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Abstract—In recent years, many learning technologies have
been applied in ontology similarity measuring and ontology
mapping via learning an ontology function f : V → R which
maps an ontology graph to the real line. In these settings, all the
information for an ontology vertex (corresponding to concept)
is expressed as a vector. However, in a special application, the
value of ontology function for each ontology vertex is deter-
mined by a few components of the vector. The aim of feature
extraction for ontology vector is to obtain these components to
fix the index set of the vector, and such a procedure is equivalent
to learning an ontology sparse vector in which most components
are zero. In this paper, we raise an ontology sparse vector
learning model for ontology similarity measuring and ontology
mapping in terms of SOCP. The balance term consists ofΩ
norm, and the directed acyclic graph is employed in ontology
setting for backward and forward procedure. Then, the active
index set algorithm is designed to moderate the value ofp,
thus applications will be extended. Finally, five experiments
are presented on various fields to verify the efficiency of the
new ontology algorithm for ontology similarity measuring and
ontology mapping in multidisciplinary research.

Index Terms—ontology, similarity measure, ontology map-
ping, ontology sparse vector, second order cone programming

I. I NTRODUCTION

ONTOLOGY is derived from philosophy to describe
the natural connection of things and the inherently

hidden connections of their components. In information and
computer science, ontology is often taken as a model for
knowledge storage and representation. It has shown exten-
sive applications in a variety of fields, such as: knowledge
management, machine learning, information systems, image
retrieval, information retrieval search extension, collaboration
and intelligent information integration. Since a few years
ago, because of its efficiency as a conceptually semantic
model and an analysis tool, ontology has been favored by
researchers from pharmacology science, biology science,
medical science, geographic information system and social
sciences (for instance, see Przydzial et al., [1], Koehler et
al., [2], Ivanovic and Budimac [3], Hristoskova et al., [4],
and Kabir [5]).

Manuscript received June 18, 2015; revised August 21, 2015. This work
was supported in part by the Key Laboratory of Educational Informatization
for Nationalities, Ministry of Education, the National Natural Science
Foundation of China (60903131).

M. H. Lan is with Department of Computer Science and Engineer-
ing, Qujing Normal University, Qujing, 655011, China, e-mail: lan-
huimei97@163.com.

J. Xu is with Department of Computer Science and Engineering, Qujing
Normal University, Qujing, 655011, China, e-mail: xujian@163.com.

W. Gao is with the School of Information and Technology, Yunnan
Normal University, Kunming, 650500, China, e-mail: gaowei@ynnu.edu.cn.

The structure of ontology is usually represented as a sim-
ple graph by researchers. We make every concept in ontology
correspond to a vertex, so do the objects and elements. Then
each (directed or undirected) edge on an ontology graph
symbolizes a relationship (or potential link) between two
concepts (objects or elements). LetO be an ontology andG
be a simple graph corresponding toO. It can be attributed
to getting The similarity calculating function, the nature of
ontology engineer application, can be used to compute the
similarities between ontology vertices. These similarities rep-
resent the intrinsic link between vertices in ontology graph.
The ontology similarity measuring function is obtained by
measuring the similarity between vertices from different
ontologies, which is the goal of ontology mapping. The
mapping serves as a bridge connecting different ontologies,
through which a potential association between the objects or
elements from different ontologies is gained. Or rather, the
semi-positive score functionSim : V ×V → R+∪{0} maps
each pair of vertices to a non-negative real number.

These years, ontology technologies have shown extensive
applications in various fields. Ma et al., [6] presented a
technology for stable semantic measurement based on the
graph derivation representation. Li et al., [7] raised an on-
tology representation method for online shopping customers
knowledge in enterprise information. By means of processing
expert knowledge from external domain ontologies and in
terms of novel matching tricks, Santodomingo et al., [8]
raised a creative ontology matching system which gives
complex correspondences. Pizzuti et al., [9] described the
main features of the food ontology and some examples of
application for traceability purposes. Lasierra et al., [10]
argued that ontologies can be used to design an architecture
for monitoring patients at home. More ontology applications
on various engineering can refer to [11], [12], [13] and [14].

Using ontology learning algorithm is a good way to solve
the ontology similarity computation, and a ontology function
f : V → R can be obtained. After using the ontology
function, the ontology graph is mapped into a line which
is made up of real numbers. The similarity between two
concepts then can be measured by comparing the difference
between their corresponding real numbers. Dimensionality
reduction is the essence of this idea. A vector can be used
to express all its information, in order to associate the
ontology function with ontology application, for vertexv.
And then, we slightly confuse the notations and usev to
denote both the ontology vertex and its corresponding vector
with the purpose to facilitate the representation. The vector
is mapped to a real number by a dimensionality reduction
operator, ontology functionf : V → R, which maps multi-
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dimensional vectors into one-dimensional vectors.
There are several effective methods of getting efficient

ontology similarity measure or ontology mapping algorithm
in terms of ontology function. Wang et al., [15] considered
the ontology similarity calculation in terms of ranking learn-
ing technology. Huang et al., [16] raised the fast ontology
algorithm in order to cut the time complexity for ontology
application. Gao and Liang [17] presented an ontology opti-
mizing model in which the ontology function is determined
by virtue of NDCG measure, and it is successfully applied
in physics education. Since large parts of ontology structure
can be tree-shaped, researchers explored the learning theory
approach for ontology similarity calculating and ontology
mapping in specific setting when the structure of ontology
graph has no cycle. In the multi-dividing ontology setting,
all vertices in ontology graph or multi-ontology graph are
divided intok parts corresponding to thek classes of rates.
The rate values of all classes are determined by experts. In
this way, a vertex in a ratea has larger score than any
vertex in rateb (if 1 ≤ a < b ≤ k) under the multi-
dividing ontology functionf : V → R. Finally, the similarity
between two ontology vertices corresponding to two concepts
(or elements) is judged by the difference of two real numbers
which they correspond to. Hence, the multi-dividing ontology
setting is suitable to get a score ontology function for an
ontology application if the ontology is drawn into a non-
cycle structure.

In this article, we present a new ontology learning algo-
rithm for ontology similarity measuring and ontology map-
ping by means of SOCP (second order cone programming).
The rest of the paper is arranged as follows: in Section 2,
detailed description of setting and notations for our ontology
problem is manifested; in Section 3, we obtain the main
algorithm for ontology index set algorithm based on SOCP;
in Section 4, five respective simulation experiments on plant
science, humanoid robotics, biology, physics education and
university application are designed to test the efficiency of
our new ontology algorithm, and the data results indicate
that our algorithm has a high precision ratio for these
applications.

II. SETTING AND NOTATIONS

Let V ⊂ Rd (d ≥ 1) be a vertex space (or the instance
space) for ontology graph, and the vertices (or, instances)
in V are drawn randomly and independently according to
some (unknown) distribution. Given a training setS =
{v1, · · · , vn} of size n in V , the goal of ontology learning
algorithms is to obtain a score functionf : V → R, which
assigns a score to each vertex.

Since the vector which corresponds to a vertex of ontology
graph contains all the information of the vertex concept,
attribute and the neighborhood structure in the ontology
graph, it’s always with high dimension. For instance, in the
biological ontology, a vector may contain the information of
all genes. In addition, ontology graph with a large number
of vertices makes ontology structure very complicated, and
the most typical example is the GIS (Geographic Information
System) ontology. These factors may lead to the fact that the
similarity calculation of ontology application will be very
large. However, in fact, the similarity between the vertices
is determined by a small part of the vector components.

For example, in the application of biological ontology, a
genetic disease often results from a small number of genes,
leaving most of the other genes irrelevant. Furthermore, in
the application of geographic information system ontology, if
an accident happens in a place and causes casualties, then we
need to find the nearest hospital ignoring schools and shops
nearby, i.e., we just need to find neighborhood information
that meets specific requirements on the ontology graph.
Therefore, tremendous academic and industrial interest is
attracted to researching into the sparse ontology algorithm.

In practical application, ontology function can be ex-
pressed by

fβ(v) =
p∑

i=1

viβi. (1)

Here β = (β1, · · · , βp) is an ontology sparse vector which
is used to shrink irrelevant component to zero. To determine
the ontology functionf , we should learn the sparse vectorβ
first. One popular ontology learning model with the balance
term g(β) of the unknown sparse vectorβ ∈ Rp:

min
β∈Rp

Y (β) = l(β) + g(β), (2)

where l(β) is a smooth and convex ontology loss function
and g(β) is a balance term which controls the sparsity of
ontology sparse vectorβ. For example, the balance term
usually takes the form ofg(β) = λ‖β‖1.

Fixed β ∈ Rp and J ⊆ {1, · · · , p} with cardinality
|J |, βJ denotes the vector inR|J| of elements ofβ are
indexed by the element of subsetJ . For M ∈ Rp×m,
MIJ ∈ R|I|×|J| denotes the sub matrix ofM restricted
to the columns indexed byJ and the rows indexed byI.
For arbitrarily finite setA with cardinality |A|, the |A|-
tuple (ya)a∈A ∈ Rp×|A| is the collection ofp-dimensional
vectors ya marked by the elements ofA. Let Y be the
collection of responses (for instance,Y = R), and we
discuss in this paper the ontology problem of predicting a
random variableY ∈ Y. The sample set here is denoted
as n observations(vi, yi) ∈ Rp × Y, i = 1, · · · , n. The
empirical risk of sparse ontology vectorβ ∈ Rp is denoted
by l(β) = 1

n

∑n
i=1 l(yi, β

T vi), where l : Y × R → R+

is a convex and continuously differentiable ontology loss
function.

Let C be a sub-collection of the index set of{1, · · · , p}
satisfies∪C∈CC = {1, · · · , p}. We emphasize here thatC
may not be a partition of{1, · · · , p}, and it is possible for
elements ofC to overlap. Let(dC)C∈C be a |C|-tuple of p-
dimensional vectors withdC

j > 0 if j ∈ C and dC
j = 0

otherwise. Hence, the normΩ for balance part is introduced
as

Ω(β) =
∑

C∈C
(
∑

j∈C

(dC
j )2|βj |2) 1

2 =
∑

C∈C
‖dC · β‖2. (3)

The samevariableβj contained in two distrinct index sets
C1, C2 ∈ C is allowed to be weighted differently inC1 and
C2 (denoted bydC1

j anddC2
j respectively).

We consider the following ontology sparse problem:

min
β∈Rp

1
n

n∑

i=1

l(yi, β
T vi) + µΩ(β) (4)

whereµ ≥ 0 is an ontology balance parameter. Letβ̂ be the
solution of ontology problem (4) in what follows.
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II I. M AIN ONTOLOGY LEARNING ALGORITHM

A. Backward and Forward Procedure

In this part, we discuss the connection between the nonzero
patterns by which the estimated sparse ontology vectorβ̂ is
satisfied and the normΩ which is defined by (3). First, we
describe the collection of nonzero patterns, then we manifest
the go back and forth from index sets to patterns in terms of
forward and backward procedure.

The balance termΩ(β̂) =
∑

C∈C ‖dC · β̂‖2 is a mixed
(l1, l2)-norm. From the index set viewpoint, it operates like
an l1-norm and thusΩ leads to index set sparsity. From
this point of view, eachdC · β̂, and equivalently eachβC

is supported to be 0. Moreover, thel2-norm can’t imply
advance sparsity within the index setsC ∈ C. It seems that
for a fixed sub collection of index setC′ ⊆ C, the vectorsβC

connects the index setsC ∈ C′ is just equal to 0, and causes
a collection of zeros which is the union of these index sets
∪C∈C′C. Thus, the collection of permitted zero patterns is
the union closure ofC, i.e.,

Z = { sup
C∈C′

C; C′ ⊆ C}.

Substitute for considering the collection of zero patternsZ,
it is commodious to deal with nonzero patterns, and set

P = {∩C∈C′Cc; C′ ⊆ C} = {Zc : Z ∈ Z}.
It is equivalent to employP or Z to take the complement
of each number of these collections.

Suppose thatl : (y, y′) → l(y, y′) is nonnegative and
satisfies that for each pair of(y, y′) ∈ R × R, we deduce
∂2l
∂y2 > 0 and ∂2l

∂y∂y′ (y, y′) 6= 0. The Gram matrix of ontology
data is denoted asQ = 1

n

∑n
i=1 viv

T
i . It is verified that ifQ

is invertible or{1, · · · , p} ∈ G for the ontology optimization
problem in (4) withµ > 0, then this problem has a unique
solution.

For the zero patterns of the solution of the ontology
problem in (4): we suppose thatY = (y1, · · · , yn)T is
a realization of an absolutely continuous probability distri-
bution. The maximal number of linearly independent rows
in the matrix (v1, · · · , vn) ∈ Rp×n is denoted byk. For
µ > 0, any solution of the ontology problem in (4) with
at most k − 1 nonzero coefficients has a zero pattern in
Z = {∪C∈CC; C′ ⊆ C} almost surely. That is to say,
if Y = (y1, · · · , yn)T is a realization of an absolutely
continuous probability distribution, then the ontology sparse
solutions have a zero pattern inZ = {∪C∈C′C : C′ ⊆ C}.
Therefore, the ontology problem in (4) has a unique solution
if the Gram matrixQ can be invertible, and its zero pattern
is geared toZ.

Following are the four examples on norms associated with
our pattern.
Example 1. l2-norm:C is consisted of only one element-the
entire collection{1, · · · , p}, and the collection of permitted
nonzero patterns is consisted of∅ and the entire collection
{1, · · · , p}.
Example 2.l1-norm:C is the collection of all independent el-
ements thusP becomes the set of all possible sub-collections.
Example 3. l2 − l1 mixed norm:C is the collection of all
independent elements and the entire collection{1, · · · , p},
andP becomes the collection of all possible sub-collections.
Example 4.Group version ofl1-norm:C is consisted of any

dividing of {1, · · · , p}, and thus we haveP = Z is the
collection of all possible unions of the elements.

In what follows, we focus on the following two problems:
(3) proceed from the index setsC, if there is an available
method to generate the collection of nonzero patternsP; (2)
on the contrary, fixedP, how can the index setsC andΩ(β)
be schemed?

We study the characteristics of the collection of index
setsC and its corresponding collections of patternsP and
Z. The collection of zero patternsZ (homologous, the
collection of nonzero patternsP) is closed under union
(homologous, intersection), i.e., for anyK ∈ N and arbitrary
z1, · · · , zK ∈ Z, ∪K

k=1zk ∈ Z (homologous,p1, · · · , pK ∈
P, ∩K

k=1pk ∈ P). This reveals that we should suppose it is
closed under intersection if reverse engineering the collection
of nonzero patterns. Or else, the best we can do is to handle
its intersection closure.

Given a collection of index setsC, we can define for any
sub-collectionI ⊆ {1, · · · , p} the C-adapted hull, or simply
hull, as:

H(I) = {∪C∈C,C∩I=∅C}c

which is the smallest collection inP including I; we infer
I ⊆ H(I) with equality iff I ∈ P. Obviously, the hull
has a vivid geometrical explanation for special collections
C of groups. For example, the hull of a sub collection
I ⊂ {1, · · · , p} is simply the axis aligned bounding box of
I if the collectionC is obtained by all horizontal and vertical
half spaces when the variables are organized in a grid with
two dimensional. Analogously, the hull is just the regular
convex hull if C is the collection of all half spaces implicit
to all potential orientations.

In mathematics and computer science, a directed acyclic
graph (for short, DAG) is a directed graph without directed
cycles, i.e., it is yielded by a collection of vertices and
directed edges, each edge connecting one vertex to another,
so that there is no way to start at some vertexv and follow
a sequence of edges that eventually loop back tov again.
More details for directed acyclic graph can refer to Torres
et al., [18] and [19], Marenco et al., [20], Pensar et al., [21]
and Kamiyama [22].

Suppose that some priori knowledge about the ontology
sparsity structure of a solution̂β of our ontology problem in
(4) is imposed. The knowledge can be utilized by restricting
the patterns obtained via theΩ norm. Specifically, in terms
of an intersection closed collection of zero patternsZ, we
can constrict back a minimal set of groupsC via itera-
tively pruning away in the directed acyclic ontology graph
corresponding toZ, and all collections are unions of their
parents in ontology graph. Algorithm 1 presents the classical
backward and forward procedure, which can be found in
many literatures (for example, see Trivisonno et al., [23] and
Malvestuto [24]).

Algorithm 1. Backward and Forward Procedure
Part 1. Backward procedure
Input: Intersection closed family of nonzero patternsP.
Output: Set of index setsC.
Initialization: DetermineZ = {P c;P ∈ P} and setC = Z.
Constructers the Hasse diagram for the poset(Z,⊃).
for t = minC∈Z |C| to maxC∈Z |C| do

for each vertexC ∈ Z such that|C| = t do
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if (∪C∈Children(G)C = G) then
if (Parents(C) 6= ∅) then connect children ofC to

parents ofC.
end if
DeleteC from C.

end if
end for

end for
Part 2. Forward procedure
Input: Collection of index setsC = {C1, · · · , CM}.
Output: Collection of zero patternsZ and nonzero patterns
P.
Initialization: Z = {∅}.
for m = 1 to M do

T = {∅}
for each Z ∈ Z do if (Cm ⊆ Z) and (∀C ∈

{C1, · · · , Cm−1}, C ⊆ Z ∪ Cm) → C ⊆ Z) then
T ← T ∪ {Z ∪ Cm}.

end if
end for

Z ← Z ∪ T .
end for
P = {Zc;Z ∈ Z}.

The complexity of backward procedure isO(p|Z|2) and
the complexity of forward procedure isO(p|Z||C|2).

We emphasize here that the collectionZ or P will not be
changed any more after removing a special index set from
C. This fact is the main lowdown hiding in the first part of
Algorithm 1.

B. Active Ontology Algorithm

In order to moderate the values ofp, we deduce a solution
for ontology problem (4) by virtue of generic toolboxes for
second order cone programming (SOCP) (see Shi et al.,
[25], Dalalyan [26], Jiang [27], Frangioni and Gentile [28],
and Srirangarajan [29] for more details) wtih complexity
O(p3.5 + |G|3.5), which is not appropriate ifp or |C| are
large.

We manifest in this part an active index set algorithm
(Algorithm 2) that searches a solution for ontology problem
(4) via considering increasingly larger active collections and
verifying global optimality for every step.

We consider the following ontology problem forλ > 0:

min
β∈Rp

1
n

n∑

i=1

l(yi, β
T vi) +

λ

2
[Ω(β)]2. (5)

In active index set technologies, we build incrementally
the set of nonzero variables and useJ to express it, and
the ontology problem is solved only for this collection of
variables, adding the constraintβJc = 0 to ontology problem
(5). Let l(β) = 1

n

∑n
i=1 l(yi, β

T vi) bethe empirical ontology
risk (which is supposed to be convex and continuously
differentiable) and letl∗ be its Fenchel conjugate denoted
by

l∗(u) = sup
β∈Rp

{βT u− L(β)}.

We uselJ(βJ) = l(β̂) to denote the restriction ofl toR|J| for
βJ = βJ and β̂Jc = 0 with Fenchel conjugatel∗J . However,
in general, we do not have the property thatl∗J(κJ) = l∗(κ̃)
for κ̃J = κJ and κ̃Jc = 0.

For a potential active index setJ ⊆ {1, · · · , p} which
belongs to the collection of allowed nonzero patternsP,
we useCJ to denote the set of active index sets, i.e., the
collection of index setC ∈ C satisfiesC ∩ J 6= ∅. The
balance partΩJ on R|J| is defined by

ΩJ(βJ) =
∑

C∈C
‖dC

J · βJ‖2 =
∑

C∈CJ

‖dC
J · βJ‖2,

and its dual normΩ∗J(κJ) = maxΩJ (βJ )≤1 βT
J κJ also

introduced onR|J|.
Let J ⊆ {1, · · · , p}. The following two ontology problems

min
βJ∈R|J|

lJ(βJ) +
λ

2
|ΩJ(βJ)|2, (6)

max
βJ∈R|J|

−l∗J(−κJ)− 1
2λ
|Ω∗J(βJ)|2, (7)

are dualto each other and strong duality estabilishes. The
pair of primal dual variables{βJ , κJ} is optimal if and only
if we obtainκJ = −5 lJ(βJ) andβT

J κJ = 1
λ |Ω∗J(κJ)|2 =

λ|ΩJ(βJ)|2. This fact shows the optimization ontology prob-
lem is dual to the reduced ontology problem.

It enables us to deduce the duality gap for the optimization
ontology problem (6) which is reduced to the active index set
of variablesJ . In reality, such duality gap can be vanish if
we successively solve ontology problem (6) for increasingly
larger active index setsJ . Starting from the optimality of
the ontology problem in (6), we study how we can govern
the optimality or equal the duality gap for the full ontology
problem in (5). The duality gap of the optimization ontology
problem in (6) can be precisely expressed by a sum of two
nonnegative parts:

lJ(βJ) + l∗J(−κJ) +
λ

2
[ΩJ(βJ)]2 +

1
2λ

[Ω∗J(κJ)]2

= {lJ(βJ) + l∗J(−κJ) + βT
J κJ}

+{λ

2
[ΩJ(βJ)]2 +

1
2λ

[Ω∗J(κJ)]2 − βT
J κJ}.

This dualitygap can be regarded as the sum of two duality
gaps, corresponding tolJ andΩJ , respectively. Hence, if we
get a primal candidateβJ and selectκJ = −5 lJ(βJ), the
duality gap relative tolJ disappears and the total duality gap
reduces to

λ

2
[ΩJ(βJ)]2 +

1
2λ

[Ω∗J(κJ)]2 − βT
J κJ .

For verifying the reduced solutionβJ is optimal for the
full ontology problem in (5). PaddingβJ with zeros onJc

to determineβ and calculateκ = −5 l(β) with κJ = −5J

(βJ). For fixed candidate pair of primal and dual variables
{β, κ}, we yield a duality gap for the full ontology problem
in (5) equal to

λ

2
[ΩJ(βJ)]2 +

1
2λ

[Ω∗J(κJ)]2 − βT
J κJ

=
1
2λ

([Ω∗(κ)]2 − λβT
J κJ).

We can explain the active index set algorithm as a walk
through the directed acyclic graph of nonzero patterns per-
mitted by the normΩ. The parentsΠP(J) of J in directed
acyclic ontology graph are exactly the patterns containing
the variables that may enter the active index set at the next
iteration of Algorithm 2. The index sets that are exactly
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at the boundaries of the active collection areFJ = {C ∈
(CJ)c;C ′ ∈ (CJ)c, C ⊆ C ′}, i.e., the index sets that are not
contained by any other inactive index sets. In addition, the
active index set may usually be increased only to guarantee
the obtained solution which is optimal in Algorithm 2.

Algorithm 2. Active index set algorithm
Input: Data{(vi, yi), i = 1, · · · , n}, balance parameterλ,
maximum number of variabless and duality gap precision
ε.
Initialization: J = {∅}, β̂ = 0.
While (maxK∈ΠP(J)

‖5l(β)K−J‖2∑
H∈CK−CJ

‖dH
K−J‖∞

≤ {−λβT 5
l(β)} 1

2 (hereβ is theoptimal for the full ontology problem
(5) is not satisfied) and(|J | ≤ s) do

Replace J via infringing K ∈ ΠP(J) in
maxK∈ΠP(J)

‖5l(β)K−J‖2∑
H∈CK−CJ

‖dH
K−J‖∞

≤ {−λβT 5 l(β)} 1
2

(hereβ is theoptimal for the full ontology problem (5)).
Solve the reduced problemminβJ∈R|J| lJ(βJ) +

λ
2 [ΩJ(βJ)]2 to get β̂.
End while
While maxC∈FJ

{∑k∈C{ 5l(β)k∑
k∈H,H∈(CJ )c dH

k

}2} 1
2 ≤

{λ(2ε − βT 5 l(β))} 1
2 is not satisfied and|J | ≤ s

do
ReviseJ in terms of the following procedure:
(begin procedure) LetC ∈ FJ be the index set that in-

fringesmaxC∈CJ
{∑k∈C{ 5l(β)k∑

k∈H,H∈(CJ )c dH
k

}2} 1
2 ≤ {λ(2ε −

βT 5 l(β))} 1
2 most.

if (C ∩ (∪K∈ΠP(J)K) 6= ∅) then
for K ∈ ΠP(J) such thatK ∩ C 6= ∅ do

J ← J ∩K.
end for

else
for H ∈ FJ such thatH ∩ C 6= ∅ do

for K ∈ ΠP(J) such thatK ∩ C 6= ∅ do
J ← J ∩K.

end for
end for

end if (end procedure)
Solve the ontology problemminβJ∈R|J| lJ(βJ) +

λ
2 [ΩJ(βJ)]2 to get β̂.
End while
Output: active index setJ , loading vectorβ̂.

If the number of active variables is upper bounded
by s ¿ p, the time complexity of Algorithm 2 is
the sum of: 1) the calculation of the gradient,O(snp)
for the square loss; 2) if the underlying solver called
upon by the active index set algorithm is a standard
SOCP solver,O(smaxJ∈P,|J|≤s |CJ |3.5 + s4.5); 3) t1 times
the computation ofmaxK∈ΠP(J)

‖5l(β)K−J‖2∑
H∈CK−CJ

‖dH
K−J‖∞

≤
{−λβT 5 l(β)} 1

2 , that is O(t1(s2|Θ| + p|G| + sn2
θ) +

p|G|) = O(t1p|G|); 4) t2 times the computation of
maxC∈CJ

{∑k∈C{ 5l(β)k∑
k∈H,H∈(CJ )c dH

k

}2} 1
2 ≤ {λ(2ε − βT 5

l(β))} 1
2 , that is O(t2(s2|Θ| + p|C|+ |Θ|2 + |Θ|p + p|C|)) =

O(t2p|C|), with t1 + t2 ≤ s.
We finally obtain complexity with a leading term in

O(sp|C|+ smaxJ∈P,|J|≤s |CJ |3.5 + s4.5).
Furthermore, after careful observation, we found that sev-

eral index sets can be used several times in the implement.
This is a phenomenon of overlapping. In reality, in our

ontology setting, these overlaps can be controlled by means
of selecting the weights(dC)C∈C which have been taken into
account so that several elements in overlapping index sets are
punished many times.

IV. EXPERIMENTS

In this section, five simulation experiments concerning
ontology measure and ontology mapping are designed re-
spectively. In these five experiments, we mainly test the
effectiveness of Algorithm 2. After the sparse vectorβ
is obtained, and the ontology functionf is then deduced
via (1). In our experiment, the ontology loss function is
selected as the square loss. To make comparisons as exact
as possible, the Algorithm 2 was ran in C++, by means of
available LAPACK and BLAS libraries for linear algebra and
operation computations. The following five experiments are
implemented on a double-core CPU with a memory of 8GB.

A. Ontology similarity measure experiment on plant data

We useO1, a plant “PO” ontology in the first experiment,
and it was constructed in www.plantontology.org. The struc-
ture of O1 presented in Fig. 1.P@N (Precision Ratio see
Craswell and Hawking [30]) is used to measure the quality
of the experiment data.

At first, experts give the closestN concepts for every
vertex on the ontology graph in plant field. Then the first
N concepts for every vertex on ontology graph are gained
by the algorithm 2, and the precision ratio can be computed.
Or rather, for vertexv and the given integerN > 0. Let
SimN,expert

v be the set of vertices determined by experts
in which N vertices having the most similarity ofv are
included. Let

v1
v = argmin

v′∈V (G)−v

{|f(v)− f(v′)|},

v2
v = argmin

v′∈V (G)−{v,v1
v}
{|f(v)− f(v′)|},

· · ·
vN

v = argmin
v′∈V (G)−{v,v1

v,··· ,vN−1
v }

{|f(v)− f(v′)|},

and
SimN,algorithm

v = {v1
v , v2

v , · · · , vN
v }.

Then the precision ratio for vertexv is denoted by

PreN
v =

|SimN,algorithm
v ∩ SimN,expert

v |
N

.

The P@N average precision ratio for ontology graphG is
then stated as

PreN
G =

∑
v∈V (G) PreN

v

|V (G)| .

Meanwhile, ontologymethods in [15], [16] and [17] are
applied to the “PO” ontology. Then after getting the average
precision ratio by means of these three algorithms, we
compare the results with algorithm 2. Parts of the data can
be referred to Table 1.

When N = 3, 5 or 10, compared with the precision
ratio determined by algorithms proposed in [15], [16] and
[17], the precision ratio gained from our algorithms are a

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_02

(Advance online publication: 29 February 2016)

 
______________________________________________________________________________________ 



Fig. 1. The Structure of “PO” Ontology.

TABLE I
TAB . 1.THE EXPERIMENT RESULTS OFONTOLOGY SIMILARITY MEASURE

P@3 average P@5 average P@10 average

precision ratio precision ratio precision ratio

Our Algorithm 0.5292 0.6388 0.8275

Algorithm in [15] 0.4549 0.5117 0.5859

Algorithm in [16] 0.4282 0.4849 0.5632

Algorithm in [17] 0.4831 0.5635 0.6871

little bit higher. Furthermore, the precision ratios show the
tendency to increase apparently asN increases. As a result,
our algorithms turn out to be better and more effective than
those raised by [15], [16] and [17].

B. Ontology mapping experiment on humanoid robotics data

We use “humanoid robotics” ontologiesO2 and O3 in
the second experiment. The structure ofO2 and O3 are
respectively presented in Fig. 2 and Fig. 3. The ontology
O2 presents the leg joint structure of bionic walking device
for six-legged robot. And the ontologyO3 presents the
exoskeleton frame of a robot with wearable and power
assisted lower extremities.

We set the experiment with the aim to get ontology map-
ping betweenO2 andO3. We also takeP@N Precision Ratio
as a measure for the quality of experiment. After applying
ontology algorithms in [31], [16] and [17] on “humanoid
robotics” ontology and getting the average precision ratio,
we compare the precision ratios gained from these three
methods. Some results can refer to Table 2.

WhenN = 1, 3 or 5, compared with the precision ratios
determined by algorithms proposed in [31], [16] and [17], the
precision ratios gained from our new ontology algorithm are
higher. Furthermore, the precision ratios show the tendency
to increase apparently asN increases. As a result, our
algorithms turn out to be better and more effective than those
raised by [31], [16] and [17].

C. Ontology similarity measure experiment on biology data

We use gene “GO” ontologyO4 in the third experiment,
and it was constructed in the website http: //www. geneontol-
ogy. The structure ofO4 is presented in Figure 4. Again, we

Fig. 2. ‘Humanoid Robotics” OntologyO2.

chosseP@N as a measure for the quality of the experiment
data. Then the ontology methods in [16], [17] and [32]
are applied to the “GO” ontology. Then after getting the
average precision ratio by means of these three algorithms,
we compare the results with algorithm 2. Parts of the data
can refer to Table 3.

WhenN = 3, 5 or 10, compared with the precision ratios
determined by algorithms proposed in [16], [17] and [32],
the precision ratios gained from our ontology algorithms are
higher. Furthermore, the precision ratios show the tendency
to increase apparently asN increases. As a result, our
algorithms turn out to be better and more effective than those
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TABLE II
TAB . 2. THE EXPERIMENT RESULTS OFONTOLOGY MAPPING

P@1 average P@3 average P@5 average

precision ratio precision ratio precision ratio

Our Algorithm 0.2778 0.4815 0.6889

Algorithm in [31] 0.2778 0.4815 0.5444

Algorithm in [16] 0.2222 0.4074 0.4889

Algorithm in [17] 0.2778 0.4630 0.5333

TABLE III
TAB . 3. THE EXPERIMENT RESULTS OFONTOLOGY SIMILARITY MEASURE

P@3 average P@5 average P@10 average P@20 average

precision ratio precision ratio precision ratio precision ratio

Our Algorithm 0.4963 0.6275 0.7418 0.8291

Algorithm in [16] 0.4638 0.5348 0.6234 0.7459

Algorithm in [17] 0.4356 0.4938 0.5647 0.7194

Algorithm in [32] 0.4213 0.5183 0.6019 0.7239

Fig. 3. “Humanoid Robotics” OntologyO3.

Fig. 4. The Structure of “GO” Ontology.

Fig. 5. “Physics Education” OntologyO5.

raised by [16], [17] and [32].

D. Ontology mapping experiment on physics education data

We use “physics education” ontologiesO5 and O6 in
the fourth experiment. The structures ofO5 and O6 are
respectively represented in Fig. 5 and Fig. 6.

We set the experiment with the aim to give ontology
mapping betweenO5 andO6. We takeP@N precision ratio
as a measure for the quality of the experiment. This time we
apply ontology algorithms in [16], [17] and [33] on “physics
education” ontology. Then we compare the precision ratio
gotten from the three methods. Some results can refer to
Table 4.

When N = 1, 3 or 5, compared with the precision ratio
determined by algorithms proposed in [16], [17] and [33],
the precision ratio in terms of our new ontology mapping
algorithms are much higher. Furthermore, the precision ratios
show the tendency to increase apparently asN increases.
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TABLE IV
TAB . 4. THE EXPERIMENT RESULTS OFONTOLOGY MAPPING

P@1 average P@3 average P@5 average

precision ratio precision ratio precision ratio

Our Algorithm 0.6774 0.7634 0.9097

Algorithm in [16] 0.6129 0.7312 0.7935

Algorithm in [17] 0.6913 0.7556 0.8452

Algorithm in [33] 0.6774 0.7742 0.8968

Fig. 6. “Physics Education” OntologyO6.

Fig. 7. “University” Ontology O7.

As a result, our algorithms turn out to be better and more
effective than those raised by [16], [17] and [33].

E. Ontology mapping experiment on university data

We use “University” ontologiesO7 and O8 in the last
experiment. The structures ofO7 and O8 are respectively
presented in Fig. 7 and Fig. 8.

We set the experiment with the aim to give ontology
mapping betweenO7 andO8. We takeP@N precision ratio
as a criterion to measure the quality of the experiment. This
time we apply ontology algorithms in [15], [16] and [17] on
“University” ontology. Then we compare the precision ratios

Fig. 8. “University” Ontology O8.

gotten from the three methods. Some results can be referred
to Table 5.

WhenN = 1, 3 or 5, compared with the precision ratios
determined by algorithms proposed in [15], [16] and [17],
the precision ratios in terms of our new ontology mapping
algorithms are much higher. Furthermore, the precision ratios
show the tendency to increase apparently asN increases.
As a result, our algorithms turn out to be better and more
effective than those raised by [15], [16] and [17].

V. CONCLUSIONS

Ontology, as a model of big data structural represen-
tation and storage, has been widely employed in various
disciplines, and has been proved to have high efficiency.
The nature of ontology application algorithms is deducing
the similarity measure function between vertices on specific
ontology graph. In recent years, all kinds of machine learning
approaches have been introduced for ontology similarity
measure computation and ontology mapping construction.
One effective ontology learning technology is mapping each
vertex to a real number using ontology functionf : V → R,
and then the similarity betweenvi and vj is judged by
|f(vi)−f(vj)|. Such learning method is suitable for ontology
computation with big data and arouses great concern among
the researchers.

In this article, we focus on the feature extraction of
ontology vector and report a new framework for ontology
sparse vector learning algorithm in terms of SOCP. Finally,
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TABLE V
TAB . 5. THE EXPERIMENT RESULTS OFONTOLOGY MAPPING

P@1 average P@3 average P@5 average

precision ratio precision ratio precision ratio

Our Algorithm 0.5714 0.6667 0.7143

Algorithm in [15] 0.5000 0.5952 0.6857

Algorithm in [16] 0.4286 0.5238 0.6071

Algorithm in [17] 0.5714 0.6429 0.6500

simulation datafrom four experiments reveal that our new
algorithm has high efficiency in biology, physics education,
plant science, humanoid robotics and university applications.
The new technology contributes to the state of art for
ontology application and illustrates the promising prospects
of application for multiple disciplines.
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