
 

 

Abstract— we present in this paper an Ant Colony 

Algorithm to optimize the performance of the multilayer 

Perceptron. Indeed, the performance of the multilayer 

Perception depends on its parameters such as the number of 

neurons in the hidden layer and the connection weights. In this 

respect, we firstly model the problem of neural architecture and 

training in terms of a mixed-integer problem with a linear 

constraint, and secondly, we propose an Ant Colony Algorithm 

to solve it. The experimental results illustrate the advantage of 

our approach as a new method of training and architecture 

optimization.  

 
Index Terms—Multilayer Perceptron (MLP), Neural 

Architectures Optimization, Non-linear optimization, Ant 

Colony Algorithms, Supervised Training, Classification. 

 

I. INTRODUCTION 

NE of the most important problems that neural network 

designers face today is choosing an appropriate neural 

architecture for a given application. In this way, we cite 

constructive methods [18], [7], [3] and pruning methods 

[28], [10]. 

The architecture optimization and training of neural 

networks is a complex task of great importance in problems 

of supervised learning. Optimization of neural architectures 

and training method has an influence on the quality of 

networks measured by their performance [29]. 

Finding a solution of the hybrid training and the 

architecture optimization requires a solution a mixed-integer 

nonlinear optimization problem with a linear constraint [20]. 

Such problems are NP-complete, so different metaheuristics 

are applied in the literature to solve it.   Genetic algorithms 

are frequently combined with neural methods to select best 

architectures and avoid the drawbacks of local minimization 

methods [8], [29]. Other methods of neural architecture 

optimization are proposed, such as particle swarm 

optimization [27]. 

This paper suggests finding both optimal neural network 

architecture and the connection weights. In this respect, we 

optimize the number of neurons in the hidden layer by 

formulating the problem of neural architecture into a mixed-
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integer nonlinear problem with linear constraint. We apply 

an Ant colony algorithm to solve the obtained problem 

which provides optimal architecture and generalization 

performance. 

II. MULTILAYER PERCEPTRON ARCHITECTURE 

Rosenblatt's work created much excitement, controversy, 

and interest in neural net models for pattern classification in 

that period and led to important models abstracted from his 

work in later years. Currently the names (single-layer) 

Perceptron and Multilayer Perceptron are used to refer to 

specific artificial neural network structures based on 

Rosenblatt's Perceptrons. 

ANN is composed of a series of neurons, which have 

multiple connections with other neurons. Each connection is 

associated a weight which can be varied in strength, in 

analogy with neurobiology synapses. A typical ANN 

architecture is known as the multilayer perceptron (MLP) 

where the neural network operates is relatively simple. The 

input layer receives the input vector, each neuron in the 

input layer receives a value (a component of the input 

vector), and produces a new value (output) which it sends to 

each neuron of the next layer [21]. 

A multilayer Perceptron (MLP) is a variant of the 

Artificial Neural Network. It has one or more hidden layers 

between its input and output layers, the neurons are 

organized in layers, the connections are always directed 

from lower layers to upper layers, the neurons in the same 

layer are not interconnected [22].  

The architecture of an Artificial Neural Network is a 

layout of neurons grouped into layers. The main parameters 

of ANN are the number of layers, the number of neurons per 

layer, connectivity level and type of neuron interconnections 

[9]. 

The first layer of the neural network is the input layer, we 

assume that it contains n neurons, the last layer of the 

network is the output layer, and we assume that it contains m 

neurons. 

In the Perceptron model, a single neuron with a linear 

weighted net function and a threshold activation function is 

employed. The input to this neuron x = (x1, x2, …, xn) is a 

feature vector in a n-dimensional feature space. The net 

function f is the weighted sum of the inputs: 
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Input Layer: A vector of variable values (x1, x2,…,xn) is 

presented to the input layer. The input layer distributes the 

values to each of the neurons in the first hidden layer. 
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Fig. 1. Outputs for the first hidden layer 

 

Hidden Layer: A group of neurons between the input 

layer and the output layer. The outputs from the hidden layer 

are distributed to the output layer. The neurons of first 

hidden layer are directly connected to the input layer (data 

layer) of the neural network; Figure (Fig. 1) shows the 

connections between the first hidden layer and the inputs of 

the network. 

To calculate the outputs for the first hidden layer, we use 

the following: 
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The figure (Fig. 2) shows the connections between the 

input layer and the hidden layer of the neural network.  

 

Fig. 2. Outputs for the neural network 

 

Output Layer: Arriving at a neuron in the output layer. 

The connections between the last hidden layer and Output 

layer of the neural network are shown in Figure 2. 

The outputs Y of the network are calculated by this 

following: 
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Neural networks with three layers of neurons with linear 

outputs and a sufficient number of hidden neurons can 

approximate with arbitrary precision any Borel-measurable 

function of a finite dimensional space to another [15], [16]. 

This property justifies that the number of hidden neurons 

should be chosen appropriately to obtain the desired 

precision. 

III. MODEL OF TRAINING AND NEURAL ARCHITECTURE 

OPTIMIZATION 

The good performance of an ANN is obtained by 

minimizing the error (distance) between the desired output 

and the calculated output. This is influenced by the 

parameters of the ANN.  

The training was done in a supervised learning that is for 

every input vector, the desired output is given and weights 

are adapted to minimize an error function that measures the 

discrepancy between the desired output and the output 

computed by the network. The mean squared error (MSE) is 

employed as the error function. In this article, a new 

optimization model is introduced, in order:  

-- To optimize the artificial neural architecture,  

-- To adjust the parameters of ANN.      

In this new proposed strategy, we can formulate the 

problem of neural architecture optimization as nonlinear 

constraint programming with mixed variables. We apply the 

Ant System algorithm to solve it.   

For modeling the problem of neural architecture 

optimization, we define the following parameters: 

A. Notations 

Nmax  : The maximum number of hidden neurons. 

n    : The number of neurons by in input. 

m    : The number of neurons by in output. 

nopt  : The optimal number of hidden neurons. 

X    : The input of ANN 

h   : The output of the hidden layer 

Y    : The calculated (actual) output of ANN 

d    : The desired output of ANN 

f    : The activation function of the all neurons. 

F   : The transfer function of artificial neural   network 


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 represents the matrix of weight 

between neurons of the input layer and those of the hidden 

layer. 

    
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,

2
max represents the matrix of weight 

between neurons of the hidden layer and those of the output 

layer. 

We note  21,WWW  . 

B. Cost function 

The objective function of the mathematical programming 

model is the distances between the calculated output vector 

and the desired output: 

                          2
,, dWXUF                           (4) 

 

Where F(U,X,W) = Y 

C. Constraint 

To guarantee the existence of one hidden neuron at least, 

we propose the following constraint  

                                   
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D. Optimization Model 

We can eliminate some neurons from the perceptron 

without loss the quality of this network, we can use the 

variables (ui) and we introduce the following optimization 

model (P): 
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Our approach begins with a maximal number of hidden 

neurons. The training process, all observations are 

sequentially input to learning system in an arbitrary order. 

The number of hidden layers and the values of weights are 

determined by the optimization model. In addition, the 

number of hidden neurons must be decided simultaneously 

with a training phase (weights adjust). 

The literature indicates that basically two approaches are 

employed in solving the mixed-integer problem, namely, 

exact methods and heuristic methods. The present work falls 

in the second group, because the exact procedures need 

extremely high iterative computing for solving [1], [6], [13]. 

IV. ANT COLONY OPTIMIZATION APPLIED TO MLP 

ARCHITECTURE OPTIMIZATION AND TRAINING  

The ant colony optimization (ACO) is a metaheuristic 

approach introduced by Marco Dorigo in 1992 to solve 

combinatorial optimization problems [4]. The ACO consists 

of a colony of artificial ants, which construct iteratively 

solutions to a given instance of a combinatorial optimization 

problem and use pheromone trails to communicate [5]. Each 

ant of the colony represents a solution of the problem as a 

path and puts a quantity of pheromone on its path according 

to the solution quality. However, to avoid the reinforcement 

of paths with bad quality, a step of evaporation is applied at 

the end of each iteration of the algorithm.  

A. Representation of an ant 

Each ant of the colony represents a solution of the 

problem; it is characterized by : 

-- A binary vector U indicating if neurons are activated or 

not 

--Two matrixes: W
1
 and W

2
 representing respectively the 

weighting values between the input layer and the hidden 

layer and between the hidden layer and the output layer. 

--The cost of the solution constructed by the ant. Noted C.   

 

The vector U and the matrixes W
1
 and W

2
 are respectively 

initialized randomly in {0, 1}, [-1, 1] and [-1, 1], while C is 

calculated according to (4).  

                          2
,, dWXUFC                    (4) 

We note that, F(U, X, W) is the output of the MLP noted 

Y, so to determine the value of C, we have to calculate the 

outputs of the hidden layer (H) and the output layer (Y). 

These vectors are respectively obtained by expressions (2) 

and (3). 

B. Construction of a solution 

The ant begins its solution by the generation of the 

weighting values of W
1
 and W

2
 and the binary vector U, and 

then calculates the value of C. From iteration to another the 

ant tries to improve the obtained results by changing some 

values of W
1
, W

2
 and U in order to minimize the cost 

function.  

To illustrate the process of the modification of W
1
, W

2
 and 

U, we consider the graph presented in fig 3.  

 

 
Fig. 3 Graphical representation of the Ant Colony Algorithm 

 

This graph is defined by three levels of nodes, 

corresponding to the input, hidden and output layers. Nodes 

of each level are the neurons of the corresponding layer. An 

arc (i, j) between input and hidden layer is weighted by 
1

, jiw  

and an arc (j, k) between hidden and output layer is weighted 

by
2

,kjw .  Nodes B and E represent the beginning and the 
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end of the graph. The arcs linked to these two nodes are 

weighted by 0.  

In the first step, the ant has to select the arc between input 

and hidden layer which is going to be modified. In this step, 

we are going to change the value of W
1
.  

This selection is made according to the following 

probability rule: 
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Where α and  define the relative importance of τij 

representing the pheromone trail present on arc (i, j) and ηij 

represents the visibility of the ant. 

The parameter ηij depends on the problem characteristics. 

We defined it by: 
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(we add the term +1 is to avoid the 0 case) 

 

In the second step of the program, the ant has to select the 

next arc to modify, this time; the ant is going to modify both 

the weight value W
2
 and the binary vector U. We use the 

same probability rule (9) presented below. 

 

The pheromone trail is updated at the end of each iteration 

according to the following equation: 

                   )()()1( ttt ijijij            (9) 

Where  

- ρ is a coefficient of evaporation ( ρ < 1 to avoid an 

unlimited accumulation of trace) 

- τij is the quantity of trace left on the edge (i, j) by the 

colony at the end of an iteration. It is defined by: 
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Q : Updating constant 

C: Cost function of the best solution in iteration t 

Best solution: The minimal cost function found. 

 

C. Ant colony algorithm applied to the problem 

Our approach can be summarized as follows: 

 

1. Initialization of the trail of pheromone by an initial value 

τ0 

2. For each ant 

     Initialization of W
1
, W

2
, U 

3. For a maximum number of iterations 

 For each ant 

a. Selection of an arc (i, j) between input and hidden 

layers according to (7) 

b. Modification of 
1

, jiw  in [-1, 1] 

c. Selection of an arc (j, k) between hidden and output 

layers according to (7) 

d. Modification of 
2

,kjw in [-1, 1] and Uj in {0,1}. 

e. Update of the pheromone trail according to (9). 

 

V. EXPERIMENTAL RESULTS OF TRAINING AND 

ARCHITECTURE OPTIMIZATION TO SOLVE THE 

CLASSIFICATION PROBLEM 

To illustrate the performance of the proposed Ant Colony 

Algorithm, we apply it to a widely used data bases, namely, 

“Iris”, “seeds” and “Cancer” Databases available on the UCI 

repository of machine learning databases [30].  

Table below shows a summary of the databases used, 

including the number of samples, number of attributes and 

number of classes. 

 
TABLE I 

DATABASES CHARACTERISTICS   

Data base Samples Attributs Classes 

Iris 150 4 3 

Cancer 699 9 2 

Seeds 210 7 3 

 

To solve the proposed optimization model, we apply an 

Ant Colony System [4], [5] in order to determine the optimal 

number of hidden neurons (Architecture Optimization), and 

to obtain the matrix of weights (Training).  

TABLE II presents for each Database used in our paper 

the initial Architecture and the optimal Architecture found 

by our method while maximizing the performance of the 

ANN. For example for a Peceptron of 40 hidden neurons, 

the optimal number of neurons is 34 neurons; which means 

that the number of neurons was reduced by 15%. 
 

TABLE II  

 RESULTS OF ARCHITECTURE OPTIMIZATION 

Data bases 
Initial 

Architecture 

Final 

Architecture 

Iris Nmax = 20 nopt = 19 

Seeds Nmax = 40 nopt = 34 

Cancer Nmax = 60 nopt = 44 

 

A. Preprocessing 

Without loss of generality, we simplify the study by 

translating the Data from their natural to a normalized form 

using (11). After normalization, all features of these 

instances are between zero and one. 
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The proposed Ant Colony Algorithm was implanted in 

C++, and tested on three databases. The program was run in 

a Intel® Core ™ i3 CPU M380 @ 2,53 GHz 2,53 GHz and 

3 Go of RAM.  

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_03

(Advance online publication: 29 February 2016)

 
______________________________________________________________________________________ 



 

B. Database Iris  

This database contains 3 classes of 50 samples, where 

each class refers to a type of iris plant. The samples in this 

database are characterized by 4 variables. We used half of 

the samples for training, and the rest for the test.  
 

In the experiments, with our method, the average of the 

number of hidden neurons was computed relative to the 

maximum network architecture generated Nmax. 
 

In order to illustrate the effect of the Ant Colony 

Algorithm to solve the model of MLP Architecture 

optimization and training, the experimental results with 2000 

iterations are presented in Table III and Table IV. 
 

TABLE III 

NUMERICAL RESULTS WITH 2000 ITERATIONS OBTAINED BY OUR 

APPROACH APPLIED TO TRAINING DATABASE   
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Setosa 25 25 0 100 

19 
Virginica 25 23 2 92 

Versicolor 25 25 0 100 

Total 75 73 2 97,3 
 

Table III presents the obtained classification results of 

training data. The proposed method permits to classify all 

the training data except for two elements which represents 

97.3% of the total number of samples. 

 
 

TABLE IV 

NUMERICAL RESULTANTS OBTAINED BY OUR APPROACH APPLIED TO TEST 

DATABASE 

 Num. of 

testing data 

Correctly 

Classified 
Misclassified 

Accuracy 

(%) 

Setosa 25 25 0 100 

Virginica 25 23 2 96 

Versicolor 25 25 0 100 

Total 75 73 2 97,3 
 

Table IV presents the obtained classification results of test 

data. The proposed method permits to classify all the test 

data except for two elements. 

In order to give a better view of the performance, the 

MSE error of identification examples using our method is 

shown in Fig. 4, where the MSE error decreases in time. 

The following Figure (Fig. 4) shows the evolution the 

mean square error (MSE) during training phase for 2000 

iterations.  
 

 

Fig. 4 MSE evolution during learning phase for 2000 iterations 

 

A comparison of the average classification accuracy rate 

of the proposed method with other existing neural networks 

training algorithms: Error Back-Propagation (EBP), Radial 

Basis Function (RBF) neural networks and Support Vector 

Machine (SVM). We use half of the data examples (75 

items) for training and the remaining (75 items) for testing as 

well. 
 

TABLE V 

NUMERICAL RESULTANTS OBTAINED BY COMPARISON OF THE PROPOSED 

METHOD WITH OTHER EXISTING NEURAL NETWORKS TRAINING 

ALGORITHMS 

Methods 
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EBP 800 2 1 97.3 98.6 5 
EBP 500 3 2 96 97.3 5 
RBF 85 4 4 94.6 94.6 17 
RBF 111 3 2 96 97.3 15 
SVM 5000 3 5 96 93.3 - 

Proposed 

Method 
2000 2 2 97.3 97.3 19 

 

From the results of the experiment with the classification 

problem, we notice that the performance of the Proposed 

Method is better than that of RBF and SVM. But the 

difference between the Proposed Method and the EBF 

Method is small.  

These result shows that our method provides good 

solutions in terms of the misclassified elements. The 

advantage of our method happens to be better generalization 

performance and to propose automatically, for a given 

problem, the adequate neural architecture. 

Our computational results suggest that the proposed 

method is capable of training neural networks, and of MLP 

architecture optimization. 

C. Database Seeds  

In order to illustrate the effect of using Ant Colony 

Algorithm to solve the model of MLP Architecture 

optimization and training, we continue our experiments 

using seeds database. 

The seeds database represents measurements of 

geometrical properties of kernels belonging to three different 

varieties of wheat. A soft X-ray technique and GRAINS 

package ware used to construct all seven, real-valued 

attributes. The examined group comprised kernels belonging 

to three different varieties of wheat: Kama, Rosa and 

Canadian, 70 elements each, randomly selected for the 

experiment. The samples in this database are characterized 

with 7 variables.  

For testing our method, the data set is divided into two 

parts: the training set and test set. We used 45 samples for 

training and the rest samples for the test. 
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TABLE VI 

NUMERICAL RESULTANTS OBTAINED BY OUR APPROACH APPLIED TO 

TRAINING DATABASE  “SEEDS” 
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Kama 15 13 2 86.67 

34 
Rosa 15 15 0 100 

Canadian 15 15 0 100 

Total 45 43 2 95.57 

 

Table VI presents the obtained classification results of test 

data. The proposed method permits to classify all the test 

data except for two elements. 

 
TABLE VII 

NUMERICAL RESULTS OBTAINED BY OUR APPROACH APPLIED TO TEST 

DATABASE “SEEDS” 

 Num. of 

testing data 

Correctly 

Classified 
Misclassified 

Accuracy 

(%) 

Kama 55 51 4 92.73 

Rosa 55 51 4 92.73 

Canadian 55 51 4 92.73 

Total 165 153 12 92.73 

 

Table VII presents the obtained classification results of 

test data. The proposed method permits to classify all the 

test data except for 12 elements from 165 samples (which 

represents 7.2% from the test data). 

In order to evaluate the performance of the proposed 

method, we compared our method with other learning 

algorithms: Support Vector Machine (SVM) and Self 

Organizing Map (SOM) for the classification of Seeds data. 

The results are presented in TABLE VIII. 

TABLE VIII 

NUMERICAL RESULTS OBTAINED BY COMPARISON OF THE PROPOSED 

METHOD WITH OTHER EXISTING NEURAL NETWORKS TRAINING 

ALGORITHMS FOR “SEEDS” 

Methods 
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SVM 5000 93.33 93.3 - 

SOM 2000 91.11 92.12 - 
Proposed 

Method 
3000 95.55 92.73 34 

 

The results are shown in the TABLE VIII; we can see that 

the proposed method gets a higher average classification 

accuracy rate than SVM and SOM methods. 

D. Database Cancer 

The Wisconsin Breast Cancer Data set, consists of 699 

cases, of which 458 are diagnosed as benign and the 

remaining 241 are known to be malignant. There are no 

missing attributes in the data set, and in this case, we are 

interested in classifying the breast tumor as benign and 

malignant. 

 

 

TABLE IX 

NUMERICAL RESULTANTS OBTAINED BY OUR APPROACH APPLIED TO 

TRAINING DATABASE  “CANCER” 

 

N
u

m
. o

f 

T
rain

in
g

 d
ata

 

C
o

rrectly
 

C
lassified

 

M
isclassified

 

A
ccu

racy
 (%

) 

N
u

m
 o

f  

h
id

d
en

 n
eu

ro
n

s 

Benign 229 210 19 91.7 

44 Malignant 121 116 5 95.86 

Total 350 326 24 93.14 

 

TABLE X 

NUMERICAL RESULTANTS OBTAINED BY OUR APPROACH APPLIED TO 

TEST DATABASE  “CANCER” 

 

N
u

m
. o

f 

T
rain

in
g

 d
ata

 

C
o

rrectly
 

C
lassified

 

M
isclassified

 

A
ccu

racy
 (%

) 

Benign 229 213 16 93.01 

Malignant 121 116 5 95.86 

Total 350 329 21 94 

 

Based on these tables, we can conclude that the proposed 

approach in this paper gives better results compared to other 

methods for training data; but at the same time, we note that 

the accuracy rate of the average classification of the 

proposed method is almost the same as the other methods for 

testing data. 

VI. CONCLUSION 

This work demonstrates the hybrid training method: 

Optimization of MLP architecture and Training using Ant 

Colony Algorithm, where we have formulated this problem 

in term of mixed-integer problem with a linear constraint 

(P). In this way, solving the new model (P) using Ant 

Colony Algorithm was proposed.  

Ant System is used to find an optimum solution, each 

solution represents both the architecture and the weights of 

an MLP network. This methodology searches for the global 

minimum, which represents an MLP network with low 

complexity and good generalization performance. 

Near perfect results were attained when using our method 

to optimize the neural networks architecture. 

The results of two experiments demonstrate the successful 

implementation of our method using Ant Colony Algorithm.  

In future work, we plan to improve this Meta heuristic to 

find an optimal architecture and better quality training for 

MLP. 
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