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Ontology Featurdextraction via Vector Learning
Algorithm and Applied to Similarity Measuring
and Ontology Mapping

Meihui Lan, Jian Xu, and Wei Gao

Abstract—In recent years, many learning technologies have ~ The structure of ontology is usually represented as a sim-
been applied in ontology similarity measuring and ontology ple graph by researchers. We make every concept in ontology
mapping via learning an ontology function f : V — R which ¢4 regpond to a vertex, so do the objects and elements. Then

maps an ontology graph to the real line. In these settings, all the . .
information for an ontology vertex (corresponding to concept) each (directed or undirected) edge on an ontology graph

is expressed as a vector. However, in a special application, theSymbolizes a relationship (or potential link) between two
value of ontology function for each ontology vertex is deter- concepts (objects or elements). l@tbe an ontology and?
mined by a few components of the vector. The aim of feature pe a simple graph corresponding @ It can be attributed
extraction for ontology vector is to obtain these components to to getting The similarity calculating function, the nature of
fix the index set of the vector, and such a procedure is equivalent ) . '

to learning an ontology sparse vector in which most components 0_”t9'°93_/ engineer application, C"_’m be used t? gompute the
are zero. In this paper, we raise an 0nt0|ogy sparse vector similarities between Ontology vertices. These similarities rep-
learning model for ontology similarity measuring and ontology resent the intrinsic link between vertices in ontology graph.
mapping in terms of SOCP. The balance term consists of2  The ontology similarity measuring function is obtained by
norm, and the directed acyclic graph is employed in ontology easyring the similarity between vertices from different

setting for backward and forward procedure. Then, the active toloai hich is th | of tol . Th
index set algorithm is designed to moderate the value op, ©ONCI0QIES, which 1S Ihe goal of ontology mapping. 1he

thus applications will be extended. Finally, five experiments Mapping serves as a bridge connecting different ontologies,
are presented on various fields to verify the efficiency of the through which a potential association between the objects or
new ontology algorithm for ontology similarity measuring and  elements from different ontologies is gained. Or rather, the
ontology mapping in multidisciplinary research. semi-positive score functiofiim : V x V — Rt U{0} maps
_Index Terms—ontology, similarity measure, ontology map- each pair of vertices to a non-negative real number.
ping, ontology sparse vector, second order cone programming  These years, ontology technologies have shown extensive
applications in various fields. Ma et al., [6] presented a
technology for stable semantic measurement based on the
I. INTRODUCTION graph derivation rgpresentation. Li gt al., [7] r.aised an on-
) . . _ tology representation method for online shopping customers
O NTOLOGY is derived from philosophy to describexnowledge in enterprise information. By means of processing
-/ the natural connection of things and the inherentlyypert knowledge from external domain ontologies and in
computer science, ontology is often taken as a model f@fised a creative ontology matching system which gives
knowledge storage and representation. It has shown extgBmplex correspondences. Pizzuti et al., [9] described the
sive applications in a variety of fields, such as: knowledggain features of the food ontology and some examples of
management, mgch|ne I.earnmg, mformangn systems, imagiylication for traceability purposes. Lasierra et al., [10]
ago, because of its efficiency as a conceptually semandig various engineering can refer to [11], [12], [13] and [14].
researchers from pharmacology science, biology sciengge ontology similarity computation, and a ontology function
medical science, geographic information system and social. v _, R can be obtained. After using the ontology
al., [2], Ivanovic and Budimac [3], Hristoskova et al., [4]lis made up of real numbers. The similarity between two
and Kabir [5]). concepts then can be measured by comparing the difference
_ _ _ . between their corresponding real numbers. Dimensionality
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dimensional ectors into one-dimensional vectors. For example, in the application of biological ontology, a

There are several effective methods of getting efficiegenetic disease often results from a small number of genes,
ontology similarity measure or ontology mapping algorithrfeaving most of the other genes irrelevant. Furthermore, in
in terms of ontology function. Wang et al., [15] considerethe application of geographic information system ontology, if
the ontology similarity calculation in terms of ranking learnan accident happens in a place and causes casualties, then we
ing technology. Huang et al., [16] raised the fast ontologyeed to find the nearest hospital ignoring schools and shops
algorithm in order to cut the time complexity for ontologynearby, i.e., we just need to find neighborhood information
application. Gao and Liang [17] presented an ontology opthat meets specific requirements on the ontology graph.
mizing model in which the ontology function is determined herefore, tremendous academic and industrial interest is
by virtue of NDCG measure, and it is successfully appliealttracted to researching into the sparse ontology algorithm.
in physics education. Since large parts of ontology structureln practical application, ontology function can be ex-
can be tree-shaped, researchers explored the learning theuwessed by

approach for ontology similarity calculating and ontology u

mapping in specific setting when the structure of ontology fa(v) = Z”iﬁi‘ @
graph has no cycle. In the multi-dividing ontology setting, _ =t )
all vertices in ontology graph or multi-ontology graph arélere 8 = (51,--- , () is an ontology sparse vector which

divided intok parts corresponding to the classes of rates. is used to shrink irrelevant component to zero. To determine
The rate values of all classes are determined by experts ti§ ontology functionf, we should learn the sparse vector
this way, a vertex in a rate has larger score than anyfirst. One popular ontology learning model with the balance
vertex in rateb (if 1 < a < b < k) under the multi- t€rmg(j3) of the unknown sparse vectore R?:
dividing ontology functionf_ V=R Finally, the similarity min Y (8) = 1(8) + ¢(8), 2)
between two ontology vertices corresponding to two concepts peERP
(or elements) is judged by the difference of two real numbewgere/(3) is a smooth and convex ontology loss function
which they correspond to. Hence, the multi-dividing ontologsind ¢(3) is a balance term which controls the sparsity of
setting is suitable to get a score ontology function for agntology sparse vectof. For example, the balance term
ontology application if the ontology is drawn into a nonusually takes the form of(3) = \||3]]1-
cycle structure. Fixed 3 € R? and J C {1,---,p} with cardinality

In this article, we present a new ontology learning algq-7|, 3, denotes the vector ifRl’I of elements of3 are
rithm for ontology similarity measuring and ontology mapindexed by the element of subsgt For M ¢ RPX™,
ping by means of SOCP (second order cone programming);, € RHIxI/I denotes the sub matrix d¥ restricted
The rest of the paper is arranged as follows: in Section @, the columns indexed by and the rows indexed by.
detailed description of setting and notations for our ontologSor arbitrarily finite setA with cardinality |A|, the |A|-
problem is manifested; in Section 3, we obtain the maiople (y%),c4 € RP*I4l is the collection ofp-dimensional
algorithm for ontology index set algorithm based on SOCRgctors y* marked by the elements ofl. Let Y be the
in Section 4, five respective simulation experiments on plagbllection of responses (for instancg, = R), and we
science, humanoid robotics, biology, physics education adcuss in this paper the ontology problem of predicting a
university application are designed to test the efficiency gindom variableY” € Y. The sample set here is denoted
our new ontology algorithm, and the data results indicatgs n observations(v;,y;) € RP x V,i = 1,---,n. The
that our algorithm has a high precision ratio for thesempirical risk of sparse ontology vectorc R? is denoted
applications. by 1(8) = >0 U(yi, BT vi), wherel : Y x R — R

is a convex and continuously differentiable ontology loss
[I. SETTING AND NOTATIONS function.

Let V c R? (d > 1) be a vertex space (or the instance Let C be a sub-collection of the index set ¢f,--- ,p}
space) for ontology graph, and the vertices (or, instancegltisfiesUcccC = {1,---,p}. We emphasize here that
in V are drawn randomly and independently according fday not be a partition of1,--- ,p}, and it is possible for
some (unknown) distribution. Given a training sét = elements ofC to overlap. Let(d“)cec be a|C|-tuple of p-
{v1,-+ ,vun} of sizen in V, the goal of ontology learning dimensional vectors withif > 0 if j € C anddS = 0
algorithms is to obtain a score functigh: V — R, which otherwise. Hence, the norfa for balance part is introduced
assigns a score to each vertex. as

Since the vector which corresponds to a vertex of ontology Q(3) — d€)2(5.12)% — dc . 3
graph contains all the information of the vertex concept, () Cze;:(j;( 37 1651) CXE;H Olla-— )

attribute and the neighborhood structure in the ontologg/h bl ined i distri ind
graph, it's always with high dimension. For instance, in th € sameévaria ef; containe n two ) Istrinct inaex sets
Cs € C is allowed to be weighted differently i@, and

biological ontology, a vector may contain the information o?l’ i

all genes. In addition, ontology graph with a large numb(.gfj2 (denote_d bydjc ' and df * respectively).

of vertices makes ontology structure very complicated, and V& consider the following ontology sparse problem:
the most typical example is the GIS (Geographic Information 1

System) ontology. These factors may lead to the fact that the fan Z Wy, 87 0i) + pQ2(3) (4)
similarity calculation of ontology application will be very =1 R

large. However, in fact, the similarity between the verticewherey > 0 is an ontology balance parameter. lebe the
is determined by a small part of the vector componentsolution of ontology problem (4) in what follows.

n
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1. MAIN ONTOLOGY LEARNING ALGORITHM dividing of {1,--- ,p}, and thus we hav® = Z is the
A. Backward and Forward Procedure collection of all possible unions of the elements.
In what follows, we focus on the following two problems:
E(\é? proceed from the index set§ if there is an available
method to generate the collection of nonzero pattén&)

In this part, we discuss the connection between the nonz
patterns by which the estimated sparse ontology vegtisr

satisfied and the norf2 which is defined by (3). First, we . .
describe the collection of nonzero patterns, then we manif&%& tshcehgr?:g;iry’ fixed, how can the index sets and(2(5)

the go back and forth from index sets to patterns in terms 0 - . .
forward and backward procedure. We study the characteristics of the collection of index
The balance ternﬂ(ﬁ) S 14C - Ellz is a mixed setsC and its corresponding collections of patterRsand
- cecC

(l1,12)-norm. From the index set viewpoint, it operates liké - Th_e collection of zero patter_ng (homologous, t_he
collection of nonzero pattern®) is closed under union

an l-norm and thust? leads to index set sparsity. From(homologous intersection), i.e., for aiy € N and arbitrary
H H H C . a H C ’ y .Gy
Fh|s point of view, eachd® - 3, and equivalently ,ealckii poe 2 € 2, UK 2 € 2 (homologouspy. -« . px €
is supported to be 0. Moreover, thg-norm can’t imply P’HK’ 7?’ ﬁ?l Is that h ld’ ’ it
advance sparsity within the index séisc C. It seems that '’ k=1Pk € )- This reveals that we shouid suppose It 1S
closed under intersection if reverse engineering the collection

for a fixed sub collection of index sét C C, the vectors3c f ft Or else. the best do is to handl
connects the index sefs € C is just equal to 0, and causes' NONZET0 pallerns. Lr €1se, the best we can do Is to handie

a collection of zeros which is the union of these index se'lt§ intersection closure.

UceceC. Thus, the collection of permitted zero patterns is Given a _collectlon of index sets, we can define fqr any
the union closure of. i.e. sub-collectionl C {1,--- ,p} the C-adapted hull, or simply

hull, as:

Z= {glelg ¢iehcch H(I) = {Ucec,cni=0C}°

Substitute for considering the collection of zero pattefs which is the smallest collection i® including I; we infer
it is commodious to deal with nonzero patterns, and set I C H(I) with equality iff I € . Obviously, the hull
c 1 c has a vivid geometrical explanation for special collections
P={NcecCHCCCY={2": Z € 2} C of groupsg.J For examplel? the hull of g sub collection
It is equivalent to employP or Z to take the complement I C {1,--- ,p} is simply the axis aligned bounding box of
of each number of these collections. I if the collectionC is obtained by all horizontal and vertical
Suppose that : (y,y') — Il(y,y’) is nonnegative and half spaces when the variables are organized in a grid with
satisfies that for each pair df,y’) € R x R, we deduce two dimensional. Analogously, the hull is just the regular
g—;é >0 and%;ly,(y?y’) # 0. The Gram matrix of ontology convex hull if C is the collection of all half spaces implicit
data is denoted a@ = 2 Y7 | v;v!. It is verified that ifQ 1o all potential orientations.
is invertible or{1,--- ,p} € G for the ontology optimization ~ In mathematics and computer science, a directed acyclic
problem in (4) withy > 0, then this problem has a uniquegraph (for short, DAG) is a directed graph without directed
solution. cycles, i.e., it is yielded by a collection of vertices and
For the zero patterns of the solution of the ontologglirected edges, each edge connecting one vertex to another,
problem in (4): we suppose that = (yi,---,y,)7 is SO that there is no way to start at some verteand follow
a realization of an absolutely continuous probability distri2 sequence of edges that eventually loop back tgain.
bution. The maximal number of linearly independent rowilore details for directed acyclic graph can refer to Torres
in the matrix (vy,---,v,) € RP*™ is denoted byk. For etal., [18] and [19], Marenco et al., [20], Pensar et al., [21]
p > 0, any solution of the ontology problem in (4) withand Kamiyama [22].
at mostk — 1 nonzero coefficients has a zero pattern in Suppose that some priori knowledge about the ontology
Z = {UcecC;C" C C} almost surely. That is to say, sparsity structure of a solutigi of our ontology problem in
if Y = (yi,--,yn)" is a realization of an absolutely (4) is imposed. The knowledge can be utilized by restricting
continuous probability distribution, then the ontology spardbe patterns obtained via tie norm. Specifically, in terms
solutions have a zero pattern B = {Ucce:C : ¢’ C C}. of an intersection closed collection of zero pattefiswe
Therefore, the ontology problem in (4) has a unique solutig@@n constrict back a minimal set of grougsvia itera-
if the Gram matrixQ can be invertible, and its zero patterrfively pruning away in the directed acyclic ontology graph

is geared toZ. corresponding taZ, and all collections are unions of their
Following are the four examples on norms associated wiglarents in ontology graph. Algorithm 1 presents the classical

our pattern. backward and forward procedure, which can be found in

Example 1.l,-norm:C is consisted of only one element-thgnany literatures (for example, see Trivisonno et al., [23] and

entire collection{1,--- ,p}, and the collection of permitted Malvestuto [24]).

nonzero patterns is consisted (bfand the entire collection Algorithm 1. Backward and Forward Procedure

{1,---,p}. Part 1. Backward procedure

Example 2.1;-norm:C is the collection of all independent el-Input: Intersection closed family of nonzero pattefs
ements thu$ becomes the set of all possible sub-collection§utput: Set of index sets.

Example 3.1, — I; mixed norm:C is the collection of all Initialization: DetermineZ = {P¢; P € P} and setC = Z.
independent elements and the entire collecfan--- ,p}, Constructers the Hasse diagram for the pgsgt).
and?P becomes the collection of all possible sub-collectionfor ¢ = mincez |C| to maxcez |C| do

Example 4.Group version of;-norm:C is consisted of any  for each vertexC' € Z such that|/C| = ¢ do
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if (Ucechitdren(@)C = G) then For a potential active index set C {1,---,p} which
if (Parents(C) # () then connect children of’ to belongs to the collection of allowed nonzero pattefPs
parents ofC. we use(C; to denote the set of active index sets, i.e., the
end if collection of index setC' € C satisfiesC N J # (. The
DeleteC from C. balance parf); on R!/! is defined by
end if
end for ceC ceCy
Part 2. Forward procedure and its dual normQ%(ky) = maxg,(g,)<1 BTk, also
Input: Collection of index set€ = {C,---,Cu}. introduced orR!”I.
Output: Collection of zero patterng and nonzero patterns Let.J C {1,---,p}. The following two ontology problems
P.
Initialization: Z = {0}. min 1;(8y) + %\QJ(ﬂJ)F, (6)
for m=1to M do psERIY]
T = {0} x Lo 2
for each Z € 2 do if (Cp, Z) and (VC € Pl ~ly (=) = g3 15BN ™

-
{C1,,Cm71},CQZUCm)—>C§

T—TU{ZUCy,}.

Z) then are dualto each other and strong duality estabilishes. The

pair of primal dual variable$s3;, s} is optimal if and only

and i if we obtaink; = — v 1;(8;) and 8T k; = 15 (ks) > =
end tor A2 (3,)|?. Thisfact shows the optimization ontology prob-
Z «— ZUT. .
end for lem is dual to the reduced ontology problem.

It enables us to deduce the duality gap for the optimization
ontology problem (6) which is reduced to the active index set
of variablesJ. In reality, such duality gap can be vanish if

: . . we successively solve ontology problem (6) for increasingly
We emphasize here that the collectignor P will not be larger active index setd. Starting from the optimality of

changed any more after removing a special index set fr m .
? 4 . o . e ontology problem in (6), we study how we can govern
,CA’\I Th_ltshfaclt is the main lowdown hiding in the first part OCflihe optimality or equal the duality gap for the full ontology
gonthm L. problem in (5). The duality gap of the optimization ontology
problem in (6) can be precisely expressed by a sum of two
B. Active Ontology Algorithm nonnegative parts:
In order to moderate the values mfwe deduce a solution . A , 1, )
for ontology problem (4) by virtue of generic toolboxes for Li(By) + U (=r) + S (B + 51 [ (k)]
second order cone programming (SOCP) (see Shi et al., _ (k) 4 BT
[25], Dalalyan [26], Jiang [27], Frangioni and Gentile [28], { J()\BJ) i HJ)l brrs}
and Srirangarajan [29] for more details) wtih complexity +{§[Qj(ﬁ,1)]z + 5[93(&1)]2 — 8%k},

O(p35 + |G|>®), which is not appropriate i) or |C| are
(p 191 pprop b || This dualitygap can be regarded as the sum of two duality

large. . : :
We manifest in this part an active index set algorithr2PS; corresponding g and<2,, respectively. Hence, if we

(Algorithm 2) that searches a solution for ontology probler€t & Primal candidatg; and select; = — 7 1,(5,), the
(4) via considering increasingly larger active collections arfif'@/ity gap relative td, disappears and the total duality gap

verifying global optimality for every step. reduces to

P={z%7Z¢c Z}.
The complexity of backward procedure @(p|Z|?) and
the complexity of forward procedure 8(p|Z||C|?).

. . . A 1 N
We consider the following ontology problem for> 0: §[QJ(61)]2 n ﬂ[QJ(HJ)]Q — k.
min 1 Zl(yiﬁTvi) + %[Q(ﬁ)]? (5) For verifying the reduced solutio@®; is optimal for the
pekem i full ontology problem in (5). Padding; with zeros onJ¢
In active index set technologies, we build incrementall{P determine3 and calculates = — <7 {(3) with k; = — 7

the set of nonzero variables and ugeto express it, and (). For fixed candidate pair of primal and dual variables
the ontology problem is solved only for this collection oft, %}, we yield a duality gap for the full ontology problem
variables, adding the constraifif- = 0 to ontology problem in (5) equal to

(5). Leti(pB) = %2?21 I(ys, BT v;) bethe empirical ontology 1
risk (which is supposed to be convex and continuously ﬂQJ(ﬂJ)P?Lﬁ[QJ(”J)P —Biks
differentiable) and let* be its Fenchel conjugate denoted 1w 1o T
by n = ﬁ([Q (K)]° = ABj k).
I(u) = ;élﬂgp{ﬂ u—L(B)} We can explain the active index set algorithm as a walk

N through the directed acyclic graph of nonzero patterns per-
We usel;(3,) = I(3) to denote the restriction dfto Rl for  mitted by the nornf2. The parentdlp(J) of .J in directed
By = By and 3;- = 0 with Fenchel conjugaté;. However, acyclic ontology graph are exactly the patterns containing
in general, we do not have the property thigtx ;) = [*(%) the variables that may enter the active index set at the next
for iy = ky andi . = 0. iteration of Algorithm 2. The index sets that are exactly
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at the boundaries of the active collection afg; = {C € ontology setting, these overlaps can be controlled by means
(Cy)e;C" € (Cy)¢,C C C'}, i.e., the index sets that are nobf selecting the weight&l”) < which have been taken into
contained by any other inactive index sets. In addition, tf@count so that several elements in overlapping index sets are
active index set may usually be increased only to guarantgenished many times.
the obtained solution which is optimal in Algorithm 2.

Algorithm 2. Active index set algorithm IV. EXPERIMENTS

Input: Data{(vi, 4:),¢ = 1,---,n}, balance parametex, In this section, five simulation experiments concerning

Lnaxmum number of variables and duality gap precision ontology measure and ontology mapping are designed re-
L ~ spectively. In these five experiments, we mainly test the
In|t|fal|zat|on. J=1{0}, 5?;3&5)}{77”2 T effectiveness of Algorithm 2. After the sparse vector
While (maxger, () Sheer—c, [E_Tm = {=A3" ¥ s obtained, and the ontology functiof is then deduced
1(3)}2 (hereg is the optimal for the full ontology problem via (1). In our experiment, the ontology loss function is
(5) is not satisfied) and|.J| < s) do selected as the square loss. To make comparisons as exact
Replace J via infringing K € 1IIp(J) in as possible, the Algorithm 2 was ran in C++, by means of
MaXgerp(7) Lok = ]l2 — < {-"v 1(3)}> available LAPACK and BLAS libraries for linear algebra and

ZHEC Y

e, 1A% T
(here is the optimal for the]fuII ontology problem (5)).
Solve the reduced problemming, cgisils(8s) +

32(8,)]? to getB.

operation computations. The following five experiments are
implemented on a double-core CPU with a memory of 8GB.

End while A. Ontology similarity measure experiment on plant data
While maXcefJ{Ekec{#%}Q}% < We useOy, a plant “PO” ontology in the first experiment,
\2e — BT v l(ﬁ))}% is noEt éaEt;siZi)ed and|lJ| < s and it was constructed in www.plantontology.org. The struc-
do ture of O, presented in Fig. 1PQN (Precision Ratio see
Revise.J in terms of the following procedure: Craswell anq Hawking [30]) is used to measure the quality
(begin procedure) Le€ € F; be the index set that in- ©f the experiment data.
fringes maxcec, {Y e o f vi(B)k H}Q}% < (A2 — At first, experts give the clqses’v cqncepts for every
] Lkemmecc e I vertex on the ontology graph in plant field. Then the first
BT 7 1(B))}z most. N concepts for every vertex on ontology graph are gained
if (C'N(Uren,nK) #0) then by the algorithm 2, and the precision ratio can be computed.
for K € IlIp(J) such that N C # ) do Or rather, for vertexv and the given integeN > 0. Let
J—=JNK. Sim-expert pe the set of vertices determined by experts
endfor in which N vertices having the most similarity of are
else included. Let
for H € F; such thatd N C # () do ) ) ./
for K € IIp(J) such thatK N C # () do v, = argmin {[f(v) — f(v')[},
J— JNK. v eV (G)—v
end for = argmin {|f(v) - F())]},
end for V' EV(G)—{v,wl}
end if (end procedure)
Solve the ontology problemming, cgisils(8s) + N . ,
%[QJ(ﬁf)]2 to getB Uy, = ) ;irgmlln N1 {|f(1}) - f(l} )‘}a
End while ) VeVt
Output: active index sef, loading vectors. and N alworith _ N
If the number of active variables is upper bounded Simy, T = o, vy, 0,

by s < p, the time complexity of Algorithm 2 is then the precision ratio for vertexis denoted by
the sum of: 1) the calculation of the gradier®(snp)

for the square loss; 2) if the underlying solver called Pro — |5’imiv’alg°mhmﬂsmlf;v’experq'
upon by the active index set algorithm is a standard v N
SOCP solverQ(smax jep |jj<s |Cs[*® + s*?); 3) t; imes  The PQN awerage precision ratio for ontology grah is
the computation ofmax e, () ZH”VM)KH—CZ‘Q‘Z — < then stated as
ccx—cy 10K glleo

{=X\3T 7 1(B)}2, thatis O(t1(s2|0] + p|G| + sn2) +

ZvEV(G) Preﬁ’
plG) = O(tip|G|); 4) to times the computation of

V(@)

vi(B) 213 _ AT

maXCECJ{Z’fec{ZkEH,HQCi)c d{?} e Y Meanwhile, ontologymethods in [15], [16] and [17] are
1(3))} 2, thatis O(ty(s2/®! + p|C| + |02 + |©]p+ p|C|)) = applied to the “PO” ontology. Then after getting the average

Preg =

O(top|C|), with t1 + to < s. precision ratio by means of these three algorithms, we
We finally obtain complexity with a leading term incompare the results with algorithm 2. Parts of the data can
O(sp|C| + smaxyep | y)<s [Cs]>2 + s*). be referred to Table 1.

Furthermore, after careful observation, we found that sev-When N = 3, 5 or 10, compared with the precision
eral index sets can be used several times in the implemematio determined by algorithms proposed in [15], [16] and
This is a phenomenon of overlapping. In reality, in oufl7], the precision ratio gained from our algorithms are a
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Fig. 1. The Structure of “PO” Ontology.

TABLE |
TAB. 1.THE EXPERIMENT RESULTS OFONTOLOGY SIMILARITY MEASURE

P@3 average || P@5 average | P@10 aerage

precision ratio || precision ratio| precision ratio
Our Algorithm 0.5292 0.6388 0.8275
Algorithm in [15] 0.4549 0.5117 0.5859
Algorithm in [16] 0.4282 0.4849 0.5632
Algorithm in [17] 0.4831 0.5635 0.6871

Hip raise

little bit higher. Furthermore, the precision ratios show the
tendency to increase apparently /dsincreases. As a result,

our algorithms turn out to be better and more effective than
those raised by [15], [16] and [17].

B. Ontology mapping experiment on humanoid robotics data

We use “humanoid robotics” ontologieS; and Os in
the second experiment. The structure @ and O3 are

Actuator attach

directly to body Y Upperleg segment

Hip actuator —

Knee joint

Knee actuator

respectively presented in Fig. 2 and Fig. 3. The ontology
O, presents the leg joint structure of bionic walking device
for six-legged robot. And the ontologys; presents the
exoskeleton frame of a robot with wearable and power
assisted lower extremities.

We set the experiment with the aim to get ontology map-
ping betweer0O, andO3. We also take?@QN Precision Ratio
as a measure for the quality of experiment. After applying
ontology algorithms in [31], [16] and [17] on “humanoidFig. 2.
robotics” ontology and getting the average precision ratio,
we compare the precision ratios gained from these three
methods. Some results can refer to Table 2.

When N = 1, 3 or 5, compared with the precision ratioxhossePQN as a measure for the quality of the experiment
determined by algorithms proposed in [31], [16] and [17], théata. Then the ontology methods in [16], [17] and [32]
precision ratios gained from our new ontology algorithm ar@e applied to the “GO” ontology. Then after getting the
higher. Furthermore, the precision ratios show the tendemayerage precision ratio by means of these three algorithms,
to increase apparently ad increases. As a result, ourwe compare the results with algorithm 2. Parts of the data
algorithms turn out to be better and more effective than thosen refer to Table 3.
raised by [31], [16] and [17]. WhenN = 3, 5 or 10, compared with the precision ratios

determined by algorithms proposed in [16], [17] and [32],
C. Ontology similarity measure experiment on biology daige precision ratios gained from our ontology algorithms are

We use gene “GO” ontology, in the third experiment, higher. Furthermore, the precision ratios show the tendency
and it was constructed in the website http: //www. geneontdb increase apparently ad increases. As a result, our
ogy. The structure o), is presented in Figure 4. Again, wealgorithms turn out to be better and more effective than those

v
Lowerleg segment

v
Ball foot

‘Humanoid Robotics” OntologyDs.
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TABLE I
TAB. 2. THE EXPERIMENT RESULTS OFONTOLOGY MAPPING

P@1 aerage || P@3 aerage | P@5 average
precision ratio || precision ratio| precision ratio
Our Algorithm 0.2778 0.4815 0.6889
Algorithm in [31] 0.2778 0.4815 0.5444
Algorithm in [16] 0.2222 0.4074 0.4889
Algorithm in [17] 0.2778 0.4630 0.5333
TABLE Il

TAB. 3. THE EXPERIMENT RESULTS OFONTOLOGY SIMILARITY MEASURE

P@3 aerage || P@5 average | P@10 aerage | P@20 aerage

precision ratio|| precision ratio| precision ratio | precision ratio
Our Algorithm 0.4963 0.6275 0.7418 0.8291
Algorithm in [16] 0.4638 0.5348 0.6234 0.7459
Algorithm in [17] 0.4356 0.4938 0.5647 0.7194
Algorithm in [32] 0.4213 0.5183 0.6019 0.7239

Physics in Nature and Daily Life
Waistband

Electric motor

Force sensor

i

Bandage Electrical machinery

|

Shank link

|

Force transducer

|

Antiseptic dressing

N

Foot force sensor Frame feet

Fig. 3. “Humanoid Robotics” OntologyDs.

GO

L T

Molecular function Biological process Cellular component

Signal transducer Chaperone Development Call growth and/o

process malntenance
ligand Receptor associated l i\i :

Receptor Signaling protein

protein \ /:
receptor Mating

Transmembrane photoreceptor

Pheromone processing
receptor 2

Fig. 4. The Structure of “GO” Ontology.

l

Sustainable Dvelopment

l

Various forms of Move& energy <— Energy <— Conservation of Energy

Thermal Ph- Sound  Light Mec'hanlcal
enomenon Movement

Mecha Electro Internal
Energy Energy Energy

Molecular
Material ~ Structure of matter Force  Magnetic Ther.na!
\ The use A‘ Motionic
of new “ \ /
Materias
ya \ The Motion & Int-
Properties of matter eraction of Matter

Fig. 5. “Physics Education” Ontologys.

raised by [16], [17] and [32].

D. Ontology mapping experiment on physics education data

We use “physics education” ontologi&€3; and Og in
the fourth experiment. The structures 6% and Og are
respectively represented in Fig. 5 and Fig. 6.

We set the experiment with the aim to give ontology
mapping betwee®; and Ogz. We takePQN precision ratio
as a measure for the quality of the experiment. This time we
apply ontology algorithms in [16], [17] and [33] on “physics
education” ontology. Then we compare the precision ratio
gotten from the three methods. Some results can refer to
Table 4.

When N =1, 3 or 5, compared with the precision ratio
determined by algorithms proposed in [16], [17] and [33],
the precision ratio in terms of our new ontology mapping
algorithms are much higher. Furthermore, the precision ratios
show the tendency to increase apparentlyNasncreases.
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TABLE IV
TAB. 4. THE EXPERIMENT RESULTS OFONTOLOGY MAPPING

P@1 aerage || P@3 aerage | P@5 average
precision ratio || precision ratio| precision ratio
Our Algorithm 0.6774 0.7634 0.9097
Algorithm in [16] 0.6129 0.7312 0.7935
Algorithm in [17] 0.6913 0.7556 0.8452
Algorithm in [33] 0.6774 0.7742 0.8968
Nature Sound CS ontology A

v

The sound Generation & Transmission

v

Sound Characteristics

v

Kinds of Sound

Courses people

We Can Hear We Can Not Hear Graduate underGraduate
/ \ / \ courses courses student faculty
Music Noise  Ultrasonic Wave  Infrasonic Wave
Fig. 6. “Physics Education” Ontologys. Software
engineerin Data mining
¢ J Lecturer professor
CS ontology A Undergraduate graduate Associate

Professor

Fig. 8. “University” Ontology Os.

Courses Student Academic Staff

gotten from the three methods. Some results can be referred

to Table 5.
When N =1, 3 or 5, compared with the precision ratios

Software Al Senior determined by algorithms proposed in [15], [16] and [17],
Lecturer  eturer Professor the precision ratios in terms of our new ontology mapping
algorithms are much higher. Furthermore, the precision ratios
show the tendency to increase apparentlyNasncreases.

As a result, our algorithms turn out to be better and more

effective than those raised by [15], [16] and [17].

Software »
Engineering Data Mining

Undergraduat.  Master PhD

V. CONCLUSIONS

Ontology, as a model of big data structural represen-
tation and storage, has been widely employed in various
disciplines, and has been proved to have high efficiency.
The nature of ontology application algorithms is deducing
. the similarity measure function between vertices on specific
As a result, our algorithms turn out to be better and mogg,0gy graph. In recent years, all kinds of machine learning
effective than those raised by [16], [17] and [33]. approaches have been introduced for ontology similarity

) ) _ ) measure computation and ontology mapping construction.
E. Ontology mapping experiment on university data One effective ontology learning technology is mapping each

We use “University” ontologie<D; and Og in the last vertex to a real number using ontology functin V' — R,
experiment. The structures @; and Og are respectively and then the similarity between; and v; is judged by
presented in Fig. 7 and Fig. 8. | f(vi)—f(v;)]. Such learning method is suitable for ontology

We set the experiment with the aim to give ontologgomputation with big data and arouses great concern among
mapping betweew; andOg. We takePQN precision ratio the researchers.
as a criterion to measure the quality of the experiment. ThisIn this article, we focus on the feature extraction of
time we apply ontology algorithms in [15], [16] and [17] onontology vector and report a new framework for ontology
“University” ontology. Then we compare the precision ratiosparse vector learning algorithm in terms of SOCP. Finally,

Fig. 7. “University” Ontology O7.
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TABLE V
TAB. 5. THE EXPERIMENT RESULTS OFONTOLOGY MAPPING

P@1 aerage || P@3 aerage | P@5 average

precision ratio || precision ratio| precision ratio
Our Algorithm 0.5714 0.6667 0.7143
Algorithm in [15] 0.5000 0.5952 0.6857
Algorithm in [16] 0.4286 0.5238 0.6071
Algorithm in [17] 0.5714 0.6429 0.6500
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