
A Formal Proof of Correctness of Construct
Association from PROMELA to Java

Suprapto, Member, IAENG, Retantyo Wardoyo, Belawati H. Widjaja, and Reza Pulungan

Abstract—The association between the subset of PROMELA’s
constructs (or statements) and the subset of Java’s constructs
is intended to provide a collection of rules that can be used as
a reference in developing a model of code translator from a
PROMELA model to a Java program. The idea arises from the
fact that, both PROMELA model and Java program are built
(or composed) by various elementary elements called constructs.
Although this kind of association has already been introduced
in some previous researches, they provided no proofs about its
correctness.

In this paper we propose a formal proof of association’s
correctness by showing the equivalence (or similarity) of the
program graphs for every two associated constructs in the
association. The correctness of association means that every two
associated constructs in association have equivalent semantics.
In addition, at the end of this paper we also introduce a
translator tool we have developed based on this association’s
definition to translate PROMELA model to Java program.

Index Terms—Constructs association, PROMELA, Java, cor-
rectness, equivalence, preserving, program graph, similarity,
semantics.

I. INTRODUCTION

The widespread use of source-to-source translation for im-
perative languages would help software engineering if such
translator could be written and if it were easier to translate
an existing program into another language than building
the program from scratch [5]. Source-to-source translation
has been studied by various researchers, and is often used
together with program optimization. It is sometime, however,
used without program optimization. Translators that do not
optimize programs but only preserve the same structure
from one language to another have significant potential for
software engineering.

A translator was also developed to detect deadlock exis-
tence on Java programs based on PROMELA and SPIN [2].
An abstract formal model expressed in PROMELA is gener-
ated from Java source using the Java2Spin translator. Then
the model is analyzed by SPIN [7], [8], and possible error
traces are converted back to traces of Java statements and
reported to the user. An indirect way of model checking
C programs was proposed in [11] by first translating the
C code to PROMELA. The translator was developed by
using syntax-directed translation techniques to perform the
translations, and several tools and languages are involved.

PROMELA is one of the most widely used modeling
language to model systems, especially distributed, reactive
and concurrent ones [10]. On the other hand, some parts

Manuscript received June 09, 2015; revised July 15, 2015.
Suprapto, R. Wardoyo, and R. Pulungan are with the Department

of Computer Science and Electronics, Faculty of Mathematics and Nat-
ural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia e-mail:
sprapto@ugm.ac.id, rw@ugm.ac.id, and pulungan@ugm.ac.id.

B.H. Widjaja is with the Faculty of Computer Science, Universitas
Indonesia, Jakarta, Indonesia e-mail: bela@cs.ui.ac.id.

TABLE I: Construct association between a subset of
PROMELA and Java constructs

PROMELA Java
Expression Expression
Assignment Assignment
Send and receive Two defined methods in separate classes together

with the required channel (buffer) that can be
invoked either by regular invocation or by socket
programming.

atomic while · · · switch, namely a switch in a while loop.
d step synchronize
if · · · fi Generally, a program is specifically built to have

a priority in selecting certain condition; in which
case nondeterminisms can be removed. Otherwise,
if nondeterminism is preserved (or at least imi-
tated), randomize is implemented.

Deterministic
for

Fixed repetition for loop.

do · · · od Repetition of selection together with nondetermin-
ism resolution as described for if · · · fi.

unless Exception handling try..catch.

of Java language can be used in the translation of certain
PROMELA properties. Therefore, Java is one of a few
reasonable candidates that can be used as a target language
for PROMELA translation [6].

A construct association from PROMELA to Java is an
association from a subset of PROMELA’s statements (or
constructs) to a subset of Java’s statements associating every
statement in the first subset to probably more than one state-
ment in the second subset. According to their functionality,
statements in PROMELA can be classified into five groups,
i.e., meta terms (9 statements), declarators (21 statements),
control flows (8 statements), basic statements (6 statements),
and predefined (21 statements) [17]. Of them, however, there
are only ten constructs in PROMELA to be selected in the
association. The selection was made by considering that
some constructs in a PROMELA model are only used for
verification purpose, hence, they are not required in the
system (or Java program) development. In addition, some
bigger constructs can be composed by several elementary
ones. An informal definition of construct association is given
in Table I.

Even though this kind of associations has already been in-
troduced in previous researches [3], [6], [16], [17], however,
the proof that can guarantee the association’s correctness has
never been provided. This research proposes a formal proof
of association’s correctness by showing the equivalence of
semantics for pair of associated constructs, and this equiv-
alence in turn is proven by their program graphs similarity.
The proof is performed by executing the following steps:

1. For each two associated constructs in the association:

1.1 Derive the program graph for PROMELA con-
struct, and its associate Java construct.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

1.2 Compare the two program graphs for their similar-
ity.

1.3 If they are not similar, then modify its associate in
Java, and go to 1.1.

2. If there are still pairs of associated constructs in the
association, then go to 1 for next pair of association.
Otherwise, go to 3.

3. Stop, and the association’s correctness is proved.

II. PRELIMINARIES

A. Program Graph

A program graph (PG) over a set of typed variables is a
digraph whose edges are labeled with conditions on these
variables and actions. It is formally defined as follows [1]:

Definition 1. A program graph PG over set V ar of typed
variables is a tuple (Loc,Act, Effect, ↪→, Loc0, g0), with:
• Loc is a set of locations,
• Act is a set of actions,
• Effect : Act × Eval(V ar) × Eval(V ar) is an effect

function,
• ↪→⊆ Loc×Cond(V ar)×Act×Loc is the conditional

transition relation,
• Loc0 ⊆ Loc is a set of initial locations, and
• g0 ∈ Cond(V ar) is the initial condition.

The program graph associated with a statement (or con-
struct) stmt formalizes the control flow when it is being
executed. It means the substatements play the role of the
locations, and a special location exit must be provided in
order to model termination. Roughly speaking, any guarded
command g ⇒ stmt corresponds to an edge with the label
g : α where α stands for the first action of stmt [1].

The notation `
g:α
↪−−→ `′ is used to concisely represent

(`, g, α, `′) ∈↪→. The condition g is also called the guard of
the conditional transition `

g:α
↪−−→ `′. If the guard is tautology

(e.g., g = true or g = ((x < 1)∨(x ≥ 1))), then it is simply
written as `

α
↪−→ `′.

The behavior of location ` ∈ Loc depends on the current
variable evaluation η. A nondeterministic selection is made
between all transitions `

g:α
↪−−→ `

′
that satisfy the condition g in

evaluation η (i.e., η |= g). The execution of action α changes
the evaluation of variables according to Effect(α, ·, ·). Sub-
sequently, the system changes into location `′. If no such
transition is possible, the system stops.

A location ` in a program graph is ignorable if the
execution of action α does not change the evaluation of
variables according to Effect(α, ·, ·) of the next location `′,
provided that any variable being involved in the computation
is completely new and independent. More formally, this
concept might be stated in the following proposition. The
ignorable locations is illustrated in Fig. 1.

Proposition 1. Let LA, LB be any two locations in a
program graph PG over variable V ar, and L1, L2, . . . , Lm
are locations induced by introducing any new variables
x′ /∈ V ar. Then the existence of L1, L2, . . . , Lm in between
LA and LB is ignorable. Hence, locations L1, L2, . . . , Lm
can be coalesced with L1 into a new single location, and
they (i.e., locations L1, L2, . . . , Lm) are called coalesceable
locations.

Fig. 1: An illustration of ignorable locations

B. Substatements

The set of substatements of a PROMELA statement (con-
struct) stmt is defined recursively [1]. The set of sub-
statements for an atomic statement stmt ∈ {expr, x =
expr, c?x, c!expr} is sub(stmt) = {stmt, exit}, since an
atomic statement only requires one-step of execution. For se-
quential composition stmt1; stmt2, the set of substatements
is defined as:

sub(stmt1; stmt2) = {stmt′; stmt2 | stmt′ ∈ sub(stmt1)

\ {exit}} ∪ sub(stmt2).

As an illustration, consider the sequential composition in
Listing 1.

Listing 1: Sequential composition
. . .
x = x + 3 ;
y = 2y + 2 ;
z = 3 z + 1 ;
. . .

Since all constructs in the composition are assignment and
in PROMELA assignments are always atomic, then sub(x =
x+3; y = 2y+2; z = 3z+1) = {(x = x+3; y = 2y+2; z =
3z+1), (y = 2y+2; z = 3z+1), (z = 3z+1), exit}. These
substatements determine a set of location, Loc, of program
graph. In addition, assignments are always executable, so
that the condition of transition is always true, Act = {x =
x+3; y = 2y+2; z = 3z+1}, and Loc0 = {(x = x+3; y =
2y+2; z = 3z+1)}. Then, the corresponding program graph
is shown in Fig. 2.

Fig. 2: Program graph for sequential composition in Listing 1

The set of substatements of if · · · fi selection statement
is defined incrementally, as the set consisting of the if · · · fi
statement itself plus substatements of its guarded commands.
That is, let iffi be if :: g1 → stmt1 . . . :: gn → stmtn fi,
then:

sub(iffi) = {iffi, exit} ∪ {
⋃

1≤i≤n

{stmt′ | stmt′ ∈ sub(stmti)

\ {stm′, exit}}}

where stm′ is the first action in stmti.
An example for a conditional statement if · · · fi is shown

in Listing 2.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

Listing 2: A conditional statement if · · · fi
cond = i f

: : t rue −> x = x + 1 ; y = 2y + 1 ;
z = 3 z + 1 ;

: : x == 0 −> c ? x ; c ! y ;
: : c ? z −> y = 3 z + 5 ;

f i

According to the definition of substatements for con-
ditional statements, sub(cond) = {cond, exit} ∪ {y =
2y + 1; , z = 3z + 1; , z = 3z + 1} ∪ {c!y}. There are
three edges going out of the initial location cond with label
true : x = x + 1 to location y = 2y + 1; z = 3z + 1, then
leaving this location with label true : y = 2y+1 for location
z = 3z+1, and subsequently leaving this location with label
true : z = 3z + 1 for location exit. Meanwhile, an edge
from location cond with label x == 0 : c?x goes to location
c!y, then leaves this location with label ¬full(c) : c!y for
location exit. In addition, out of location cond there is an
edge labeled c?z : y = 3z + 5 leaving for location exit.
Since, there is always an executable guard (i.e., true), then
it does not block. Consequently, there is no edge returning
to initial location cond. Graphically, the program graph for
conditional construct if · · · fi is shown in Fig. 3.

Fig. 3: Program graph for construct if · · · fi in Listing 2

Similarly, the set of substatements of do · · · od repetition
statement is defined as the set containing of the do · · · od
statement itself plus exit, and substatements of its guarded
commands plus loop minus exit.

Let dood be do :: g1 → stmt1 . . . :: gn → stmtn od,
then:

sub(dood) = {loop, exit} ∪ {
⋃

1≤i≤n

{stmt′; loop

| stmt′ ∈ sub(stmti) \ {stm′, exit}}

where stm′ is the first statement in stmti.
According to the definition of the set of substatements

of atomic, then sub(atomic{stmt1, stmt2, . . . , stmtn}) =
{atomic{stmt1, stmt2, . . . , stmtn}, atomic{stmti+1,
stmti+2, . . . , stmtn}, exit}. It strongly restates that
atomic is indivisible. The same is true for d step, hence
sub(d step{stmt}) = {d step{stmt}, exit}.

For unless statement, let unless construct repre-
sent {stmt11, . . . , stmt1m} unless {stmt21, . . . , stmt2n},
then:

sub(unless construct) = sub(stmt21; . . . ; stmt2n),

when stmt21 is executable for the first checking, then there
is no statement in the main sequence executed, or:

sub(unless construct) = sub(stmt11; . . . ; stmt1i−1)

∪ sub(stmt21; . . . ; stmt2n).

stmt21 is executable, when for some i, 2 ≤ i ≤ n− 1,
stmt1i will be executed, or:

sub(unless construct) = sub(stmt11; . . . ; stmt1m)

if stmt21 never executable.
Then, it can be seen that each element in the set of

substatements of PROMELA as well as Java constructs
corresponds to the locations of program graph for the cor-
responding construct. For example, the locations of pro-
gram graph for atomic statement such as assignment are
assignment itself and exit, namely sub(assignment) =
{assignment, exit}. Similarly, the locations in program
graph for if · · · fi selection statement is iffi itself plus
union of locations of each guarded command.

C. Semantics

As mentioned before, the intention of this research is to
formally prove the semantics’ equivalence of every two asso-
ciated constructs in the association. Therefore, the following
lemma helps explain the formal semantics of any PROMELA
as well as Java statements.

Lemma 1. The semantics for any statement of both
PROMELA and Java stmt is described by three rules that
classify them into one-step statement, multi-step statement,
and blocked statement. If the computation of stmt terminates
in one step by the execution of action α, then control of stmt
moves to exit after executing α:

stmt
g:α
↪−−→exit

.

If the first step of stmt leads to a location (or statement)
different from exit, then the rule looks like:

stmt
g:α
↪−−→stmt′ 6= exit

.

On the other hand, if the computation of stmt for some
reasons cannot be performed (blocked), then control does not
move. The following rule will satisfy:

stmt
g:α
↪−−→stmt

.

As a consequence, Lemma 1 leads to a more general form
of sequential composition stmt1; stmt2, that is stated in the
following corollary.

Corollary 1. Sequential composition stmt1; stmt2 is defined
by two rules that distinguish whether or not stmt1 terminates
in one step. If the computation of stmt1 terminates in one
step by executing action α, then control of stmt1; stmt2
moves to stmt2 after executing α:

stmt1
g:α
↪−−→exit

stmt1; stmt2
true:α
↪−−−−→stmt2

.

If the first step of stmt1 leads to a location (or statement)
different from exit, then the following rule applies [1]:

stmt1
g:α
↪−−→stmt′1 6= exit

stmt1; stmt2
g:α
↪−−→stmt′1; stmt2

.

If the computation of stmt1 for some reasons cannot be
performed (blocked), then control does not move, and the
following rule will satisfy:

stmt1
g:α
↪−−→stmt1

stmt1; stmt2
g:α
↪−−→stmt1; stmt2

.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

Inference rules for both PROMELA and Java constructs,
such as expression, assignment, send, receive, etc., will
be derived from both Lemma 1 and Corollary 1. Subse-
quently, these rules are used to generate program graphs for
the corresponding constructs.

D. Program Graph Equivalence
The definition of equivalence (or similarity) between two

program graphs is inspired by the definition of digraph
isomorphism. The only difference is that the bijective func-
tion f maps two locations representing statements from two
different program graphs. For any two locations `1 and
`2, f(`1) = `2 if and only if both `1 and `2 represent
two semantically equivalent statements or substatements. The
formal definition of program graph similarity is stated in the
Definition 2.

Definition 2. Let PG1 = (Loc1, Act1,Effect1, ↪→1, Loc0,1,
g0,1) and PG2 = (Loc2, Act2,Effect2, ↪→2, Loc0,2, g0,2) be
two PGs over variables V ar1 and V ar2, respectively. PG1

and PG2 are called equivalent (or similar), denoted PG1 '
PG2, only if there are two bijective functions f : Loc1 →
Loc2 and g : Loc1 × Loc1 → Loc2 × Loc2, such that:
• for any `1 ∈ Loc1 there is `2 ∈ Loc2 such that f(`1) =
`2; and

• for any (`1i , `1j) ∈ Loc1 × Loc1 there is (`2m , `2n) ∈
Loc2 × Loc2 such that g(`1i , `1j) = (`2m , `2n), where
f(`1i) = `2m , f(`1j) = `2n .

III. DISCUSSION

The list of construct associations between the subset of
PROMELA and Java constructs in Table I can be formally
defined in the Definition 3.

Definition 3. Let P and J be the subset of PROMELA con-
structs and Java constructs, respectively, in CA (construct
association). CA is defined as a relation from P to J , namely
CA : P → J , such that for any construct Cpi ∈ P , and
Cjk ∈ J , (Cpi, Cjk) ∈ CA only if there is a PROMELA
construct Cpi associated with a Java construct Cjk. This is
illustrated in Fig. 4.

Fig. 4: Association diagram from set P to J

The correctness of association defined in Definition 3
is proved by showing the similarity between two program
graphs of every two associated constructs in association.

Theorem 1. The association CA is correct only if for every
association (Cpi, Cjk) ∈ CA, Cpi ∈ P , and Cjk ∈ J , then
PG(Cpi) ' PG(Cjk), where PG(Cpi) is a program graph
for Cpi, and PG(Cjk) is a program graph for Cjk.

The proof of Theorem 1 is given in the following subsec-
tion.

A. The proof of Construct Association’s Correctness

The proof is carried out for all association (Cpi, Cjk) ∈
CA; Cpi ∈ P , Cjk ∈ J (see Fig. 4).

According to the Definition 1, a program graph consists
of a set of locations Loc, a set of actions Act, an effect
function Effect, a conditional transition relation ↪→, a set of
initial locations Loc0, and an initial condition g0.
Loc is determined by the corresponding set of substate-

ments, while the conditional transition relation is provided
by inference rules represented in Structured Operational
Semantics (SOS) notation determining the transition from
one location to other locations. In the level of program graph,
actions are normally in the form of expression, assignment,
and send or receive. The effect function could be any eval-
uation function that has any possibility to change variable’s
value in the construct. In graphical representation of program
graph, the initial location will be denoted by double-line
circle (or ellipse) pointed by an arrow.

1) Expression: In PROMELA, an expression exprP is
the most elementary construct in modeling, and it is an
atomic statement [1]. Therefore, it only needs one step of
execution when the value of exprP is not zero [9], it means
that there is a transition from an initial location to the next
location exit. This transition is depicted by the following
inference rule.

exprP
value(exprP) 6=0
↪−−−−−−−−−−→exit

On the other hand, if the value of exprP is zero, then there
is no transition to the next location. Since the expression
exprP blocks, the execution cannot be continued, namely it
has to wait until the value of exprP is not zero. The inference
rule for this transition is as follows:

exprP
value(exprP)=0
↪−−−−−−−−−−→exprP

.

The set of locations Loc of a program graph for exprP ,
PG(exprP) is determined by its substatement, so that
Loc = sub(exprP) = {exprP , exit}. Act is the evaluation
of exprP , conditional transition relation is represented by its
inference rules, the initial location, Loc0 = {exprP }, and the
initial condition, g0 is val(exprP) 6= 0. Then, the program
graph for exprP , PG(exprP), is shown in Fig. 5.

In Java, an expression exprJ has a similar form with
the one in PROMELA. Unlike expression in PROMELA,
expression in Java is not atomic—especially for the long
one. However, the synchronization in Java can be used to
ensure that there is no other process interfering the result of
expression evaluation. In this way, the atomicity of exprJ
can be preserved. In Java, this implementation is carried
out by defining some methods, such as lock() and unlock()
in a class containing global variables. Suppose header is
the name of the intended class, then the implementation of
locking is shown in Listing 3.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

Listing 3: The usage of lock and unlock
. . .
h e a d e r . l o c k () ;
e x p r J ;
h e a d e r . un lo ck () ;
. . .

Fig. 5: A program graph for a PROMELA expression, exprP

This implementation guarantees atomicity, and the pro-
gram graph for exprJ can be generated in similar way. For
example, transition to the next location exit will occur only
if the value of exprJ is not zero. See the following inference
rules:

exprJ
value(expressionJ)6=0
↪−−−−−−−−−−−−−−→exit

.

Otherwise, transition will move back to the initial location,
exprJ , as it is shown by the following inference rule:

exprJ
value(exprJ)=0
↪−−−−−−−−−−→exprJ

.

Formally, a program graph for exprJ , PG(exprJ) consists
of a set of locations, Loc = sub(exprJ) = {exprJ , exit},
a set of actions, Act containing the evaluation of exprJ ,
conditional transition relation is represented by its inference
rules, a set of initial location, Loc0 = {exprJ}, and an initial
condition, g0 is val(exprJ) 6= 0. Then, the program graph
for exprJ is shown in Fig. 6.

Fig. 6: A program graph for a Java expression, exprJ

The last step is proving that PG(exprP) ' PG(exprJ)
is satisfied. It can be seen from Fig. 5 and Fig. 6 that
there must be two bijective functions f and g, such that
f(exprP) = exprJ , f(exit) = exit; and g(exprP , exit) =
(exprJ , exit), g(exprP , exprP) = (exprJ , exprJ). Hence,
it is proven that PG(exprP) ' PG(exprJ). �

2) Assignment: Given the association (assgnP , assgnJ)
∈ CA, and we prove that PG(assgnP) ' PG(assgnJ).

In PROMELA, an assignment has the form of x = exprP ,
and like an expression, an assignment is atomic [1]. In addi-
tion, it is always executable provided that the value of exprP
and x are compatible, i.e., dom(value(exprP)) ⊆ dom(x).
The effect of its execution is that the value of exprP is stored
to variable x. Since an assignment is atomic, it only requires
one step of execution. The transition occurs from the initial
location assgnP to the next location exit as depicted by the
following inference rule:

assgnP
dom(value(expr))⊆dom(x):x←value(expr)
↪−−−−−−−−−−−−−−−−−−−−−−−−−−−→exit

.

A program graph for assgnP consists of Loc =
{assgnP , exit}, Act contains evaluation of x = exprP ,
conditional transition relation is represented by inference
rules, Loc0 = {assgnP }, and g0 = true (an assignment
is always executable). Graphically, a program graph for
assgnP is then shown in Fig. 7.

Fig. 7: A program graph for a PROMELA assignment,
assgnP

In Java, an assignment assgnJ also has the form of x =
exprJ . It is always executable, provided that x and exprJ
are compatible, i.e., type(value(exprJ)) ⊆ type(value(x).
The effect of its execution is that the value of exprJ is
stored to x. Because assignment contains expression, and in
Java expression is not atomic, then assignment is not atomic.
However, by giving it the same handling as in expression
(i.e., header.lock();x = exprJ ;header.unlock();), it can
be made atomic. Hence, the transition occurs from the initial
location assgnJ to the next location exit as described by the
following inference rule:

assgnJ
type(value(exprJ))⊆type(value(x))
↪−−−−−−−−−−−−−−−−−−−−−−→exit

.

Formally, a program graph for assgnJ consists of Loc =
{assgnJ , exit}, Act contains evaluation of x := exprJ ,
conditional transition relation is inference rule, Loc0 =
{assgnJ}, and g0 = true (an assignment is always exe-
cutable). And graphically, it is shown in Fig. 8.

Fig. 8: A program graph for a Java assignment, assgnJ

The last step is proving the similarity between
PG(assgnP) and PG(assgnJ). From Fig. 7 and Fig. 8,
it can be seen that these two program graphs are exactly
the same. Therefore, there must be two bijective functions
f and g, such that f(assgnP) = assgnJ , f(exit) = exit;
and g((assgnP , exit)) = (assgnJ , exit). Hence, it is proven
that PG(assgnP) ' PG(assgnP). �

3) Communications: PROMELA has two kinds of com-
munication operations, i.e., send and receive statements.
They are atomic [1]. Both send and receive operations as-
sume that the capacity of communication media (or channel)
is greater than zero (buffered, or asynchronous) [9].

In PROMELA, send operation has two forms: c!expr
and c!!expr. These operations can be performed when the
channel c is not full, otherwise it will block (i.e., it has to wait
until there is a space in the channel). In addition, expr and c
must be compatible. Each of these send operations, c!expr
and c!!expr, gives different effect to the channel. c!expr and
c!!expr place the value of expr in the rear, and in the front
of channel, respectively.

This operation requires one step of execution, so that
when all conditions are met the transition occurs from initial

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

location sendP to the next location exit. Their transitions
are depicted by the following inference rules:

¬full(c)

c!expr
dom(expr)⊆dom(c):c.rear←value(expr)
↪−−−−−−−−−−−−−−−−−−−−−−−−−→exit

,

and

¬full(c)

c!!expr
dom(expr)⊆dom(c):c.front←value(expr)
↪−−−−−−−−−−−−−−−−−−−−−−−−−−→exit

.

A program graph for send consists of Loc = sub(send) =
{c!expr, exit}, Act contains expression, and assignment
forms, conditional transition relation is its inference rules,
Loc0 = {c!expr}, and g0 is ¬full(c). Graphically, a
program graph for send is then shown in Fig. 9.

Fig. 9: A program graph for a send operation, c!expr

As mentioned above, the only difference between c!expr
and c!!expr is on the effect to the channel. Therefore, they
have the same program graph (see Fig. 9).

On the other hand, receive statement is used for receiving
messages from channels. Unlike send statement, it has four
forms: c?x, c??x, c? < x >, and c?? < x >, where c and x
denote the name of the channel and the list of argument(s)
used to receive the messages, respectively.

The first and third forms of the statement (written in ?)
are executable if the first message in the channel matches the
pattern from the receive statement. While, the second and
fourth forms of the statement (written in ??) are executable
if there exists at least one message anywhere in the channel
that matches the pattern from the receive statement.

A match of a message is obtained if all message fields
that contain constant values in the receive statement equal the
values of the corresponding message fields in the message. If
no angle brackets are used, the message is removed from the
channel buffer after the values are copied, otherwise (angle
brackets are used), the message is not removed and remains
in the channel.

For any form of receive statement, it should be assumed
that the channel c is not empty, otherwise it blocks (it has
to wait until there is a value in the channel). c?x needs an
additional requirement: c and x must be compatible. The
effect of c?x operation is that the value of the front channel
(i.e., c.front) will be taken from c and stored into x.

When all requirements are met, there will be a transition
from the initial location c?x to the next location exit as
depicted in the following inference rule:

¬empty(c)

c?x
dom(c)⊆dom(x):x←c.front
↪−−−−−−−−−−−−−−−−−→exit

.

The compatibility requirement for c??x is softer than the
one for the previous statement, which is there must be at least
one i, front ≤ i ≤ rear such that c.i and x are compatible.
The effect of c??x operation is that the value of the i-th
position in c (i.e., c.i) will be taken and stored into x.

When all requirements are met, there will be a transition
from the initial location c??x to the next location exit as
depicted in the following inference rule:

¬empty(c)

c??x
dom(c.i)⊆dom(x):x←c.i
↪−−−−−−−−−−−−−−−→exit

,

for some i, front ≤ i ≤ rear.
The program graph for the receive statements c?x, c? <

x >, c??x, or c?? < x > is, respectively, defined formally
with Loc = sub(c?x) = {c?x, exit}, Loc = sub(c? < x >
) = {c? < x >, exit}, Loc = sub(c??x) = {c??x, exit},
and Loc = sub(c?? < x >) = {c?? < x >, exit},
Act contains expression, assignment forms. The conditional
transition relation is inference rule, Loc0 = {c?x}, Loc0 =
{c? < x >}, Loc0 = {c??x}, and Loc0 = {c?? < x >},
and g0 is ¬empty(c). Based on the way the value moves
from the channel to the variable, the program graph for c?x
and c??x are very much the same. Therefore, the program
graphs for receive statements are sufficiently depicted one
in Fig. 10.

Fig. 10: A program graph for a receive statement

Communication operations between two or more processes
in Java (i.e., both send and receive), either they are in the
same computer or different computers are implemented by
defining a separate class containing at least a buffer and
two methods. Particularly, when two or more communicating
processes are in different computers, then either socket
programming or Remote Method Invocation (RMI) should
be implemented.

In Java, socket programming is the most widely used
concept in networking [14], [15]. Sockets provide the com-
munication mechanism between two computers using TCP
(Transmission Control Protocol). A client program creates
a socket on its end of the communication and attempts to
connect that socket to a server. When the connection is
made, the server creates a socket object on its end of the
communication. The client and server can now communicate
by writing to and reading from the socket [14], [15]. When a
communication is performed via socket, the success of both
operations actually does not only depend on contention of the
buffer, but also on the network connection. The sending and
receiving can only proceed when the buffer is not full and is
not empty, respectively, plus connection is still maintained.

In accordance with the implementation discussed above,
send and receive statements in PROMELA are implemented
by a method send and receive respectively in Java. In this
way, they can be defined in a similar way to send and
receive statements in PROMELA. Hence, the program graph
for send statement in PROMELA and send method in Java,
receive statement in PROMELA and receive method in
Java are equivalent (or similar). �

4) Weak Atomicity: Given (atomic, while − switch) ∈
CA, for atomic ∈ P , while − switch ∈ J , and we prove
that PG(atomic) ' PG(while− switch).

In PROMELA, an atomic construct is expressed in a form
of atomic{stmt1, . . . , stmtn}, in which stmti for 1 ≤ i ≤

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

n can be any construct. The effect of an atomic evaluation
toward the change of variable’s values is postponed until
the last statement stmtn is completely evaluated. In the
execution of an atomic construct, there might be stmtj for
some j, 1 ≤ j ≤ n, that blocks, and control flow stays in the
location where the list of arguments stmt1, . . . , stmtj−1 for
some j, 1 ≤ j ≤ n has completely been executed. The rest
of arguments list stmtj , . . . , stmtn will be treated exactly
the same as an atomic except with shorter length of the list.
Hence, during an atomic construct’s execution, it is possible
that other process(es) take control until stmtj is executable.

The inference rule of an atomic construct if all statements
in the argument list are executable during the execution is
defined as:

∀i, 1 ≤ i ≤ n, stmti executable
atomic{stmt1, . . . , stmtn}−→exit

.

However, if for some i, 1 ≤ i ≤ n, stmti blocks, it is defined
as:

∃i, stmti block
atomic{stmt1, . . . , stmtn}−→atomic{stmti, . . . , stmtn}

.

In the latter case, the transition stops in the “temporary” loca-
tion atomic{stmti, . . . , stmtn}. Whenever stmti becomes
executable, it will be treated similarly as the previous one
except with the shorter list of arguments.

Formally, a program graph for an atomic PG(atomic)
consists of a set of locations, Loc = sub(atomic) =
{atomic{stmt1, . . . , stmtn}, atomic{stmti, . . . , stmtn},
exit}; a set of actions, Act consists of actions are in
the form of an expression, assignment, send or receive,
Loc0 = {atomic{stmt1, . . . , stmtn}}, and g0 is stmt1
executable. Therefore, a program graph for an atomic
construct is graphically depicted in Fig. 11.

The execution of a sequence stmt1, stmts, . . . , stmtn
inside atomic might be interleaved by a certain number of
other processes because of blocking. The consequence is that
an atomic is partitioned into several subatomics. Even so,
the effect of variable valuation will be accumulated at the
execution of the last statement in the list of arguments.

Fig. 11: A program graph for an atomic construct

In Java, an atomic construct is implemented by a switch
construct inside of a while loop. The switch construct is
used to accommodate a number of guards, while the while
loop is used to make the flow of program keeps returning
to the loop until the last statement in the atomic is com-
pletely executed. A Java code fragment of switch − while
implementation is depicted in Listing 4.

Listing 4: An implementation of atomic in Java
. . .
i n t s tmt nmbr = 1 ;

whi le (s tmt nmbr <= nmbr of s tmt) {
h e a d e r . l o c k () ;
sw i t ch (s tmt nmbr) {

case 1 :
i f (! s tm t 1) break ;

s t m t 1 ;
s tmt nmbr =2;

case 2 :
i f (! s tm t 2) break ;

s t m t 2 ;
s tmt nmbr =3;

. . .

. . .
case n :

i f (! s tm t n) break ;
s t m t n ;
s tmt nmbr= nmbr of s tmt +1;

}
h e a d e r . un lo ck () ;

}
. . .

The loop of a while is exited when stmt nmbr >
nmbr of stmt—when all statements in the argument list of
an atomic had completely been executed (nmbr of stmt
denotes the number of statements are in an atomic construct).
The block of switch is surrounded by header.lock() and
header.unlock() to ensure the atomicity of a stmti exe-
cution in each case. According to the switch definition in
Listing 4, for any i, 1 ≤ i ≤ n, if stmti is false then exit
from switch before updating the value of stmt nmbr. If
i ≤ n, then stmt nmbr ≤ nmbr of stmt and program
control is still in while loop. However, once exit the switch,
header.unlock() is executed—the lock is released. This
means that other processes are allowed to take a control flow
until stmti becomes true. It is similar with what happen in
an atomic construct when stmti is not executable.

The inference rules for while − switch are defined as
follows: If stmti is executable for all i, 1 ≤ i ≤ n during
the execution, then:

∀i, 1 ≤ i ≤ n, stmti executable
[while− switch]{stmt1, . . . , stmtn}−→exit

.

However, when there is i, 1 ≤ i ≤ n, and stmti is not
executable, then

stmti, 2 ≤ i ≤ n block

[while − switch]{stmt1, . . . , stmtn}−→[while − switch]{stmti, . . . , stmtn}
.

Formally, a program graph for a while − switch con-
struct consists of a set of locations, Loc = sub([while −
switch]) = {[while−switch]{stmt1, . . . , stmtn}, [while−
switch]{stmti, . . . , stmtn}, exit}, a set of actions, Act
consists of either an expression, assignment, send or receive.
Loc0 = {[while − switch]{stmt1, . . . , stmtn}}, and g0 is
stmt1 executable. And, the corresponding program graph is
shown in Fig. 12.

To prove the equivalence (or similarity) between the pro-
gram graph for atomic construct and one for while−switch
construct in Java is done by comparing the program graph
in Fig. 11 and one in Fig. 12, and it is evident that
PG(atomic) ' PG(while− switch). �

5) Strong Atomicity: Given (d step, synchronize) ∈
CA, for d step ∈ P , synchronize ∈ J , and we prove that
PG(d step) ' PG(synchronize).

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

d step introduces a deterministic code fragment that is
executed indivisibly [17]. Syntactically, it is like atomic
construct, except some differences : (1) goto cannot come
into or go out of a d step sequence; (2) the sequence is
executed deterministically, if non-determinism occurs, it is
carried out in deterministic manner, for example, by always
selecting the first true (or executable) guard in every selection
and repetition structure; and (3) if the execution of any
statement inside the sequence can block, it is an error. For
this reason, in most cases send and receive statements
cannot be used inside d step sequence.

Fig. 12: A program graph for a while− switch construct in
Java

Formally, a program graph for a d step construct
consists of a set of locations, Loc = sub(d step) =
{d step{stmt1, . . . , stmtn}, exit}; a set of actions,
Act is in the form of an expression, assignment,
or send and receive; a set of initial locations,
Loc0 = {d step{stmt1, . . . , stmtn}}; and an initial
condition, g0 which is the executability of stmt1 (i.e., the
first statement in the sequence). And graphically, a program
graph for a d step construct is shown in Fig. 13.

Fig. 13: A program graph for a d step construct

The above situation can only be achieved when a
d step construct is in the verified model—all state-
ments in the argument list are already proved exe-
cutable. Otherwise, the program graph for d step will
consist of a set of locations, Loc = sub(d step) =
{d step{stmt1, . . . , stmtn}, error, exit}; a set of ac-
tions, Act is in the form of an expression, assignment,
send or receive; a set of initial locations, Loc0 =
{d step{stmt1, . . . , stmtn}}; and an initial condition, g0
which is the executability of stmt1. And graphically, a
program graph for a d step with the possibility of error is
presented in Fig. 14.

Fig. 14: A program graph for a d step construct with the
possibility of error

Java provides a synchronized keyword to methods that
cause only one invocation of a synchronized method on
the same object at a time. Every object has an intrinsic
lock associated with it. A thread that needs exclusive and
consistent access to an object’s fields has to acquire the
object’s intrinsic lock before accessing them, and then release
the intrinsic lock when it is done with them. A Java method
may be synchronized, which guarantees that at most one
thread can execute the method at a time. Other threads
wishing access are forced to wait until the currently executing
thread completes [14], [15].

There is also a synchronized statement in Java that forces
threads to execute a block of code sequentially. Unlike
synchronized methods, synchronized statements must specify
the object that provides the intrinsic lock.

Synchronize in Java might be used to implement d step
construct in PROMELA. In accordance with d step con-
struct’s behavior, however, synchronized statement is more
appropriate than synchronized method.

The inference rule for a synchronize is defined as:

synchronize{stmt1, . . . , stmtn}−→exit
.

Formally, a program graph for a synchronize consists
of a set of locations, Loc = sub(synchronize) =
{synchronize{stmt1, . . . , stmtn}, exit}; set of
actions, Act consists of either an expression,
assignment, send or receive; set of initial locations,
Loc0 = {synchronize{stmt1, . . . , stmtn}}; and go0 is
the executability of stmt1. And the program graph for a
synchronize is shown in Fig. 15.

Fig. 15: A program graph for a synchronize in Java

To prove the equivalence (or similarity) between the
program graph for a d step and one for a synchronize
is done by comparing these two program graphs from
Fig. 13 and Fig. 15 respectively. It is evident that
there must be two bijection functions f , and g such
that f(d step) = synchronize, f(exit) = exit, and
g(d step, exit) = g(synchronize, exit). Hence, it is proven
that PG(d step) ' PG(synchronize). �

The synchronize’s implementation in Fig. 15 is taken
by assuming (or assuring) that every stmti, 1 ≤ i ≤ n,
is executable. Otherwise, it is error as described in the
following inference rule:

∃i; 1 ≤ i ≤ n, stmti block
synchronize{stmt1, . . . , stmtn}−→error

.

Formally, a program graph for a synchronize with error
has a set of locations, Loc = {synchronize{stmt1, . . . ,
stmtn}, error, exit}; a set of actions, Act is in the form of
an expression, assignment, send or receive. The conditional
transition relation is its inference rules; a set of initial
locations Loc0 = {synchronize{stmt1, . . . , stmtn}}, and
the initial condition g0 is the executability of stmt1. The
program graph for a synchronize with error is shown in
Fig. 16.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

The only difference with a program graph in the previous
case (i.e., one with no error) is an additional location exit.
Therefore, in this case there is also an equivalence (or a
similarity) between a program graph for a d step with error
and one for synchronize with error. �

Fig. 16: The program graph for a synchronize with Error in
Java

6) Selection iffi: In PROMELA, a selection construct
iffi has a unique start and stop state. Each option sequence
inside the construct defines outgoing transitions for the start
state, leading to the stop state. By default, the end of each
option sequence leads to the control state that follows the
construct [17].

The selection construct iffi must have at least one option
sequence (for some integer i, 1 ≤ i ≤ n). A sequence,
stmti for some i, 1 ≤ i ≤ n, can be selected for execution
only when its guard statement gi is executable. If more than
one guard statements are executable, one of them will be
selected in non-deterministic manner. Otherwise, if there is
no executable guard statement, the selection construct as a
whole blocks. This means that a non-deterministic selection
construct iffi as a whole is executable only if there is at
least one guard inside it is executable.

Listing 5: A syntax of the selection construct, iffi
i f
{

: : g 1 −> s t mt 1 ;
: : g 2 −> s t mt 2 ;

. . .

. . .
: : g n −> s t mt n ;
}

f i

The syntax of the selection construct iffi is expressed in
a form as shown in Listing 5.

The inference rules of a selection construct iffi are
defined as:

stmti
h:α
↪−−→stmt′i 6= exit

iffi
gi∧h:α
↪−−−−→stmt′i

,

when the corresponding statement stmti of the selected
guard gi requires more than one step of execution, or:

stmti
h:α
↪−−→stmt′i = exit

iffi
gi∧h:α
↪−−−−→exit

,

when the corresponding statement stmti of gi is one-step of
execution, or:

iffi
¬g1∧¬g2...∧¬gn
↪−−−−−−−−−−→iffi

,

when there is no guard holds, the selection blocks.

Formally, a program graph for a nondeterministic selection
construct iffi has a set of locations, Loc = sub(iffi) =
{iffi, exit}∪

⋃
1≤i≤n{sub(stmti) \ {stm′, exit}}; a set of

actions, Act is normally in the form of an expression, assign-
ment, and send or receive; conditional transition relation is
all inference rules mentioned above; a set of initial locations,
Loc0 = {iffi}; and an initial condition, g0 is guard for
selected option gi’s. And graphically, it is shown in Fig. 17.

Fig. 17: A program graph for a nondeterministic selection
construct iffi

In Java, a nondeterministic selection construct iffi is
implemented in two approaches: (i) randomize, and (2)
priority. The behavior of the randomize approach is closer
to the one of selection construct iffi in PROMELA than
the priority. Since the priority approach behaves like most
general purpose (programming) languages including Java.

Furthermore, the randomize approach is implemented in
two versions (i.e., iffi r1, iffi r2). The first version of
randomize initially generates a random number i, 1 ≤ i ≤ n
for some positive integer n (in which n is number of guards
inside selection construct iffi). Then the value of i is
assigned to a variable choice to select the matching case
in the switch construct, and evaluate the guard gi. If the
guard gi holds (or executable), the corresponding sequence
stmti will be executed. Otherwise, the function will generate
another random number j repeatedly until finds a guard gj
for some j, 1 ≤ j ≤ n holds. As normal, header.lock() and
header.unlock() are used to guarantee an atomicity. Then,
a Java code fragment for this implementation is shown in
Listing 6.

Listing 6: A Java code fragment of random selection in Java
version one

. . .
boolean i f f l a g = f a l s e ;
whi le (! i f f l a g) {

i n t c h o i c e =1+Math . random () * nmbr o f op t s ;
sw i t ch (c h o i c e) {

case 1 :
h e a d e r . l o c k () ;
i f (! g 1) {

h e a d e r . un lo ck () ;
break ;

}
i f f l a g = t rue ;
s t m t 1 ;
break ;

case 2 :
h e a d e r . l o c k () ;
i f (! g 2) {

h e a d e r . un lo ck () ;

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

break ;
}
i f f l a g = t rue ;
s t m t 2 ;
break ;

. . .

. . .
case n :

h e a d e r . l o c k () ;
i f (! g n) {

h e a d e r . un lo ck () ;
break ;

}
i f f l a g = t rue ;
s t m t n ;
break ;

}
}
h e a d e r . un lo ck () ;
. . .

There are two levels of break statement used in this
implementation; one is inside if statement and the other is
outside. The former is used to exit from switch when guardi
is not true, and allow another process to take the program
control (by unlocking). While the later is used to exit from
the switch when a guard gi is true, after executing stmti.
Therefore, a statement header.unlock() is placed outside the
while loop.

The semantics of a Java selection construct using the
randomize approach version one is formally explained by
the following inference rules: If a randomly selected guard gi
satisfied, and the corresponding action stmti is not one-step
statement, then there is a transition to the location stmt

′

i:

i←− random(1 . . . n) ∧ sequence′i 6= exit

iffi r1
guardi
↪−−−−→sequence′i

.

If a randomly selected guard gi satisfied, and the corre-
sponding action stmti is one-step statement, then there is
a transition to location exit:

i←− random(1 . . . n) ∧ sequence′i = exit

iffi r1
gi
↪−→exit

.

If a randomly selected guard, gi is not satisfied, the transition
returns to the location while:

i←− random(1 . . . n)

iffi r1
¬guardi
↪−−−−−→iffi r1

.

A program graph for an iffi r1 is formally derived
by determining its components: Loc = sub(iffi r1) =
{iffi r1, switch, exit}∪{sub(stmti)\{stmt′, exit}}, Act
containing an expression, assignment and send or receive,
Loc0 = {iffi r1, switch}, and g0 is guard for selecting
stmti. Since a new location switch does not give any
effect toward the value changes of any other variables in
the construct, this location can be ignored. Graphically,
a program graph for construct iffi r1 is represented in
Fig. 18.

The last step is proving PG(iffi) ' PG(iffi r1).
Unlike the previous constructs, the number of locations
between these two compared program graphs is different.
This different is caused by an additional location switch
in PG(iffi r1) to facilitate a random selection. How-
ever, in accordance with Proposition 1, location switch

Fig. 18: A program graph for a random selection iffi r1
version one

in PG(iffi r1) can be coalesced with the initial location
iffi r1 becomes one new location, say iffi r

′

1. And the
result of this coalescing process is a program graph shown
in Fig. 19.

Fig. 19: The result of coalescing locations in a program graph
Fig. 18

From Fig. 19, it can be observed that number of loca-
tions in PG(iffi r

′

1) is equal to number of locations in
PG(iffi). Then, there must be two bijective functions f
and g mapping locations and transitions respectively from
PG(iffi) to PG(iffi r1). Hence, this proves PG(iffi) '
PG(iffi r1). �

Unlike the first version, this second version of implemen-
tation works by first checking all guards gi in the iffi
construct. If a gi is executable, then the number i is stored
in the corresponding position of a List variable options
(i.e., options.add(i)). If there is no executable guard (i.e.,
options.size() = 0), then blocks and waits until there is at
least one executable guard; otherwise (i.e., options.size() >
0) generates a number j, 1 ≤ j ≤ options.size() randomly
to select the corresponding case in the switch construct.
Because all of options.size() guards in the options variable
are executable, so that any number j, 1 ≤ j ≤ options.size()
generated by the random function will cause an execution of
stmtj . Therefore, only one level of break statement needed
in this implementation. Then, the Java code fragment of this
implementation is shown in Listing 7.

Listing 7: A Java code for iffi r2 implementation
. . .
boolean i f f l a g = f a l s e ;
whi le (! i f f l a g) {

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

L i s t<I n t e g e r > o p t i o n s =new L i s t () ;
h e a d e r . l o c k () ;
i f (g 1) { o p t i o n s . add (1) ; }
i f (g 2) { o p t i o n s . add (2) ; }
. . .
i f (g n) { o p t i o n s . add (n) ; }
h e a d e r . un lo ck () ;

i f (o p t i o n s . s i z e () >0) {
i f f l a g = t rue ;
i n t c h o i c e =Math . random () *

o p t i o n s . s i z e () ;
c h o i c e = o p t i o n s . g e t (c h o i c e) ;
sw i t ch (c h o i c e) {

case 1 : s tmt 1 ;
break ;

case 2 : s tmt 2 ;
break ;

. . .

. . .
case o p t i o n s . s i z e () :

s t m t o p t i o n s . s i z e () ;
break ;

}
}

}
. . .

The semantics of a randomize implementation version two
for the selection construct, iffi r2 is formally explained by
the following inference rules:

i ≤ n
stmtj ←− stmti; j + +

.

This inference rule is to store stmti with satisfied guard gi
into new variable listj , or

j ←− random(1 . . .m) ∧ stmt′j 6= exit

iffi r2
true
↪−−→stmt′j

,

when listj is not a one-step statement, i.e., list
′

j 6= exit, or:

j ←− random(1 . . .m) ∧ stmt′j = exit

iffi r2
true
↪−−→exit

,

when stmtj is a one-step statement, i.e., stmt
′

j = exit.
Formally, a program graph for the iffi r2 construct

consists of a set of locations, Loc = sub(iffi r2) =
{iffi r2, for, switch, exit}∪{sub(stmti)\{stm′, exit}};
a set of actions, Act normally contains an expression, as-
signment, send or receive; a set of initial locations, Loc0 =
{iffi r2, for, switch}, and the initial condition g0 is the
executability of gi for selecting stmti. And the program
graph for the iffi r2 construct is graphically shown in
Fig. 20.

The last step is proving PG(iffi) ' PG(iffi r2). The
only different with the first version is that in PG(iffi r2)
there are two additional locations: for to mark all satis-
fied guards, and switch to randomly select one among all
marked guards. According to Proposition 1, locations for
and switch in PG(iffi r2) can be coalesced with the initial
location iffi r2 becomes one new location, say iffi r

′

2.
The next argumentation is similar to the one in the version
one, i.e., construct of iffi r1. Hence, this concludes that
PG(iffi) ' PG(iffi r2) is proven. �

The third implementation of the selection construct iffi
is by using conditional construct else if . Therefore, the

Fig. 20: A program graph for the randomize implementation,
iffi r2 in Java

flow of execution is similar with one of else if in Java,
except the process is repeated until one of condition in
else if is executable. Then, the Java code fragment for this
implementation is shown in Listing 8.

Listing 8: A Java code for the priority selection, iffi pr
. . .
boolean i f f l a g = f a l s e ;
whi le (! i f f l a g) {

i n t c h o i c e =−1;
h e a d e r . l o c k () ;
i f (g 1) {

c h o i c e =1;
} e l s e i f (g 2) {

c h o i c e =2; }
. . .

e l s e i f (g n) {
c h o i c e =n ; }

h e a d e r . un lo ck () ;

sw i t ch (c h o i c e) {
case 1 :

i f f l a g = t rue ;
s t m t 1 ; break ;

case 2 :
i f f l a g = t rue ;
s t m t 2 ; break ;

. . .

. . .
case n :

i f f l a g = t rue ;
s t m t n ; break ;

}
}
. . .

The evaluations in an else − if construct is done se-
quentially starting from the first condition until find one
satisfied, and start to execute a corresponding option stmt. If,
however, there is no condition found satisfied, the evaluation
of conditions is carried out repeatedly until find a satisfied
one. It is why this approach is also called by the priority
selection.

The semantics of the Java priority selection construct
iffi pr is formally explained by the following inference

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

rules:

for some i, 1 ≤ i ≤ n ∧ stmt′i 6= exit

iffi pr
gi
↪−→stmt′i

,

when there is a guard gi for some i satisfied, but stmt
′

i 6=
exit, or:

for some i, 1 ≤ i ≤ n ∧ stmt′i = exit

iffi pr
gi
↪−→exit

,

when there is a guard gi for some i holds, and stmt
′

i = exit,
or:

iffi pr
¬g1∧¬g2∧...∧¬gn
↪−−−−−−−−−−−→iffi pr

,

when there is no guard satisfied, then there is no transition
occurs (i.e., it is still in the location iffi pr).

Formally, a program graph for the iffi pr consists of a
set of locations, Loc = sub(iffi pr) = {iffi pr, exit} ∪
{sub(stmti)\{stm′, exit}}; a set of actions, Act containing
an expression, assignment, and send or receive, a set of initial
locations, Loc0 = {iffi pr}, and an initial condition, g0
is the first satisfied guard gi’s. And graphically, a program
graph for priority selection iffi pr is shown in Fig. 21.

Fig. 21: A program graph for the priority selection, iffi pr

The last step is proving PG(iffi) ' PG(iffi pr).
In this implementation there is no additional locations is
required. In accordance with the behavior of if − else
construct, however, there is always only one option (or path)
corresponding to the first executable guard taken. Therefore,
a set of locations in PG(iffi pr) ⊆ a set of locations in
PG(iffi). It means, any path taken in PG(iffi pr) there
is always a corresponding path in PG(iffi). Hence, it is
also proven that PG(iffi) ' PG(iffi pr). �

7) Deterministic repetition for: In PROMELA, the de-
terministic repetition construct for is represented in three
version of forms (or syntaxes).

(i) for (var : expr1 . . . expr2){stmt}, the repetition keeps
running providing var ≥ expr1 && var ≤ expr2. Starting
with expr1, the value of var is incremented by one each time
the repetition is taken, and the repetition will stop when the
value of var reaches the value of expr2.

The semantics of the deterministic repetition for version
one is formally explained by the following inference rules:

true : var + +

for
var≥expr1&&var≤expr2
↪−−−−−−−−−−−−−−−−→for

,

or:
true : var + +

for
var<expr1‖var>expr2
↪−−−−−−−−−−−−−−→exit

.

Fig. 22: A program graph for the deterministic repetition for
version one

A program graph for the deterministic repetition for ver-
sion one is formally derived by determining its components:
Loc = sub(for) = {for, exit} ∪ {sub(stmt) \ {exit}},
Act contains an expression, assignment, and send or receive,
Loc0 = {for}, and g0 is var ≥ expr1 && var ≤ expr2.
The graphical representation of a program graph for the
deterministic repetition for is shown in Fig. 22.

(ii) for (var in array){stmt}, the value of var starts
from 0, and the repetition will keep running providing the
value of var is less than the length of the array. The value of
var is incremented by one each time the repetition is taken.

The semantics of the deterministic repetition for version
two is formally explained by the following inference rules:

true : var + +

for
var<length(array)
↪−−−−−−−−−−−−→for

,

or:
true : var + +

for
var=length(array)
↪−−−−−−−−−−−−→exit

.

A program graph for the deterministic repetition for ver-
sion two is formally derived by determining its components:
Loc = sub(for) = {for, exit} ∪ {sub(stmt) \ {exit}},
Act contains an expression, assignment, and send or receive,
Loc0 = {for}, and g0 is var < length(array). A program
graph for this version is shown graphically in Fig. 23.

Fig. 23: A program graph for the deterministic repetition for
version two

(iii) for (var in channel){stmt}, this third use of the
for statement is to retrieve all messages from a channel
sequentially. For doing this, the channel must be defined in
a special way, with a single user-defined type as its contents.
The repetition is carried out by initializing counter variable
var associated with the first location of first value stored in
the channel by one, and var is incremented each time the
repetition is taken. The repetition keeps running when the
value of var is less than or equal to the position of the last
value stored in the channel; otherwise it stops.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

The semantics of the deterministic repetition for version
three is formally described by the following inference rules:

true : var + +

for
var≤len(channel)
↪−−−−−−−−−−−→for

,

or:
true : var + +

for
var>len(channel)
↪−−−−−−−−−−−→exit

.

A program graph for the deterministic repetition for ver-
sion three is formally derived by determining its components:
Loc = sub(for) = {for, exit} ∪ {sub(stmt) \ {exit}},
Act contains an expression, assignment, and send or receive,
Loc0 = {for}, and g0 is var < len(channel). The
graphical representation of a program graph is shown in
Fig. 24.

Fig. 24: A program graph for the deterministic repetition for
version three

In Java, the three versions of deterministic repetition for
in PROMELA are implemented by a similar construct for
(init; boolean expr;update){stmt}. In this construct, the
initialization step init is executed first, and only once. Then,
the boolean expression boolean expr is evaluated. If it is
true, stmt is executed, otherwise, stmt is not executed and
flow of control jumps to the next statement past the for loop.
After stmt being executed, the flow of control jumps back
up to the update statement update. It allows updating any
loop control variables, and boolean expr is again evaluated.
The repetition keeps running until find the boolean expr is
false.

The semantics of Java’s repetition for is formally ex-
plained by the following inference rules:

true : update

for
boolean expr
↪−−−−−−−−→for

,

or:
true : update

for
¬boolean expr
↪−−−−−−−−−→exit

.

A program graph for the deterministic repetition for in
Java is formally derived by determining its components:
Loc = sub(for) = {for, exit} ∪ {sub(stmt) \ {exit}},
Act contains an expression, assignment, and send or receive,
Loc0 = {for}, and g0 is boolean expr. The graphical
representation of a program graph is shown in Fig. 25.

The last step is proving three equivalences (or similarities)
PG(for P1) ' PG(for J), PG(for P2) ' PG(for J),
and PG(for P3) ' PG(for J), where for P1, for P2,
and for P3 are deterministic for in PROMELA version one,
two, and three respectively; and for J is deterministic for
in Java.

Fig. 25: A program graph for the deterministic repetition for
in Java

From Fig. 22, 23, 24, and Fig. 25, it is evident that
their program graphs are equivalent (or similar). In other
word, it can be concluded that PG(for P1) ' PG(for J),
PG(for P2) ' PG(for J), and PG(for P3) '
PG(for J) are proven. �

8) Repetition - do: A repetition construct dood has a
single start and stop state. Each option sequence inside the
construct defines outgoing transitions for the start state. The
end of each option sequence transfer control back to the start
state of the construct, allowing for repeated execution. The
stop state of the construct can only be reached via a break
statement from inside one of its option sequence [17].

The syntax of the repetition construct dood is expressed
in a form as shown in Listing 9.

Listing 9: A syntax of the repetition construct dood
do
{

: : g 1 −> s t mt 1 ;
: : g 2 −> s t mt 2 ;

. . .

. . .
: : g m −> stmt m ;
}

od

The repetition construct must have at least one option
sequence. An option can be selected for execution only
when its guard statement is executable. If more than one
guard statement is executable, one of them will be selected
nondeterministically, otherwise, the repetition construct as a
whole blocks. This means a repetition construct as a whole
is executable if and only if there is at least one guard inside
the construct is executable.

The execution flow of the repetition dood is similar to
the one of the selection iffi, except in the repetition dood
it is repeated until finds statement break. Semantics of the
repetition construct dood is described by its reference rules
as the following.

If the corresponding sequence stmti of the satisfied guard
gi requires more than one step of execution, then:

stmti
h:α
↪−−→stmt′i 6= exit

dood
gi∧h:α
↪−−−−→stmt′i; dood

.

Otherwise, if stmti requires more than one step of execution,
then:

stmti
h:α
↪−−→exit

dood
gi∧h:α
↪−−−−→dood

.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

If the corresponding sequence stmti of the satisfied guard
gi is either equal to or contains break statement, then the
control flow will exit from the repetition (see the following
inference rule):

break ∈ stmti

dood
gi∧h:α
↪−−−−→exit

.

A program graph for the repetition construct dood is
formally generated by determining its components: a set of
locations, Loc = sub(dood) = {dood, exit}∪{sub(stmti)\
{stm′, exit}}; a set of actions Act containing an expression,
assignment, send or receive; Loc0 = {dood}, and g0 is there
at least one satisfied gi. And the graphical representation of
a program graph is shown in Fig. 26.

Fig. 26: A program graph for the nondeterministic repetition
dood

.

When stmti is completely executed and finds break
statement, then exit from the loop (repetition). Otherwise,
it returns to the loop and performs the similar process.

Like a nondeterministic selection construct iffi, a non-
deterministic repetition construct dood is also implemented
in two approaches (i.e., (1) randomize, and (2) priority) in
Java.

The first version of randomize implementation of dood
initially generates a random number i, 1 ≤ i ≤ n for
some positive integer n (i.e., n is number of guards inside
repetition construct dood). Then the value of i is assigned to
a variable choice to select the matching case in switch con-
struct, and get the lock (header.lock()) before evaluating the
corresponding guard gi. If the guard gi holds (or executable),
then release the lock (header.unlock()) before executing the
corresponding sequence stmti, and if during executing stmti
finds break statement, the repetition terminates. Otherwise,
if gi does not hold, release the lock and exit from switch.
Because the value of variable dof lag is unchanged, the
program control is still inside the while loop and try to
generate another random number j repeatedly until finds a
guard gj for some j, 1 ≤ j ≤ n holds.

The break statement at the end of stmti associated with
each case inside the switch is ensuring that the flow of
control will not fall through to subsequent cases. A Java
code fragment of randomize implementation version one is
shown in Listing 10.

Listing 10: A Java code for implementation of dood r1
. . .

boolean d o f l a g = f a l s e ;
whi le (! d o f l a g) {

i n t c h o i c e =1+Math . random () * nmbr o f op t s ;
sw i t ch (c h o i c e) {

case 1 :
h e a d e r . l o c k () ;
i f (! g 1) {

h e a d e r . un lo ck () ;
break ;

}
h e a d e r . un lo ck () ;
s t m t 1 ;
d o f l a g = t rue ; / * a break ? * /
break ;

case 2 :
h e a d e r . l o c k () ;
i f (! g 2) {

h e a d e r . un lo ck () ;
break ;

}
h e a d e r . un lo ck () ;
s t m t 2 ;
d o f l a g = t rue ; / * a break ? * /
break ;

. . .

. . .
case n :

h e a d e r . l o c k () ;
i f (! g n) {

h e a d e r . un lo ck () ;
break ;

}
h e a d e r . un lo ck () ;
s t m t n ;
d o f l a g = t rue ; / * a break ? * /
break ;

}
}
. . .

The semantics of the Java repetition construct using ran-
domize version one is formally explained by the following
inference rules. If a randomly selected guard gi satisfied, and
the corresponding action stmti is not one-step statement,
then there is a transition to location stmt

′

i:

i←− random(1 . . . n) ∧ stmt′i 6= exit

dood r1
gi
↪−→stmt′i

.

If a randomly selected guard gi satisfied, and the corre-
sponding action stmti is one-step statement, then there is
a transition to location exit:

i←− random(1 . . . n) ∧ stmt′i = exit ∧ break ∈ stmt
dood r1

gi
↪−→exit

.

If a randomly selected guard gi is not satisfied, the transition
return to location while:

i←− random(1 . . . n)

dood r1
¬gi
↪−−→dood r1

.

A program graph for the dood r1 is formally derived
by determining its components: a set of locations, Loc =
sub(dood r1) = {dood r1, switch, exit} ∪ {sub(stmti) \
{exit}}; a set of actions Act containing an expression,
assignment and send or receive; Loc0 = {dood r1, switch};
and g0 is guard for selected option gi’s. Then, a graphical
representation of the program graph for the randomize rep-
etition construct version one, dood r1 is shown in Fig. 27.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

The last step is proving PG(dood) ' PG(dood r1).
Fortunately, the similar argumentations used in proving
the equivalence (or similarity) between PG(iffi) and
PG(iffi r1) also applies in this case. Hence, it is proven
that PG(dood) ' PG(dood r1). �

Fig. 27: A program graph for the randomize repetition
version one, dood r1

In Fig. 27, gi is the first guard found satisfied in the
selection implementation.

The second version of nondeterministic repetition dood
implementation works similarly with one for nondetermin-
istic selection iffi version two plus the mechanism of
determining whether exit from or return to the loop. A
Java code fragment for the implementation is depicted in
Listing 11.

Listing 11: A Java code for the implementation of dood r2
. . .
boolean d o f l a g = f a l s e ;
whi le (! d o f l a g) {

L i s t<I n t e g e r > o p t i o n s =new L i s t () ;
h e a d e r . l o c k () ;
i f (g 1) { o p t i o n s . add (1) ; }
i f (g 2) { o p t i o n s . add (2) ; }
. . .
i f (g n) { o p t i o n s . add (n) ; }
h e a d e r . un lo ck () ;

i f (o p t i o n s . s i z e () >0) {
i f f l a g = t rue ;
i n t c h o i c e =Math . random () *

o p t i o n s . s i z e () ;
c h o i c e = o p t i o n s . g e t (c h o i c e) ;
sw i t ch (c h o i c e) {

case 1 :
s t mt 1 ;
d o f l a g = t rue ; / * a break ? * /
break ;

case 2 :
s t mt 2 ;
d o f l a g = t rue ; / * a break ? * /
break ;

. . .

. . .
case o p t i o n s . s i z e () :

s t m t o p t i o n s . s i z e () ;
d o f l a g = t rue ; / * a break ? * /
break ;

}
}

}
. . .

The semantics of the randomize implementation for repeti-
tion construct dood version two in Java is formally depicted
by the following inference rules.

To mark stmti with the corresponding satisfied guard gi
into a new list variable options.add(i) for i ≥ 1:

i ≤ n
stmtj ←− stmti; j + +

.

If listj is not a one-step statement, i.e., list
′

j 6= exit, then:

j ←− random(1 . . .m) ∧ stmt′j 6= exit

dood r2
true
↪−−→stmt′j

.

Otherwise, if stmtj is a one-step statement, i.e., stmt
′

j =
exit, then:

j ←− random(1 . . .m) ∧ stmt′j = exit

dood r2
true
↪−−→exit

.

A program graph for the dood r2 is formally de-
rived by determining its components: a set of locations,
Loc = sub(dood r2) = {dood r2, for, switch, exit} ∪
{sub(stmti) \ {stm′, exit}}; a set of actions Act contain-
ing an expression, assignment, send or receive; Loc0 =
{dood r2, for, switch} = {dood r

′

2}; and g0 is guard for
selected option gi’s. The graphical representation of program
graph for construct dood r2 is shown in Fig. 28.

Fig. 28: A program graphs for the randomize version two in
Java, dood r2

The last step is proving PG(dood) ' PG(dood r2). To
do this, the argumentations used in proving PG(iffi) '
PG(iffi r2) will apply again in this case. Hence, it is
proved that PG(dood) ' PG(dood r2). �

The third implementation of a nondeterministic repetition
construct dood is by using a conditional construct else if .
In this implementation, the flow of execution is similar to one
of esle if in Java, except the process is repeated until one of
condition in else if (or from guard in dood) is executable.
Then, a Java code fragment of implementation is depicted
in Listing 12.

Listing 12: A Java code fragment of dood priority imple-
mentation

. . .
boolean d o f l a g = f a l s e ;
whi le (! d o f l a g) {

i n t c h o i c e =−1;

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

h e a d e r . l o c k () ;
i f (g 1) {

c h o i c e =1;
} e l s e i f (g 2) {

c h o i c e =2; }
. . .

e l s e i f (g n) {
c h o i c e =n ; }

h e a d e r . un lo ck () ;

sw i t ch (c h o i c e) {
case 1 :

s t mt 1 ;
d o f l a g = t rue ; / * a break ? * /
break ;

case 2 :
s t mt 2 ;
d o f l a g = t rue ;
break ;

. . .

. . .
case n :

s t mt n ;
d o f l a g = t rue ;
break ;

}
}
. . .

The conditions in else − if construct are sequentially
evaluated starting from the first until find one is satisfied,
and start to execute a corresponding stmt. If, however, there
is no condition found satisfied, the evaluation of condition is
carried out repeatedly until find a satisfied one.

The semantics of Java priority selection construct dood pr
is formally explained by the following inference rules. If
there is a guard gi for some i satisfied, but stmt

′

i 6= exit,
then:

for some i, 1 ≤ i ≤ n ∧ stmt′i 6= exit

dood pr
gi
↪−→stmt′i

.

If there is a guard gi for some i holds, and stmt
′

i = exit,
then:

for some i, 1 ≤ i ≤ n ∧ stmt′i = exit

dood pr
gi
↪−→exit

.

Otherwise, if there is no guard holds, then there is no
transition occurs (it is still in the location dood pr), then:

dood pr
¬g1∧¬g2∧...∧¬gn
↪−−−−−−−−−−−→dood pr

.

Fig. 29: A program graph for the priority repetition dood pr

A program graph for the dood pr is formally derived
by determining its components: a set of locations, Loc =
{dood pr, exit} ∪ {sub(stmti) \ {stm′, exit}}; a set of
actions Act containing an expresser assignment, send or
receive, Loc0 = {dood pr}, and g0 is the first satisfied
guard gi’s. Program graph for priority repetition (dood pr)
construct is also shown graphically in Fig. 29.

To prove that PG(dood) ' PG(dood pr) is sufficiently
to show that a set of location in PG(dood pr) is subset
of a set of locations of PG(dood pr). From their program
graphs definition, Fig.ure 26, and Fig.ure 29, it can be
seen that a set of location in PG(dood pr) is subset of a
set of locations of PG(dood pr). Hence, it is proven that
PG(dood) ' PG(dood pr). �

9) Exception Handling: In PROMELA, an unless con-
struct defines an exception handling routine. Similar to the
repetition and selection constructs, the unless construct is not
really a statement, but a method to define the structure of the
underlying automaton and to distinguish between higher and
lower priority of transitions within a single process. It can
appear anywhere a basic PROMELA statement can appear
[17].

The unless construct has syntax:

{ms1,ms2, . . . ,msn}unless{es1, es2, . . . , esm},

in which {ms1,ms2, . . . ,msn} and {es1, es2, . . . , esm} are
called {main sequence} and {escape sequence} respec-
tively.

The guard of either sequence can be either a single
statement, or it can be an iffi, dood, or lower level
unless construct with multiple guards and options for ex-
ecution. The way of how to execute the unless construct
can be explained as follows. Anytime to execute statement
listed in main sequence, the guard (first statement in
escape sequence) es1 will be checked first. If it is exe-
cutable, the flow of control will move to escape sequence,
and will never return to main sequence. So that, if the
first statement is executable in the time the-ith statement in
main sequence being executed, starting the ith statement
until the last statement in main sequence will never be
executed.

The semantics of the unless construct is explained by the
following inference rules: For some i; i = 1, 2, ..., n− 1, n:

ms
′

i = exit

msi;msi+1; . . . ;msn
¬es1
↪−−−→msi+1;msi+2; . . . ;msn

,

when es1 is not executable, and msi is one-step execution
statement (ms

′

i = exit), then there is a transition from
msi;msi+1; . . . ;msn to msi+1;msi+2; . . . ;msn, or:

ms
′

i 6= exit

msi;msi+1; . . . ;msn
¬es1
↪−−−→ms′i;msi+1; . . . ;msn

,

when es1 is not executable, but msi is multi-step execution
statement (ms

′

i 6= exit), then there is a transition from
msi;msi+1; . . . ;msn to ms

′

i;msi+1; . . . ;msn, or:

msi;msi+1; . . . ;msn
es1
↪−−→es1; es2; . . . ; esm

,

when es1 is executable, the control flow moves to
es1; es2; . . . ; esm and never comes back.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

A program graph for the unless construct is derived
by determining its components: a set of locations, Loc =
(unless) = {unless, exit} ∪ {sub(stmti) \ {exit}}; a set
of actions, Act containing an expression, assignment, send or
receive; a set of initial locations, Loc0 = {unless}; and an
initial condition, g0 is es1. Then, the graphical representation
of the program graph is shown in Fig. 30.

Fig. 30: A program graph for the unless construct

Based on the unless construct’s flow of execution, and
there is no direct corresponding construct in Java, then the
unless construct is implemented by try − catch construct.
In order to simulate the unless construct’s flow of execution,
a Java code fragment of this implementation is described in
Listing 13.

Listing 13: A Java code fragment of try− catch implemen-
tation for unless
. . .
t r y {

i f (es 1 != 0) throw New E x c e p t i o n ;
ms 1 ;

i f (es 1 != 0) throw New E x c e p t i o n ;
ms 2 ;

. . .
i f (es 1 != 0) throw New E x c e p t i o n ;

ms n ;
}

ca tch (E x c e p t i o n ex) { es 1 ; es 2 ; . . . ; es m}
. . .

Each time msi, i ∈ {1, 2, ..., n} is being executed, es1
must be checked first. If es1 is executable, the flow of
control moves to the catch section. Once it reaches the catch
section, it will never return. This means, it starts executing
all statements in the catch’s section. In another word, all
of ms1,ms2, . . . ,msn will be executed when es1 is never
executable during the execution of ms1,ms2, . . . ,msn.

The flow of control of try−catch (i.e., implementation of
unless) is depicted by its program graph shown in Fig. 31.

The semantics of the try − catch construct is explained
by the following inference rules. If for some i, i =
1, 2, ..., n − 1, n, and msi is one-step statement and es1 is
still not executable, there is an intermediate transition from
msi;msi+1; . . . ;msn to msi+1;msi+2; . . . ;msn, then:

ms
′

i = exit

try{msi; . . . ;msn}
¬es1
↪−−−→try{msi+1;msi+2; . . . ;msn}

.

If for some i, msi is multi-step statement and es1 is
still not executable, an intermediate transition is from
msi;msi+1; . . . ;msn to ms

′

i;msi+1; . . . ;msn, then:

ms
′

i 6= exit

try{msi; . . . ;msn}
¬es1
↪−−−→try{ms′i;msi+1; . . . ;msn}

.

Otherwise, once es1 executable, the transition occurs
from the location msi;msi+1; . . . ;msn to location
es1; es2; . . . ; esm, and:

try{msi;msi+1; . . . ;msn}
es1
↪−−→es1; es2; . . . ; esm

.

Fig. 31: A program graph for the try− catch’s construct in
Java

The last step is proving that PG(unless) ' PG(try −
catch). Based on Fig. 30, and Fig. 31, there must be
two bijective functions f , and g such that PG(unless) '
PG(try − catch). �

IV. THE P2J TRANSLATOR TOOL

The work of proving the association’s correctness is a
part of the code translator tool development. This code
translator tool translates a model of PROMELA to a Java
program. The correctness of the association will guarantee
the preserving semantics. The developed translator is named
by P2J stand for PROMELA to Java. It is developed based
on the association construct CA defined from a subset of
constructs of PROMELA and a subset of constructs of Java.

Fig. 32: An example of PROMELA model to be translated

Fig. 32 shows a simple example of model consisting of the
declaration of global variables including channel, and two
processes (proctype), i.e. satu and init. The process satu is

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

composed by some elementary constructs, i.e., expression,
assignment, atomic, and nondeterministic selection iffi.
And the init process consists of two statements run.

The model in Fig. 32 is translated to five Java classes—
HeaderInterface (stored in a Library), HeaderImpl
(header implementation), ChannelLauncher (to run class
channel), satu and init (see Fig. 33).

Fig. 33: The list of classes as the result of translation

These classes correspond to respectively the global decla-
ration variables, channel declaration, and two processes satu
and init of the translated PROMELA model. The result of
this translation is depicted by their class definitions as shown
in Fig. 33, 34, 35, 36 and 37, respectively.

Fig. 34: The class definition of HeaderImpl

Fig. 35: The class definition of ChannelLauncher

Channel is run similarly as header, so that the method
main() not only runs header itself but also runs the chan-
nels in the global declaration. This will work provided all
channels reside in the same machine as header. In case the

channels are separated in different machines from header,
each machine needs launcher for channel.

Fig. 36: The class definition of satu

Fig. 37: The class definition of init

V. CONCLUSION

This paper has proved the correctness of association from
a subset of PROMELA constructs to a subset of Java con-
structs. The association’s correctness is proved by showing
the equivalence (or similarity) of program graph for every
pair of associated constructs in the association. The similarity
of two program graphs is determined by the equivalence of
corresponding locations between the two program graphs.
The number of locations of program graph for any construct
corresponds to the number of elements in the substatement
of construct (or statement).

Several pairs of associations have exactly the same pro-
gram graphs, and some do not. For those pairs that have
exactly the same program graphs, their equivalence can be
shown in a straightforward manner. On the other hand, those
that do not have exactly the same program graphs need some
additional steps to equalize their number of locations. This
is done by coalescing ignorable locations together with the
previous closest location into one new location.

The different number of locations in program graph for
Java constructs are caused by two reasons: (i) most con-
structs in PROMELA do not have direct corresponding
constructs in Java; hence combining more than one con-
struct is required, and yields additional locations, and (ii)

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

PROMELA models need verification (or simulation), while
Java programs need execution. In verification, all possible
options (such as in selection and repetition) will be taken,
while in execution only one is taken.

The last section has shown the implementation of the de-
fined construct association in developing a source-to-source
code translator from PROMELA models to Java programs,
P2J Code Translator that preserves semantics.

REFERENCES

[1] C. Baier, and J. P. Katoen. Principles of Model Checking. The MIT
Press, Cambridge, Massachussets, London England, 2008.

[2] C. Demartini, R. Iosif, and R. Sisto. Modeling and Validation of Java
Multithreading Applications using SPIN. Dipartimento di Automatica e
Informatica, Politecnico di Torino corso Duca degli Abruzzi 24, 10129
Torino (Italy).

[3] C. Pronk. Promela to Java - Automatic translation. Slides of TU Delft
course IN4023: Advanced Software Engineering, 2007. Adapted from
slides of Twente by T.C.Ruys.

[4] C. Wimberger. Source to Source Translator from C# to Java and Action
Script. Journal of Kepler University Linz (KJU), 2008.

[5] D. A. Plaisted. Source-to-Source Translation and Software Engineering.
Journal of Software Engineering and Applications, 2013, 6, 30-40.

[6] E. Vielvoije. Promela to Java, Using an MDA Approach. Thesis, 2008.
[7] Gerald J. Holzmann. The Model Checker SPIN. IEEE Transactions on

Software Engineering, 23(5):17, 1997.
[8] Gerald J. Holzmann. The SPIN Model Checker: Primer and Reference

Manual. Addison-Wesley Professional, 2003. ISBN 0 321 228628.
[9] I. Schaefer. Software Engineering Using Formal Methods - Introduction

to PROMELA. Institute for Software Systems Engineering, TU Braun-
schweig, Germany.

[10] J. Magee, and J. Kramer. Concurrency State Models Java Program-
ming. John Wiley & Sons, Ltd, 2006.

[11] K. Jiang. Model Checking C Programs by Translating C to PROMELA,
2009.

[12] L. Aceto, A. Ingolfsdottir, K. G. Larsen, and J. Srba. Reactive Systems
- Modeling, Specification, and Verification. Cambridge University Press,
2007. ISBN 978-0-521-87546-2.

[13] M. Pawlan. Essentials of the Java Programming Language. A Hands-
On Guide. Sun Microsystems, Inc. All right reserved.

[14] Sun Microsystems. The Source for Java Developers. The Java Home-
page. http://java.sun.com/.

[15] Sun Microsystems. Java Tutorial. http://www.tutorialspoint.com/.
Copyright ©tutorialspoint.com/.

[16] Suprapto, R. Wardoyo, R. Pulungan, and B. Wijaya A Scheme of
Construct Association from PROMELA model to Java program. Proc.
4th FTRA, 2013, p. 11-12.

[17] T. Ruys. A Tutorial Introduction to SPIN. SPIN On-line References.
The Homepage: spinroot.com/spin/Man/

[18] W. Nabialek, A. Janowska, and P. Janowski. Translation of Timed
Promela to Timed Automata with Discrete Data. John Wiley Sons, Ltd,
2008.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_03

(Advance online publication: 21 November 2015)

__

