; r a – qb; x x2 - qx1; y y2 – qy1;

 3.2 a b; b r; x2 x1; x1 x; y2 y1; y1 y;

4. Set d a; x x2; y y2; return (d, x, y);

Algorithm 9: Binary GCD (Bin)

Input: Non-negative integers a, b such that a ≥ b > 0 .

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

Output: GCD (a, b).

1. g 1;

2. While (a and b even) { a a /2; b b /2; g 2×g; }

3. While (a is even) a a/2;

4. While (b is even) b b/2; // now a and b are both odd

5. While (a ≠ b)

 5.1 (a, b) (|a - b| , min(a, b));

 5.2 a a/2ⱱ(a) ; // ⱱ(a) is the 2-valuation of a

6. return (g × a);

Algorithm 10: Extended Binary GCD (EBin)

Input: Non-negative integers a, b such that a ≥ b > 0 .

Output: GCD (a, b) = v, and integers x, y satisfying ax + by= v.

1. g 1;

2. While (a and b is both even) a a/2; b b /2; g 2g;

 2.1 u a; v b; A 1; B 0; C 0; D 1;

3. While (u is even) u u /2;

4. If (A ≡ B ≡ 0 (mod 2)) then A A/2; B B/2;

 Else A (A + y)/2; B (B - x)/2;

5. While (v is even)

 5.1 v v/2;

 5.2 If (C ≡ D ≡ 0 (mod 2)) then C C/2; D D/2;

 Else C (C + y)/2; D (D - x)/2;

6. If (u ≥ v) then u u – v; A A – C; B B – D;

 Else v v – u; C C – A; D D – B;

7. If (u = 0) then x C; y D; return(x, y, g×v);

 Else go to step 4

Algorithm 11: Mixed Binary Euclid (MBE)

Input: Integers a, b such that a ≥ b > 1, with b is odd.

Output: GCD (a, b).

1. While (b > 1)

1.1 r a mod b; s b r;

1.2 While (r > 0 and r mod 2 = 0) r r/2;

1.3 While (s > 0 and s mod 2 = 0) s s/2;

 If (s < r) then u r; v s;

 Else u s; v r;

2. If (b = 1) then return 1; Else return u;

B. GCD Implementation on CPU

To implement GCD algorithms on the CPU is straight

forward for small integers, like 32-bit or 64-bit computation,

which is the maximum precision required and is supported

by all the available CPU architectures. But, the computation

of the GCDs for bigger integers that are usually used in

cryptographic applications is really challenging. In public-

key cryptography algorithms such as RSA, we need the large

key values such as 1024-bits and more for secure encryption

of confidential data. So, in order to handle big integers we

have used the GMP [34, 35]. This is one of the fastest

libraries to carry operations on big integers on the CPU.

The steps to implement GCD computation are as follows;

1. Generating two sets of MPIs before starting the GCD

computation. We have randomly generated the integers by

implementing two random number generation algorithms

such as Multiply-with carry algorithm and Linear

Congruential Generator (LCG) algorithm [36].

2. Implementing the GCD algorithm by using random

numbers generated in step 1.

The steps shown above are utilized to implement the

sequential GCD computation. But, our target is to implement

a parallel variant of GCD. To develop parallel

implementation on the CPU, we used the OpenMP, which

work on a shared memory architecture. In OpenMP, all the

created threads shared global memory for the successive

computation. Here, we have to decide the shared data,

private data, number of threads, and scheduling scheme to

schedule the parallel tasks with synchronization amongst the

running threads. All these can be achieved by using the

OpenMP directives. OpenMP eases the implementation by

providing the large set of compile time directives.

The Listing II shows the OpenMP implementation of

parallel GCD computation on the CPU. The implementation

uses the GMP library for MPIs to handle and perform many

GCD computations in parallel by all the available cores on

the CPU. The for-loop at line 9 specifies N, the number of

GCD computing integers. Line 17 shows the application of

OpenMP directives to compute the GCDs in parallel by all

threads. Each thread will perform its own GCD computation

without intervening the work of other threads. The proposed

OpenMP implementation is a direct application of OpenMP

directives to compute GCD without any parallel algorithm

optimization on arithmetic operations such as Add, Sub, Mul

and Div. But, the same has been considered for the GPU

implementation. All arithmetic operations on the CPU used

the default GMP’s multiple precision library functions.

LISTING II

GCD IMPLEMENTATION USING OPENMP AND GMP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

// MAIN PROGRAM FOR GCD COMPUTATION

main(){

 mpz_t *gcd, *u, *v;

 //MEMORY ALLOCATION FOR MPZ

 u = malloc(sizeof(mpz_t) * N);

 v = malloc(sizeof(mpz_t) * N);

 gcd = malloc(sizeof(mpz_t) * N);

 //INITIALIZATION OF MPZ

 for(i=0; i<N; i++){

 mpz_init(u[i]); mpz_init(v[i]);

 mpz_init(gcd[i]);

 }

 //CALLING LCG ALGORITHM

 RandLCG(); RandLCG();

//GCD COMPUTATION PARALLEL SEGMENT

#pragma omp parallel for shared(u, v, gcd,

N) private(i, result) num_threads(threads)

default(none) schedule(dynamic,chunck_size)

 for(i=0; i<N; i++){

 EEAGcd(result, u[i], v[i]);

 mpz_set (gcd[i], result);

 }

 free(u);free(v);free(gcd);

}

C. GCD Implementation on GPU

For the implementation of parallel GCD computation on

the GPU, we have selected the N MPIs with variable bit

length. We have chosen N as the multiple of 8, as we know

the block dimension is also multiple of 8. Particularly , we

can efficiently use the block dimension to carry the group of

threads. Moreover, it is known from the specification of the

GPU CUDA device, the computation is performed by the

warp. However, for handling MPIs, we used the more

optimized algorithm implementation discussed in section IV.

The optimization applied to all these implementation’s

performance improvements are listed as; 1) The algorithm

listed in section IV and V uses some constant data frequently

at the time of computation. Since, the constant data are

stored in constant memory and access to these constant data

via cache memory, this improves the computational

efficiency and reading efficiency. 2) During implementation,

we have observed that the use of temporary variables is

frequent in the listed algorithms. So, rather than storing the

temporary variables in global memory we have stored them

in a shared memory to reduce reading latency on the GPU.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

The parallel algorithm for Algorithm 5 is proposed in the

form of Algorithm 12, with two 1D arrays handling n MPIs.

The Algorithm 8 has the data dependencies which we have

identified, but it is not possible to remove completely. The

proposed algorithm is parallelized to handle many pairs of

MPIs and compute the GCDs for these pairs in parallel. The

same approach holds true for all the GCD algorithms.

Hence, they have been also parallelized in a similar way as

proposed in the Algorithm 12.

Algorithm 12: Parallel Extended Euclidean Algorithm (ParEEA)
Input: Non-negative integers a[1..n], b[1..n] such that a[i] ≥ b[i] > 0.

Where a, b are the arrays of n MPIs and i is the index referred to the

individual MPI in the respective MPI array, a and b.

Output: GCD (a[1..n], b[1..n]) = gcd[1..n]

1. If (bi = 0) then /* do in parallel */

 di ai; xi 1; yi 0; return;

2. Set x2i 1; x1i 0; y2i 0; y1i 1; /* do in parallel */

3. While (bi > 0) /* do in parallel */

 3.1 qi ai / bi; ri ai – qibi; xi x2i – qi x1i; yi y2i – qi y1i;

 3.2 ai bi; bi ri; x2i x1i; x1i xi; y2i y1i; y1i yi;

4. Set di ai; xi x2i; yi y2i;

5. return;

Listing III demonstrates the high level implementation of

parallel GCD computation on the GPU wherein, we see the

device function at line 1 and the kernel function at line 15,

which will be launched on the GPU device with specified

number of threads/block. The same kernel code will be

executed by all the launched thread simultaneously on the

GPU. For optimal and efficient memory usage, we have used

the shared memory for fast access to data in the

implementation. Moreover, we have investigated the data

size, which can properly fit into the shared memory available

on the GPU. The data type ullint in Listing III is

corresponding to the MPInteger data structure specified in

the Listing I. In device function __device__ ullint EEA() all

the temporary variables are stored in shared memory. Kernel

stored the pairs of MPIs into the shared memory and

performs the computation of GCDs. The GCD of a pair of

MPIs is computed by the single thread, i.e. first GCD is

computed by thread0, second GCD is computed by thread1,

and so on. Hence, the kernel computes many GCD in

parallel for many pairs of MPIs.

LISTING III

GCD IMPLEMENTATION ON GPU USING CUDA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

// DEVICE FUNCTION TO COMPUTE GCD(a, b)

__device__ ullint EEAGCD(ullint *a,

 ullint *b){

 ullint x, x1, y, y1, temp, quotient;

 x = 0; x1 = 1; y = 1; y1 = 0;

 while(*b != 0){

 temp = *b; quotient = *a / *b;

 *b = *a % *b; *a = temp; temp = x;

 x = x1–quotient * x; x1=temp; temp=y;

 y = y1–quotient * y; y1=temp;

 }

 return *a;

}

// GCD KERNEL

__global__ void kernel(ullint *a, ullint *b,

 ullint *c, int N){

 //blockSize is the size of shared memory

__shared__ ullint aShared[blockSize];

 __shared__ ullint bShared[blockSize];

int id=threadIdx.x+blockSize * blockDim.x;

21

22

23

24

25

26

27

28

int tid = threadIdx.x;

if(id >= N) {return;}

aShared[tid] = a[id];

bShared[tid] = b[id];

__syncthreads();

if(id > 0)

 c[id]=EEAGCD(aShared[tid],bShared[tid]);

}

VI. RESULTS AND DISCUSSIONS

Experimental setup for the GCD computation based on

the CPU and GPU is shown in Table I and Table II. The

implementation of MPIs GCD on the CPU is straight

forward. For the sequential implementation, we have used

the GMP library, GMP 5.1.1. We have explored the shared

memory architecture by using OpenMP for the parallel

implementation of GCD algorithms and integrated with the

GMP library for handling the multiple precision integers.

The GMP library provides many functions for the

implementation of multiple precision algorithms to handle

integer or floating point operations. The OS used to be

Linux OpenSUSE 12.1 with GCC compiler 4.5.1 and

OpenMP 3.1 on the CPU side, and for compilation on the

GPU we used NVIDIA Nsight Eclipse Edition 2.0 with

CUDA 5.0 SDK.

NVIDIA CUDA device Quadro FX 3800 supports the

512 threads per thread block. So, to use the full power of the

GPU CUDA device, we have selected the block size of 512

threads per block for the data values starting from the range

1048576 to 8388608.

The figures from Fig. 1 to Fig. 4, the x-axis represents the

number of MPIs and the y-axis represents the computation

time in milliseconds required to compute the GCDs. Here

we have chosen the different group of data values of MPIs

for the GCD computation. The groups of data values are

1048576, 2097152, 4194304, and 8388608 MPIs

respectively. We have also selected the different MPI bit-

length of each group as the 2048-bit, 4096-bit, and 8192-bit

respectively. All the GCD algorithms presented in section V

are tested on all the chosen group of data values with

varying bit-length of MPIs both on the CPU and GPU.

TABLE I

THE GPU SPECIFICATION

NVIDIA CUDA specification

CUDA Device Quadro FX 3800

CUDA driver / runtime version 5.0

No. of CUDA cores 192

Memory Bandwidth 51.2 GB/sec

GPU clock rate 1.2 GHz

Global Memory 1 GB

Max threads/ block 512

Warp size 32

TABLE II

THE CPU SPECIFICATION

HP Z600 Workstation

Processor 2 Quad Core Intel Xeon 5650

Series Processors with 12M

cache, DDR3 1333 MHz, HT,

Turbo

CPU clock rate 2.66 GHz

CPU cores 12

Memory 4GB

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

Moreover, Fig. 1 to Fig. 8 also shows the performance

evaluation of proposed parallel GCD algorithms on the

GPU, OpenMP implementation on the CPU, and

corresponding sequential CPU algorithms in case of

randomly generated different bit-length MPIs. The execution

time of the CPU is only the computation time to compute

GCDs, and execution time of the GPU does not include the

memory data transfer between CPU and GPU.

The speedup ratio shown in Fig. 9 and Fig. 10 is the ratio

of execution time of CPU to that of the GPU. The speedup

ratio clearly indicates that the GPU algorithms and OpenMP

algorithms are faster than the CPU algorithms. Moreover,

we have observed that, for larger group of data values, we

achieved more performance as compared to the small group

of data values. Also, Fig. 9 and Fig. 10 show the speedup for

GCD algorithms on varying bit-length of integers. The

OpenMP implementation corresponding to GCD algorithms

for maximum data values (8388608) achieves the speedup

as, 12.12x for Extended Euclidean algorithm, 11.44x for

Binary GCD, 12.71x for Extended Binary GCD, and 11.56x

for MEB GCD compared with a single core of the CPU. We

have achieved significant speedup on the GPU for various

GCD algorithms as 15.75x for Extended Euclidean

algorithm, 15.87x for Binary GCD, 15.24x for Extended

Binary GCD, and 17.32x for MEB GCD compared to CPU

implementation.

Fig. 1. Binary GCD on CPU

Fig. 2. Binary GCD Using OpenMP and GPU

Fig. 3. EBin GCD on CPU

Fig. 4. EBin GCD Using OpenMP and GPU

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

Fig. 5. EEA GCD on CPU

Fig. 6. EEA GCD Using OpenMP and GPU

Fig. 7. MBE GCD on CPU

Fig. 8. MBE GCD Using OpenMP and GPU

Fig. 9. OpenMP speedup

Fig. 10. GPU speedup

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

VII. CONCLUSION

In this paper, we have proposed the efficient parallel

algorithm for the computation of GCD based on Extended

Euclidean GCD, Binary GCD, Extended Binary GCD, and

Mixed Binary-Euclid GCD algorithms. The parallel

algorithms for multiple precision integers GCD computation

on the CPU using OpenMP and on the GPU using CUDA C

programming language has been implemented on NVIDIA

CUDA and Intel Xeon architectures. Moreover, the

performance evaluation on the GPU has achieved significant

high speedup in comparison with the single-core CPU. In

addition, the speedup achieved by OpenMP compared with

the single-core CPU is slightly lower than the speedup

achieved by the GPU. Therefore, both OpenMP and GPU

perform computation efficiently. This parallel

implementation can be used in various cryptography and

number theory applications where we need to handle big

numbers and also to compute the GCD for big numbers.

ACKNOWLEDGMENT

The research has been supported by Department of

Computer Science and Engineering, Visvesvaraya National

Institute of Technology (VNIT), Nagpur, India under

TEQIP-II scheme of Ph.D enrollment 2011-2012. I would

like to thank Mr. Hemprasad Patil for editing the paper and

providing valuable suggestions to restructure the paper.

REFERENCES

[1] J. M. Smiljanic and P. N. Ivanis, “Attack on the RSA Cryptosystem

using Integer Factorization,” 19th Telecommunication Forum

(TELFOR), Belgrade, Serbia, 22-24 Dec, 2011, pp. 550-553.

[2] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of

Applied Cryptography. 1st ed., CRC Press, Boca Raton, Florida,

1997.

[3] H. Cohen and G. Frey, Handbook of Elliptic and Hyperelliptic Curve

Cryptography. 2nd ed., Chapman and Hall/CRC, Taylor Francis

Group, 2006.

[4] D. B. Kirk and W. Hwu, Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann Publishers,

2010.

[5] B. Chor and O. Goldreich, “An Improved Parallel Algorithm for

Integer GCD,” Algorithmica, vol. 5, pp. 1-10, 1990.

[6] P. Wu and J. Chen, “Parallel Extended GCD Algorithm,” In Proc. 8th

Int. Parallel Processing Symposium, Cancun, 26-29 April, 1994, pp.

357-361.

[7] D. E. Knuth, The Art of Computer Programming: Seminumerical

Algorithms. 3rd ed., Vol. 2, Addison-Wesley, Reading, Mass, 1998.

[8] K. Weber, “Parallel Implementation of the Accelerated Integer GCD

Algorithm,” Journal of Symbolic Computation, vol. 21, pp. 457-466,

1996.

[9] J. Sorenson, “Two fast GCD algorithms,” Journal of Algorithms, vol.

16, No. 1, pp. 110-144, 1994.

[10] G. Cesari, “Parallel Implementation of Schönhage’s Integer GCD

Algorithm,” In Lecture Notes in Computer Science 1423, Ito J. P.

Buhler (Ed.), 1998, pp. 64-76.

[11] T. Jebelean, “Using the Parallel Karatsuba Algorithm for Long Integer

Multiplication and Division,” European Conf. on Parallel

Processing, Lecture Notes in Computer Science, Vol.1300, 1997, pp.

1169-1172.

[12] S. M. Sedjelmaci, “On a Parallel Lehmer-Euclid GCD Algorithm”, In

Proc. Int. Symposium on Symbolic and Algebric Computation,

Ontario, Canada, 2001, pp. 303-308.

[13] D. H. Lehmer, “Euclid’s algorithm for large numbers,” American

Mathematical Monthly, vol. 45, pp. 227-233, 1938.

[14] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

General Purpose GPU Programming. Addison-Wesley Publishers,

2011.

[15] Y. Lin, C. Lin and D. Lou, “Efficient Parallel RSA Decryption

Algorithm for Many-core GPUs with CUDA,” Int. Conf. on

Telecommunication Systems, Modelling and Analysis, Prague, Czech

Republic, 24-26 May, 2012.

[16] N. Nishikawa, K. Twai and T. Kurokawa, “High-Performance

Symmetric Block Cipher on CUDA,” 2nd Int. Conf. on Networking

and Computing, Osaka, 30 Nov, 2011 to 2 Dec, 2011, pp. 221-227.

[17] Q. Li, C. Zhong, K. Zhao, X. Mei and X. Chu, “Implementation and

Analysis of AES Encryption on GPU”, 9th Int. Conf. on High

Performance Computing and Communication, Liverpool, 25-27

June, 2012, pp. 843-848.

[18] N. Nishikawa, K. Iwai and T. Kurokawa, “High-Performance

Symmetric Block Cipher on Multicore CPU and GPUs,”

International Journal of Networking and Computing, vol. 2 No. 2,

pp. 251-268, 2012.

[19] S. Lee, D. Kim, J. Yi and W. Ro, “An Efficient Block Cipher

Implementation on Many-Core Graphics Processing Units,” Journal

of Information Processing Systems, vol. 8, No. 1, pp. 159-174, 2012.

[20] K. Zhao, “Implementation of Multiple-Precision Modular

Multiplication on GPU,” Technical report, 2010.

[21] K. Zhao and X. Chu, “GPUMP: a Multiple-Precision Integer Library

for GPUs,” IEEE 10th Int. Conf. on Computer and Information

Technology, Bradford, 29 June, 2010 to 1 July, 2010, pp. 1164-1168.

[22] N. Fujimoto, “High Throughput Multiple-Precision GCD on the

CUDA Architecture,” IEEE Int. Symposium on Signal Processing

and Information Technology, Ajman, 14-17 Dec, 2009, pp. 507-512.

[23] P. Emeliyanenko, “High-performance Polynomial GCD Computation

on Graphics Processors,” IEEE Int. Conf. on High Performance

Computing and Simulation, Istanbul, 4-8 July, 2011, pp. 215-224.

[24] J. P. Sorenson, “A randomized sublinear time parallel GCD algorithm

for the EREW PRAM,” Information Processing Letters, vol. 110, pp.

198-201, 2010.

[25] S. M. Sedjelmaci, “Fast parallel GCD algorithm of many integers,”

ACM Communications in Computer Algebra, vol. 47(3/4), pp. 92-93,

December 2013.

[26] J. Chen, W. Waston III, and M. F. Chen, “Efficient GCD

Computation for Big Integers on Xeon Phi Coprocessor,” 9th IEEE

Int. Conf. on Networking, Architecture, and Storage, Tianjin, 6-8

Aug. 2014, pp. 113-117.

[27] OpenMP Introduction, http://en.wikipedia.org/wiki/OpenMP

(Accessed on 22 July 2014).

[28] M. J. Quinn, Parallel Programming in C with MPI and OpenMP. 1st

ed., McGraw-Hill Science/Engineering/Math, 2003.

[29] B. Chapman, G. Jost, R. Pas, Using OpenMP: Portable Shared

Memory Parallel Programming. MIT Press, 2007.

[30] OpenMP compilers, http://openmp.org/wp/openmp-compilers/

(Accessed on 10 May 2014).

[31] NVIDIA Corporation, NVIDIA CUDA C Programming Guide,

Version 4.2, 2012.

[32] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic.

Cambridge Monographs on Computational and Applied Mathematics

(No. 18). Cambridge University Press, November 2010.

[33] M. Lehman and N. Burla, “Skip Techniques for High-Speed Carry-

Propagation in Binary Arithmetic Units,” IRE Transaction on

Electronic Computers, vol. Ec-10, No. 4, pp. 691-698, 1961.

[34] GMP Library, http://gmplib.org/ (Accessed on 10 May 2014).

[35] T. Granlund, The GNU Multiple Precision Arithmetic Library, ed.

5.1.1, 2013.

[36] M. Manssen, M. Weigel, and A. K. Hartmann, “Random Number

Generator for Massively Parallel Simulations on GPU,” The

European Physical Journal Special Topics, vol. 210 No. 1, pp. 53-

71, 2012.

Jitendra V. Tembhurne, completed his M. E. in Computer Science and

Engineering in 2011 and currently pursuing Ph. D in the Department of

Computer Science & Engineering, VNIT, Nagpur, Maharashtra, India. His

area of research is the parallelization of cryptography applications on

multi-core and many-core architecture using OpenMP and CUDA.

Shailesh R. Sathe, completed his M. Tech. from Indian Institute of

Technology (IIT), Bombay and Ph.D. from R.T.M. Nagpur University (at

VRCE/VNIT). At present, he is Professor and Dean Planning & Finance,

VNIT, Nagpur, India. He has handled many national research projects on

Image processing, Security and Parallel processing. His current research

interest includes Parallel processing, Algorithms and Theoretical Computer

Science etc. He has published more than 30 papers in various reputed

International journals/conferences.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_01

(Advance online publication: 21 November 2015)

__

