



Abstract— we present in this paper an Ant Colony

Algorithm to optimize the performance of the multilayer

Perceptron. Indeed, the performance of the multilayer

Perception depends on its parameters such as the number of

neurons in the hidden layer and the connection weights. In this

respect, we firstly model the problem of neural architecture and

training in terms of a mixed-integer problem with a linear

constraint, and secondly, we propose an Ant Colony Algorithm

to solve it. The experimental results illustrate the advantage of

our approach as a new method of training and architecture

optimization.

Index Terms—Multilayer Perceptron (MLP), Neural

Architectures Optimization, Non-linear optimization, Ant

Colony Algorithms, Supervised Training, Classification.

I. INTRODUCTION

NE of the most important problems that neural network

designers face today is choosing an appropriate neural

architecture for a given application. In this way, we cite

constructive methods [18], [7], [3] and pruning methods

[28], [10].

The architecture optimization and training of neural

networks is a complex task of great importance in problems

of supervised learning. Optimization of neural architectures

and training method has an influence on the quality of

networks measured by their performance [29].

Finding a solution of the hybrid training and the

architecture optimization requires a solution a mixed-integer

nonlinear optimization problem with a linear constraint [20].

Such problems are NP-complete, so different metaheuristics

are applied in the literature to solve it. Genetic algorithms

are frequently combined with neural methods to select best

architectures and avoid the drawbacks of local minimization

methods [8], [29]. Other methods of neural architecture

optimization are proposed, such as particle swarm

optimization [27].

This paper suggests finding both optimal neural network

architecture and the connection weights. In this respect, we

optimize the number of neurons in the hidden layer by

formulating the problem of neural architecture into a mixed-

Manuscript received March 05, 2015; revised September 29, 2015.

Y. Ghanou is with the Department of Computer Engineering, High

School of Technology, Moulay Ismaïl University, B. P. 3103, 50000,

Toulal, Meknes, Morocco (corresponding author to e-mail:

youssefghanou@yahoo.fr).

G. Bencheikh is with Department of Economics, Faculty of Law,

Economics and Socials, Moulay Ismaïl University, B. P. 3103, 50000,

Toulal, Meknes, Morocco (e-mail: ghizlane_bencheikh@yahoo.fr).

integer nonlinear problem with linear constraint. We apply

an Ant colony algorithm to solve the obtained problem

which provides optimal architecture and generalization

performance.

II. MULTILAYER PERCEPTRON ARCHITECTURE

Rosenblatt's work created much excitement, controversy,

and interest in neural net models for pattern classification in

that period and led to important models abstracted from his

work in later years. Currently the names (single-layer)

Perceptron and Multilayer Perceptron are used to refer to

specific artificial neural network structures based on

Rosenblatt's Perceptrons.

ANN is composed of a series of neurons, which have

multiple connections with other neurons. Each connection is

associated a weight which can be varied in strength, in

analogy with neurobiology synapses. A typical ANN

architecture is known as the multilayer perceptron (MLP)

where the neural network operates is relatively simple. The

input layer receives the input vector, each neuron in the

input layer receives a value (a component of the input

vector), and produces a new value (output) which it sends to

each neuron of the next layer [21].

A multilayer Perceptron (MLP) is a variant of the

Artificial Neural Network. It has one or more hidden layers

between its input and output layers, the neurons are

organized in layers, the connections are always directed

from lower layers to upper layers, the neurons in the same

layer are not interconnected [22].

The architecture of an Artificial Neural Network is a

layout of neurons grouped into layers. The main parameters

of ANN are the number of layers, the number of neurons per

layer, connectivity level and type of neuron interconnections

[9].

The first layer of the neural network is the input layer, we

assume that it contains n neurons, the last layer of the

network is the output layer, and we assume that it contains m

neurons.

In the Perceptron model, a single neuron with a linear

weighted net function and a threshold activation function is

employed. The input to this neuron x = (x1, x2, …, xn) is a

feature vector in a n-dimensional feature space. The net

function f is the weighted sum of the inputs:

   



n

i

ii xwwxf
1

0 . (1)

Input Layer: A vector of variable values (x1, x2,…,xn) is

presented to the input layer. The input layer distributes the

values to each of the neurons in the first hidden layer.

Architecture Optimization and Training for the

Multilayer Perceptron using Ant System

Y. Ghanou, and G. Bencheikh

O

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_03

(Advance online publication: 29 February 2016)

__

Fig. 1. Outputs for the first hidden layer

Hidden Layer: A group of neurons between the input

layer and the output layer. The outputs from the hidden layer

are distributed to the output layer. The neurons of first

hidden layer are directly connected to the input layer (data

layer) of the neural network; Figure (Fig. 1) shows the

connections between the first hidden layer and the inputs of

the network.

To calculate the outputs for the first hidden layer, we use

the following:















































































































n

j

jNj

n

j

jkj

n

j

jj

N

k

xwf

xwf

xwf

h

h

h

H

1

1

,

1

1

,

1

1

1,

1

max

max









 (2)

The figure (Fig. 2) shows the connections between the

input layer and the hidden layer of the neural network.

Fig. 2. Outputs for the neural network

Output Layer: Arriving at a neuron in the output layer.

The connections between the last hidden layer and Output

layer of the neural network are shown in Figure 2.

The outputs Y of the network are calculated by this

following:















































































































max

max

max

1

2

,

1

2

,

1

2

1,

1

N

j

jmjj

N

j

jkjj

N

j

jjj

m

k

hwuf

hwuf

hwuf

y

y

y

Y









 (3)

Neural networks with three layers of neurons with linear

outputs and a sufficient number of hidden neurons can

approximate with arbitrary precision any Borel-measurable

function of a finite dimensional space to another [15], [16].

This property justifies that the number of hidden neurons

should be chosen appropriately to obtain the desired

precision.

III. MODEL OF TRAINING AND NEURAL ARCHITECTURE

OPTIMIZATION

The good performance of an ANN is obtained by

minimizing the error (distance) between the desired output

and the calculated output. This is influenced by the

parameters of the ANN.

The training was done in a supervised learning that is for

every input vector, the desired output is given and weights

are adapted to minimize an error function that measures the

discrepancy between the desired output and the output

computed by the network. The mean squared error (MSE) is

employed as the error function. In this article, a new

optimization model is introduced, in order:

-- To optimize the artificial neural architecture,

-- To adjust the parameters of ANN.

In this new proposed strategy, we can formulate the

problem of neural architecture optimization as nonlinear

constraint programming with mixed variables. We apply the

Ant System algorithm to solve it.

For modeling the problem of neural architecture

optimization, we define the following parameters:

A. Notations

Nmax : The maximum number of hidden neurons.

n : The number of neurons by in input.

m : The number of neurons by in output.

nopt : The optimal number of hidden neurons.

X : The input of ANN

h : The output of the hidden layer

Y : The calculated (actual) output of ANN

d : The desired output of ANN

f : The activation function of the all neurons.

F : The transfer function of artificial neural network






otherwise

usedisineuronif
ui

0

1

We note U = (u1,u2,…,uN)
T
 and 




max

1

N

i

iunopt

h
1

h
2

h
Nmax

h
j

Hidden

layer

Output

layer

y1

y2

ym

yk

x1

x2

xn

xj

h1

h2

hN

hk

Input

layer
Hidden

layer

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_03

(Advance online publication: 29 February 2016)

__

 
max1

1
1

,

1

Nj
nijiwW

 represents the matrix of weight

between neurons of the input layer and those of the hidden

layer.

  
mj
NijiwW



1
1

2

,

2
max represents the matrix of weight

between neurons of the hidden layer and those of the output

layer.

We note  21,WWW  .

B. Cost function

The objective function of the mathematical programming

model is the distances between the calculated output vector

and the desired output:

   2
,, dWXUF  (4)

Where F(U,X,W) = Y

C. Constraint

To guarantee the existence of one hidden neuron at least,

we propose the following constraint

 



max

1

1
N

i

iu (5)

D. Optimization Model

We can eliminate some neurons from the perceptron

without loss the quality of this network, we can use the

variables (ui) and we introduce the following optimization

model (P):

 

 


























IRw

IRw

u

CS

dWXUF

P

ji

ji

N

i

i

2

,

1

,

1

max

1

:..

,,min

Our approach begins with a maximal number of hidden

neurons. The training process, all observations are

sequentially input to learning system in an arbitrary order.

The number of hidden layers and the values of weights are

determined by the optimization model. In addition, the

number of hidden neurons must be decided simultaneously

with a training phase (weights adjust).

The literature indicates that basically two approaches are

employed in solving the mixed-integer problem, namely,

exact methods and heuristic methods. The present work falls

in the second group, because the exact procedures need

extremely high iterative computing for solving [1], [6], [13].

IV. ANT COLONY OPTIMIZATION APPLIED TO MLP

ARCHITECTURE OPTIMIZATION AND TRAINING

The ant colony optimization (ACO) is a metaheuristic

approach introduced by Marco Dorigo in 1992 to solve

combinatorial optimization problems [4]. The ACO consists

of a colony of artificial ants, which construct iteratively

solutions to a given instance of a combinatorial optimization

problem and use pheromone trails to communicate [5]. Each

ant of the colony represents a solution of the problem as a

path and puts a quantity of pheromone on its path according

to the solution quality. However, to avoid the reinforcement

of paths with bad quality, a step of evaporation is applied at

the end of each iteration of the algorithm.

A. Representation of an ant

Each ant of the colony represents a solution of the

problem; it is characterized by :

-- A binary vector U indicating if neurons are activated or

not

--Two matrixes: W
1
 and W

2
 representing respectively the

weighting values between the input layer and the hidden

layer and between the hidden layer and the output layer.

--The cost of the solution constructed by the ant. Noted C.

The vector U and the matrixes W
1
 and W

2
 are respectively

initialized randomly in {0, 1}, [-1, 1] and [-1, 1], while C is

calculated according to (4).

   2
,, dWXUFC  (4)

We note that, F(U, X, W) is the output of the MLP noted

Y, so to determine the value of C, we have to calculate the

outputs of the hidden layer (H) and the output layer (Y).

These vectors are respectively obtained by expressions (2)

and (3).

B. Construction of a solution

The ant begins its solution by the generation of the

weighting values of W
1
 and W

2
 and the binary vector U, and

then calculates the value of C. From iteration to another the

ant tries to improve the obtained results by changing some

values of W
1
, W

2
 and U in order to minimize the cost

function.

To illustrate the process of the modification of W
1
, W

2
 and

U, we consider the graph presented in fig 3.

Fig. 3 Graphical representation of the Ant Colony Algorithm

This graph is defined by three levels of nodes,

corresponding to the input, hidden and output layers. Nodes

of each level are the neurons of the corresponding layer. An

arc (i, j) between input and hidden layer is weighted by
1

, jiw

and an arc (j, k) between hidden and output layer is weighted

by
2

,kjw . Nodes B and E represent the beginning and the

Input

layer

Hidden

layer

r

Output

layer

B E

i

j

k

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_03

(Advance online publication: 29 February 2016)

__

end of the graph. The arcs linked to these two nodes are

weighted by 0.

In the first step, the ant has to select the arc between input

and hidden layer which is going to be modified. In this step,

we are going to change the value of W
1
.

This selection is made according to the following

probability rule:

 

   
   











 

otherwise

Candidatejif
tp

k

l

rlrl

rjrj

k

rj

 0

.

.







 (7)

Where α and  define the relative importance of τij

representing the pheromone trail present on arc (i, j) and ηij

represents the visibility of the ant.

The parameter ηij depends on the problem characteristics.

We defined it by:

1),,(

1
2
 dWUXF

 (8)

(we add the term +1 is to avoid the 0 case)

In the second step of the program, the ant has to select the

next arc to modify, this time; the ant is going to modify both

the weight value W
2
 and the binary vector U. We use the

same probability rule (9) presented below.

The pheromone trail is updated at the end of each iteration

according to the following equation:

)()()1(ttt ijijij   (9)

Where

- ρ is a coefficient of evaporation (ρ < 1 to avoid an

unlimited accumulation of trace)

- τij is the quantity of trace left on the edge (i, j) by the

colony at the end of an iteration. It is defined by:











otherwise

solutionBestjiif
Q

ij

0

),(
C (10)

Q : Updating constant

C: Cost function of the best solution in iteration t

Best solution: The minimal cost function found.

C. Ant colony algorithm applied to the problem

Our approach can be summarized as follows:

1. Initialization of the trail of pheromone by an initial value

τ0

2. For each ant

 Initialization of W
1
, W

2
, U

3. For a maximum number of iterations

 For each ant

a. Selection of an arc (i, j) between input and hidden

layers according to (7)

b. Modification of
1

, jiw in [-1, 1]

c. Selection of an arc (j, k) between hidden and output

layers according to (7)

d. Modification of
2

,kjw in [-1, 1] and Uj in {0,1}.

e. Update of the pheromone trail according to (9).

V. EXPERIMENTAL RESULTS OF TRAINING AND

ARCHITECTURE OPTIMIZATION TO SOLVE THE

CLASSIFICATION PROBLEM

To illustrate the performance of the proposed Ant Colony

Algorithm, we apply it to a widely used data bases, namely,

“Iris”, “seeds” and “Cancer” Databases available on the UCI

repository of machine learning databases [30].

Table below shows a summary of the databases used,

including the number of samples, number of attributes and

number of classes.

TABLE I

DATABASES CHARACTERISTICS

Data base Samples Attributs Classes

Iris 150 4 3

Cancer 699 9 2

Seeds 210 7 3

To solve the proposed optimization model, we apply an

Ant Colony System [4], [5] in order to determine the optimal

number of hidden neurons (Architecture Optimization), and

to obtain the matrix of weights (Training).

TABLE II presents for each Database used in our paper

the initial Architecture and the optimal Architecture found

by our method while maximizing the performance of the

ANN. For example for a Peceptron of 40 hidden neurons,

the optimal number of neurons is 34 neurons; which means

that the number of neurons was reduced by 15%.

TABLE II

 RESULTS OF ARCHITECTURE OPTIMIZATION

Data bases
Initial

Architecture

Final

Architecture

Iris Nmax = 20 nopt = 19

Seeds Nmax = 40 nopt = 34

Cancer Nmax = 60 nopt = 44

A. Preprocessing

Without loss of generality, we simplify the study by

translating the Data from their natural to a normalized form

using (11). After normalization, all features of these

instances are between zero and one.

 

   ii

i

k

oldik

newi
xx

xx
x

minmax

min




 (11)

The proposed Ant Colony Algorithm was implanted in

C++, and tested on three databases. The program was run in

a Intel® Core ™ i3 CPU M380 @ 2,53 GHz 2,53 GHz and

3 Go of RAM.

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_03

(Advance online publication: 29 February 2016)

__

B. Database Iris

This database contains 3 classes of 50 samples, where

each class refers to a type of iris plant. The samples in this

database are characterized by 4 variables. We used half of

the samples for training, and the rest for the test.

In the experiments, with our method, the average of the

number of hidden neurons was computed relative to the

maximum network architecture generated Nmax.

In order to illustrate the effect of the Ant Colony

Algorithm to solve the model of MLP Architecture

optimization and training, the experimental results with 2000

iterations are presented in Table III and Table IV.

TABLE III

NUMERICAL RESULTS WITH 2000 ITERATIONS OBTAINED BY OUR

APPROACH APPLIED TO TRAINING DATABASE

N
u

m
. o

f

T
rain

in
g

 d
ata

C
o

rrectly

C
lassified

M
isclassified

A
ccu

racy
 (%

)

N
u

m
 o

f

h
id

d
en

 n
eu

ro
n

s

Setosa 25 25 0 100

19
Virginica 25 23 2 92

Versicolor 25 25 0 100

Total 75 73 2 97,3

Table III presents the obtained classification results of

training data. The proposed method permits to classify all

the training data except for two elements which represents

97.3% of the total number of samples.

TABLE IV

NUMERICAL RESULTANTS OBTAINED BY OUR APPROACH APPLIED TO TEST

DATABASE

 Num. of

testing data

Correctly

Classified
Misclassified

Accuracy

(%)

Setosa 25 25 0 100

Virginica 25 23 2 96

Versicolor 25 25 0 100

Total 75 73 2 97,3

Table IV presents the obtained classification results of test

data. The proposed method permits to classify all the test

data except for two elements.

In order to give a better view of the performance, the

MSE error of identification examples using our method is

shown in Fig. 4, where the MSE error decreases in time.

The following Figure (Fig. 4) shows the evolution the

mean square error (MSE) during training phase for 2000

iterations.

Fig. 4 MSE evolution during learning phase for 2000 iterations

A comparison of the average classification accuracy rate

of the proposed method with other existing neural networks

training algorithms: Error Back-Propagation (EBP), Radial

Basis Function (RBF) neural networks and Support Vector

Machine (SVM). We use half of the data examples (75

items) for training and the remaining (75 items) for testing as

well.

TABLE V

NUMERICAL RESULTANTS OBTAINED BY COMPARISON OF THE PROPOSED

METHOD WITH OTHER EXISTING NEURAL NETWORKS TRAINING

ALGORITHMS

Methods
N

u
m

. O
f

Iteratio
n

s

M
isclassified

 fo
r

train
in

g
 set

M
isclassified

fo
r testin

g
 set

A
ccu

racy
 fo

r

train
in

g
 set

(%
)

A
ccu

racy

fo
r testin

g

set (%
)

N
u

m
. o

f

h
id

d
en

N
eu

ro
n

s

EBP 800 2 1 97.3 98.6 5
EBP 500 3 2 96 97.3 5
RBF 85 4 4 94.6 94.6 17
RBF 111 3 2 96 97.3 15
SVM 5000 3 5 96 93.3 -

Proposed

Method
2000 2 2 97.3 97.3 19

From the results of the experiment with the classification

problem, we notice that the performance of the Proposed

Method is better than that of RBF and SVM. But the

difference between the Proposed Method and the EBF

Method is small.

These result shows that our method provides good

solutions in terms of the misclassified elements. The

advantage of our method happens to be better generalization

performance and to propose automatically, for a given

problem, the adequate neural architecture.

Our computational results suggest that the proposed

method is capable of training neural networks, and of MLP

architecture optimization.

C. Database Seeds

In order to illustrate the effect of using Ant Colony

Algorithm to solve the model of MLP Architecture

optimization and training, we continue our experiments

using seeds database.

The seeds database represents measurements of

geometrical properties of kernels belonging to three different

varieties of wheat. A soft X-ray technique and GRAINS

package ware used to construct all seven, real-valued

attributes. The examined group comprised kernels belonging

to three different varieties of wheat: Kama, Rosa and

Canadian, 70 elements each, randomly selected for the

experiment. The samples in this database are characterized

with 7 variables.

For testing our method, the data set is divided into two

parts: the training set and test set. We used 45 samples for

training and the rest samples for the test.

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_03

(Advance online publication: 29 February 2016)

__

TABLE VI

NUMERICAL RESULTANTS OBTAINED BY OUR APPROACH APPLIED TO

TRAINING DATABASE “SEEDS”

N
u

m
. o

f

T
rain

in
g

 d
ata

C
o

rrectly

C
lassified

M
isclassified

A
ccu

racy
 (%

)

N
u

m
 o

f

h
id

d
en

 n
eu

ro
n

s

Kama 15 13 2 86.67

34
Rosa 15 15 0 100

Canadian 15 15 0 100

Total 45 43 2 95.57

Table VI presents the obtained classification results of test

data. The proposed method permits to classify all the test

data except for two elements.

TABLE VII

NUMERICAL RESULTS OBTAINED BY OUR APPROACH APPLIED TO TEST

DATABASE “SEEDS”

 Num. of

testing data

Correctly

Classified
Misclassified

Accuracy

(%)

Kama 55 51 4 92.73

Rosa 55 51 4 92.73

Canadian 55 51 4 92.73

Total 165 153 12 92.73

Table VII presents the obtained classification results of

test data. The proposed method permits to classify all the

test data except for 12 elements from 165 samples (which

represents 7.2% from the test data).

In order to evaluate the performance of the proposed

method, we compared our method with other learning

algorithms: Support Vector Machine (SVM) and Self

Organizing Map (SOM) for the classification of Seeds data.

The results are presented in TABLE VIII.

TABLE VIII

NUMERICAL RESULTS OBTAINED BY COMPARISON OF THE PROPOSED

METHOD WITH OTHER EXISTING NEURAL NETWORKS TRAINING

ALGORITHMS FOR “SEEDS”

Methods

N
u

m
. O

f

Iteratio
n

s

A
ccu

racy
 fo

r

train
in

g
 set

(%
)

A
ccu

racy

fo
r testin

g

set (%
)

N
u

m
. o

f

h
id

d
en

N
eu

ro
n

s

SVM 5000 93.33 93.3 -

SOM 2000 91.11 92.12 -
Proposed

Method
3000 95.55 92.73 34

The results are shown in the TABLE VIII; we can see that

the proposed method gets a higher average classification

accuracy rate than SVM and SOM methods.

D. Database Cancer

The Wisconsin Breast Cancer Data set, consists of 699

cases, of which 458 are diagnosed as benign and the

remaining 241 are known to be malignant. There are no

missing attributes in the data set, and in this case, we are

interested in classifying the breast tumor as benign and

malignant.

TABLE IX

NUMERICAL RESULTANTS OBTAINED BY OUR APPROACH APPLIED TO

TRAINING DATABASE “CANCER”

N
u

m
. o

f

T
rain

in
g

 d
ata

C
o

rrectly

C
lassified

M
isclassified

A
ccu

racy
 (%

)

N
u

m
 o

f

h
id

d
en

 n
eu

ro
n

s

Benign 229 210 19 91.7

44 Malignant 121 116 5 95.86

Total 350 326 24 93.14

TABLE X

NUMERICAL RESULTANTS OBTAINED BY OUR APPROACH APPLIED TO

TEST DATABASE “CANCER”

N
u

m
. o

f

T
rain

in
g

 d
ata

C
o

rrectly

C
lassified

M
isclassified

A
ccu

racy
 (%

)

Benign 229 213 16 93.01

Malignant 121 116 5 95.86

Total 350 329 21 94

Based on these tables, we can conclude that the proposed

approach in this paper gives better results compared to other

methods for training data; but at the same time, we note that

the accuracy rate of the average classification of the

proposed method is almost the same as the other methods for

testing data.

VI. CONCLUSION

This work demonstrates the hybrid training method:

Optimization of MLP architecture and Training using Ant

Colony Algorithm, where we have formulated this problem

in term of mixed-integer problem with a linear constraint

(P). In this way, solving the new model (P) using Ant

Colony Algorithm was proposed.

Ant System is used to find an optimum solution, each

solution represents both the architecture and the weights of

an MLP network. This methodology searches for the global

minimum, which represents an MLP network with low

complexity and good generalization performance.

Near perfect results were attained when using our method

to optimize the neural networks architecture.

The results of two experiments demonstrate the successful

implementation of our method using Ant Colony Algorithm.

In future work, we plan to improve this Meta heuristic to

find an optimal architecture and better quality training for

MLP.

REFERENCES

[1] J. F. Benders, “Partitioning procedures for solving mixed-variables

programming problems”, Numer. Math., 4 – 238, 1962.

[2] K. Deep, K. Pratap Singh, M.L. Kansal, C. Mohan, “A real coded

genetic algorithm for solving integer and mixed integer optimization

problems”, Applied Mathematics and Computation, 505–518, 2009

[3] Derong, L., Tsu-Shuan, C., Z. Yi, “A Constructive Algorithm For

Feedforward Neural Networks With Incremental Training”, IEEE

Transactions on circuits and systems-I: fundamental theory and

applications 49 (12), 2002.

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_03

(Advance online publication: 29 February 2016)

__

[4] M. Dorigo, “Optimization, Learning and Natural Algorithms”, PhD

thesis, Dip. Elettronica e Informazione, Politecnico di Milano, Italy.

1992.

[5] M. Dorigo and L. M. Gambardella, “Ant colonies for the traveling

salesman problem”, BioSystems 43, 73-81, 1997.

[6] M. Duran, I. E. Grossmann, “An outer-approximation algorithm for a

class of mixed-integer non linear programs”, Mathematical

Programming, 307-339, 1986.

[7] E. Egriogglu, C. Hakam Aladag, S. Gunay, “A new model selection

straegy in artificiel neural networks. Applied Mathematics and

Computation (195), 591-597, 2008.

[8] M. Ettaouil and Y. Ghanou, “Neural architectures optimization and

Genetic algorithms”, Wseas Transactions On Computer 8 (3). 526-

537, 2009.

[9] M. J. Er, L. Y. Zhai, X. Li and L. San, “A Hybrid Online Sequential

Extreme Learning Machine with Simplified Hidden Network,”
IAENG International Journal of Computer Science, vol. 39, no. 1,

pp. 1–9, February 2012.

[10] M. Ettaouil, Y. Ghanou, K. Elmoutaouakil, M. Lazaar, “A New

Architecture.Optimization Model for the Kohonen Networks and

Clustering”, Journal of Advanced Research in Computer Science

(JARCS), 3 (1), 14 – 32, 2011.

[11] R. Fletcher and S. Leyffer, “Solving Mixed Integer Programs by

Outer Approximation”, Math. Program. 66, 327–349, 1994.

[12] J. A. Freeman and D. M. Skapura, “Neural Networks Algorithms,

Applications and Programming Techniques”, Pearson Education,

213 – 262, 2004.

[13] O.K. Gupta and A. Ravindran, “Branch and Bound Experiments in

Convex Nonlinear Integer Programming”, Manage Sci., 31 (12),

1533–1546, 1985.

[14] Hasham Shiraz Ali, Umar Nauman, Faraz Ahsan, Sajjad Mohsin,

“Genetic Algorithm Based Bowling Coach For Cricket”, Journal of

Theoretical and Applied Information Technology, 37 (2), 171-176,

2012.

[15] K. Hornik, “Multilayer feedforward networks are universal

approximators”, Neural Networks, 2, pp. 359–366, 1989.

[16] K. Hornik, M. Stinchcombe and H. White, “Multi-layer feedforward

networks are universel approximators”, Neural Networks 2, 359-366,

1989.

[17] J. Hertz, A. Krogh and R. G. Palmer, “Introduction to Theory of

Neural Computation”, Santa Fe Institute Studies in the Sciences of

Complexity. Addison Wesley, Wokingham, England, 1991.

[18] T.Y. Kwok and D. K. Yeung, “Constructive algorithms for structure

learning in feed forward, neural networks for regression problems”,

IEEE Trans. Neural Networks 8, 630-645, 1997.

[19] X. Liang, “Removal of hidden neurons in multilayer perceptrons by

orthogonal projection and weight crosswise propagation”, Neural

Comput. & Applic., 16, 57-68, 2007.

[20] T. B. Ludermir, A. Yamazaki and C. Zanchettin, “An Optimization

Methodology for Neural Network Weights and Architectures”, IEEE

Transactions On Neural Networks, vol. 17, no. 6, 2006.

[21] M. Minsky and S. Papert, “Perceptrons”, MIT Press, Washington

DC., 1969.

[22] A. Mishra, Zaheeruddin, “Design of Fuzzy Neural Network for

Function Approximation and Classification,” IAENG International

Journal of Computer Science, vol. 37, no. 4, pp. 326-340, 2010.

[23] Quesada and I.E. Grossmann, “An LP/NLP Based Branch and Bound

Algorithm for Convex MINLP Optimization Problems”, Computers

Chem. Eng., 16 (10/11), , 937–947, 1992.

[24] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal

representation by error propagation”, Prallel Distributet Processing,

Rumelhart D. E and McClelland L., EDS. Cambridge MA, L+MIT

Press, vol. 1, pp 318-362, 1986.

[25] A. C. Subhajini and T. Santhanam, “Fuzzy Artmapneural Network

Architecture For Weather Forecasting”, Journal of Theoretical and

Applied Information Technology, 34. (1), 022-028, 2011.

[26] T. Westerlund and F. Petersson, “A Cutting Plane Method for

Solving Convex MINLP Problems”, Computers Chem. Eng., 19,

131–136, 1995.

[27] Yu J., Wang S. and L. Xi, “Evolving artificial network using an

improved PSO and DPSO, , Neurocomputing vol 71, no 4-6, pp

1054-1060, 2008.

[28] X. Zeng and D.S. Yeung, “Hidden neuron pruning of multilayer

perceptrons using a quantified sensitivity Measure”,

Neurocomputing, 69, 825-837, 2006.

[29] C. Zanchettin, T. B. Ludermir and L. M. Almeida, “Hybrid Training

Method for MLP:Optimization of Architecture and Training”, IEEE

Transaction On Systems, Man, And Cybernetics.

[30] UC Irvine Machine Learning Repository, 333 data sets for machine

learning are available at www.ics.uci.edu/mlearn/MLRepository.html

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_03

(Advance online publication: 29 February 2016)

__

http://www.ics.uci.edu/mlearn/MLRepository.html

