

Abstract—This paper proposes an Efficient Randomized

Instruction inSertion Technique (ERIST) to resist side-channel

attacks (SCAs). In ERIST, an instruction insertion hardware

module is embedded into a processor that generates random

real instructions and inserts them into the execution stream of

cryptographic programs. ERIST scrambles the power profile

of a cryptographic application and can resist the latest signal

processing and modeling attacks. An instruction insertion

strategy is adopted to control the generation and insertion of

random instructions, which greatly improves the efficiency of

ERIST. Theoretical analysis and simulated correlation power

analysis (CPA) attack results show that this technique is

significantly more secure and more efficient than previous

similar countermeasures.

Index Terms—side-channel attacks, DPA, countermeasures,

randomized instruction insertion

I. INTRODUCTION

ide-channel attacks (SCAs) [1],[2] pose a serious threat to

the security of cryptographic modules. Their targets

range from primitives, protocols, modules, and devices to

entire systems. Protecting cryptographic implementations

against SCAs is a challenging task.

Random Delay Insertion (RDI) [3],[4] is a simple but

effective countermeasure against SCAs and fault attacks. In

most side-channel and fault attacks, adversaries are required

to know the precise time when the target operations occur in

the execution flow of a cryptographic algorithm. Introducing

random delays into the execution flow breaks

synchronization and increases the complexity of the attack.

The RDI countermeasure has no dependency on algorithms,

and can be applied to different implementation platforms, i.e.

Manuscript received August 18, 2015; revised November 01, 2015. This

work is supported by the National Natural Science Foundation of China
(No.61376031) and Science and technology project of Henan

Provance(152102210055).

Zhangqing He is with the School of Optical and Electronic Information,
Huazhong University of Science and Technology, Wuhan, China and is also

with the Hubei Collaborative Innovation Center for High-efficiency

Utilization of Solar Energy, Hubei University of Technology, Wuhan,
China(corresponding author, phone: +86-02759750879; e-mail:

ivan_hee@126.com).

Tianyong Ao is with the School of Physics and Electronics, Henan
University, Kaifeng, China and is also with the School of Optical and

Electronic Information, Huazhong University of Science and Technology,

Wuhan, China
 Meilin Wan, Kui Dai, and Xuecheng Zou, are with the School of Optical

and Electronic Information, Huazhong University of Science and

Technology, Wuhan, China, and also with Innovation Center for
MicroNanoelectronics and Integrated System, China.

microprocessor, ASIC and FPGA. Furthermore, a

combination of RDI and other countermeasures, such as

masking, are often used in real-life protected

implementations to resist powerful SCAs [5].

Random delays can be introduced in software or hardware.

The insertion of dummy operations is a popular software

method [6],[7]. However, dummy instructions have their own

power profile, and the latest research shows that inserted

dummy instructions can be removed from the instruction

sequence by appropriate signal processing or modeling tools,

e.g., cross-correlation or hidden Markov models (HMMs) [8].

HMM is a probabilistic model generally used for data

classification [9]; Durvaux et al. successfully used it to

remove the random delays generated by software methods

[10].

Random delays can also be introduced in hardware. Bucci

et al. [11] proposed architecture for delaying generation at the

gate level, and Lu et al. [12] implemented it on an FPGA and

addressed the optimization of delay generation parameters

for this architecture. However, these gate-level delay

insertion schemes bring high area and run-time overheads

[13]. Non-deterministic processors [14],[15] can randomly

change the sequence of some independent operations and

scramble the power profiles of cryptographic programs, but

the number of such operations in cryptographic algorithms is

usually limited, thus reducing the practicability of these

techniques. Ambrose et al. [16] presented a randomized

instruction injection technique (RIJID), which inserts some

real instructions into the protected instruction flows. RIJID

overcomes some weaknesses of the dummy insertion

techniques to some extent. However, RIJID does not consider

optimization of the delay distribution and leads to a lack of

efficiency.

In this study, we propose an efficient RDI technique to

counter side-channel attacks. We make two contributions by

proposing the following:

1. A new framework of randomized instruction insertion

technique called Efficient Randomized Instruction inSertion

Technique (ERIST) that can randomly insert random real

instructions into an execution flow, thus scrambling the

power profiles of the cryptographic program. ERIST can

resist the latest signal processing and modeling attacks.

2. A method for generating and inserting random

instructions that improves the statistical distribution of

random delays and greatly increases the efficiency of ERIST.

We implemented ERIST on an ARM7 core and mounted

simulated CPA attacks. The results show that ERIST is

significantly more secure and efficient than published similar

solutions.

Zhangqing He, Tianyong Ao, Meilin Wan, Kui Dai, and Xuecheng Zou, Member, IAENG

ERIST: An Efficient Randomized Instruction

Insertion Technique to Counter Side-Channel

Attacks

S

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_08

(Advance online publication: 29 February 2016)

__

II. ERIST FRAMEWORK

A. Overview of ERIST Framework

The basic idea of ERIST for countering SCAs is to embed

a random instruction generation and insertion module into a

processor. The module can generate and insert some random

real instructions, such as AND and XOR, into the instruction

stream when the processor executes the protected

cryptographic codes. The injected instructions are random

and actually executed, thus it is impossible to identify and

remove them from their power sequences. Several special

strategies ensure that the execution of random instructions

does not change the execution results of protected codes.

The ERIST framework is shown in Figure 1. Five

hardware components (denoted as gray modules) are added

into the original core of a processor. We introduce the details

of these components in the following subsections.

B. Random Instruction Generator

A random instruction generator produces random

instructions used for injection into the processor. In order to

confuse the adversary and reduce hardware overhead, the

type of instructions that can be generated should be carefully

selected. Given that the main SCA targets are symmetric and

asymmetric encryption algorithms, the major operations in

the symmetric encryption algorithms are logic and arithmetic

instructions, such as XOR and AND. In order to protect the

symmetric encryption algorithms, inserting some random

logic and arithmetic instructions would be sufficient.

However, the asymmetric encryption algorithms usually

contain many high-power instructions (HPIs), such as

“multiply.” The power consumption of this type of

instruction is significantly larger than that of the logic and

arithmetic instructions. Hence, some random HPIs should be

inserted in order to protect the asymmetric encryption

algorithm.

Thus, our random instruction generator can produce two

types of instructions, logic and arithmetic, in addition to some

HPIs. The type of HPIs that can be generated depends on the

instruction set of the processor on which ERIST is

implemented. The instruction insertion controller that uses an

HPI_en signal determines whether to generate HPIs.

C. Random Instruction Insertion Controller

The random instruction insertion controller is the core

component of ERIST, and it controls the operation of other

components. If the random instruction insertion function is

triggered, the controller selects some specific time to insert

some random instructions into the instruction stream

according to an efficient instruction insertion algorithm

(details of the instruction insertion algorithm are presented in

Section III).

To start an injection, the controller generates five signals

(RIG_en, HPI_en, Hold, Sel, and Switch) simultaneously to

control the other modules (see Figure 1). The RIG_en signal

informs the random instruction generator to produce

appropriate random instructions. The Sel signal selects the

generated random instructions and sends them to the

instruction registers (IRs). At the same time, the Hold signal

is generated to hold the program counter (PC).

D. Shadow Register

Implementation of the inserted random instructions

actually affects the execution results of the protected

encryption codes. This is because execution of these

instructions rewrites the values of their destination registers,

which can be used by subsequent regular instructions. To

address this problem, we add a shadow register into the

processor to work as the destination register of all the random

instructions. When a random instruction is executed, the

write-back data is written into the shadow register (informed

by the Switch signal) regardless of the original destination

register. This way, execution of all the random instructions

does not amend the values of the general registers.

E. Configuration Register

To improve efficiency, a random instruction insertion

configuration register (RIICR) is introduced in ERIST to

configure its operating parameters.

There are three subsegments in RIICR: the enable bit (En),

HPI_en bit, and setting bits for security levels (SLs). A

typical format for RIICR is shown in Figure 2. If En is set to

“1,” the random instruction insertion function is triggered.

The HPI_en bit determines whether to generate HPIs. The SL

bits can determine the SCA resistance of the ERIST

processor by changing the insertion frequency of random

instructions (details are discussed in Section III).

Decode &

Execution

Instruction

Memory

Random

Instruction

Generator

Random

Number

Generator

random

instructions

configuration

informationRandom Instruction

Insertion Controller

regular

instructions

Configuration

Register

SelRIG_en

random

number

PC
PC

Hold

HPI_en

General

Registers

Shadow

Register

Write-back

data
IR

Switch

Fig. 1. ERIST framework.

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_08

(Advance online publication: 29 February 2016)

__

× SL SL SL × × ×
HPI

_en × × × En

012345678910

Enable bit

31

HPIs generation
Security

levels

· · ·

×

Fig.2 The arrangement of bits in RIICR

F. Software Implementation Flow

When a cryptographic application is executed on the

ERIST processor, programmers select the critical code

segments that need protection, and insert two write RIICR

instructions at the start and end of the segments, respectively.

The first write RIICR instruction sets the En bit in RIICR to

trigger the generation and insertion of random instructions,

and simultaneously sets the values of HPI_en and SL bits.

The second write RIICR instruction clears En in order to stop

generating and inserting random instructions.

Compared with adding special extended instructions in

RIJID [16], our method does not need compiler support,

which greatly increases availability. Furthermore, the

operating parameters of ERIST can be configured as required.

Thus, ERIST can be flexible and efficient in order to meet

different security requirements.

III. EFFICIENT INSTRUCTION INSERTION STRATEGY TO

IMPROVE EFFICIENCY

A. Efficiency of Random Delay Insertion

Random delay techniques protect the cryptographic

algorithms against side-channel attacks by introducing some

delays into the cryptographic execution flows. A single delay

can be easily removed by static alignment of side-channel

traces. Therefore, the execution should be interleaved with

delays in multiple places, so that an attacker is likely to deal

with the cumulative delay of several random delays.

Recent studies show that the statistical distribution of

cumulative delays greatly affects the resistance of random

delay techniques against SCA [17]. The complexity of a DPA

attack grows quadratically or linearly with the standard

deviation of the trace displacement in the attacked point [7].

In order to improve efficiency, we should adhere to the

following criteria for random delay generation.

1. The sum of random delays from start or end to some

attack point within the execution should have the greatest

possible variance.

2. The performance overhead should be as small as

possible. That is to say, the mean of random delays should be

as small as possible.

Most methods proposed for random delay generation

usually insert multiple independent and identically

distributed random delays in the encryption execution flows,

e.g., RIJID [16]. According to the Central Limit Theorem, the

distribution of the sum of N independent delays converges to

normal with mean dN and variance dN 2 ,

where d and d
2 are, respectively, the mean and variance of

the duration of an individual random delay. In order to

improve efficiency, we should modify the delay generation

method to increase variation with the same mean in the

cumulative distribution.

B. Proposed Random Instruction Insertion Method

In ERIST, introducing random delays depends on inserting

random instructions. Therefore, we propose an efficient

method for controlling the generation and insertion of

random instructions and obtain an appropriate statistical

distribution of cumulative random delays, which is

approximated to the uniform distribution.

The following steps describe this method:

1. Initially, three non-negative integer parameters a, b, and

k are chosen (a < b). Once these parameters are set, they do

not change in an implementation of the algorithm.

2. If the enable bit of RIICR is set to 1, the processor starts

generating and inserting random instructions. To do this, an

integer value m is first randomly and uniformly generated in

the interval)2)(,0[kba .

3. At each interval of a fixed d regular instruction (d is

obtained from RIICR), during execution of the protected

algorithm, ERIST continuously generates and inserts c

random instructions, where c is obtained by first generating a

random integer)2)1(,[kbmmc and then letting

 kcc 2 .

4. Once the enable bit of RIICR is set to 0, the processor

stops generating and inserting random instructions.

C. Analysis

According to our method, if the number of instructions

from start or end to the attacked point in a protected

encryption code is l, the adversary considers N insertions in

every execution, where)/(dlIntN , and Int(x) denotes the

largest integer that is lower than or equal to x. Figure 3

depicts two possible instruction sequences when d = 4,

where ci represents the number of inserted instructions in the

i-th insertion of an execution, “×” denotes an injected random

instruction, and “A~Z” denote regular instructions.

In order to simplify the analysis, we assume that each

inserted random instruction has the same execution time, and

one random instruction means one delay. It should be noted

that if HPIs are inserted, the time delays caused by the same

number of inserted instructions is different. However, this

difference can be ignored because it has no obvious influence

on method performance.

Now we provide an example to make the algorithm easier

to understand. If we set the parameters a = 5, b = 3, and

k = 3 at the beginning of each execution, m is randomly and

uniformly generated within the interval [0, 15]. During an

execution, c is generated randomly in]31,[mm and

 kcc 2 . Table I depicts the variation tendency of the

probability density function of c with a different m . We can

see that when m increases from 0 to 15, the mathematical

expectation of c, denoted as E(c), increases accordingly from

1.5 to 3.375.

ABCD×××ACDB××AADC×DHEF××××AIDG××ACBD……AFDG×××AAD

 c1=3 c2=2 c3=1 c4=4 c5=2 …… cN=3

ABCD××ACDB××××AADC×DHEF××AIDG×××ACBD……AFDG××AADE

 c1=2 c2=4 c3=1 c4=2 c5=3 …… cN=2

Fig. 3. Possible instruction sequence when d = 4.

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_08

(Advance online publication: 29 February 2016)

__

TABLE I

PROBABILITY DENSITY FUNCTION OF c WITH DIFFERENT m' IN OUR

INSTRUCTION INSERTION METHOD, WHERE a = 5, b = 3, k = 3

m'
Pr(c)

 c=0 c=1 c=2 c=3 c=4 c=5 E(c)

m'=0 8/32 8/32 8/32 8/32 0 0 1.500

m'=1 7/32 8/32 8/32 8/32 1/32 0 1.625

m'=2 6/32 8/32 8/32 8/32 2/32 0 1.750

.

.

.

.

.

.

m'=14 0 2/32 8/32 8/32 8/32 6/32 3.250

m'=15 0 1/32 8/32 8/32 8/32 7/32 3.375

Fig. 4. Distribution of time delays caused by 100 cumulative insertions

when a = 5, b = 3, k = 3.

Now we consider N insertions for each execution. The

distribution of time delays caused by N cumulative insertions

is approximated to a discrete normal distribution for a fixed

m (see the dotted lines in Figure 4). In an SCA, an adversary

usually performs an algorithm many times in order to conduct

statistical analysis. Because the value of m varies from

execution to execution and is produced randomly and

uniformly, the entire distribution curve of time delays is an

approximately uniform distribution (the heavy line in Figure

4).

D. Comparing with Plain Uniform Delays

For better comparison, we consider a typical method for

delay generation: plain uniform delays. In this method, the

number of inserted instructions in each insertion is uniformly

distributed in the interval [0, a], the distribution of the sum of

N insertions for the plain uniform delays converges to normal

with mean 2/Na , and variance 12/)1)1(()(2 aNSVar N
.

For our method, the number of random instructions in an

individual insertion is c and kcc 2 , where c is

uniformly distributed in)2)1(,[kbmm . We can

consider c a random variable: ivmc , where kmm 2

and
iv is a random variable in the interval [0, b + 1].

We have

N

i

iN vENmESE
1

)()()(

22

1

2

1 Nab
N

ba
N

 (1)

and

12

1)(
)(

2
2

ba
NSVar N (2)

Thus, the plain uniform delay has a variance of the sum of

N insertions in)(N , and our method has a variance in

)(2N , as indicated in Table II. With the same mean
2

Na
,

TABLE II

DISTRIBUTION PARAMETERS OF TWO METHODS

 mean variance

Plain uniform

delay 2

Na

 12

)1)1((2 aN

Our algorithm
2

Na

 12

1)(2
2

ba
N

the ratio of)(NSVar to)(NSVar is approximately equal to

2)
/11

/1
(

a

ab
N

. Therefore, when N is large, our method is

significantly more efficient than the plain uniform method.

E. Implementation of our Instruction Insertion Method

To implement our method, the key point is to calculate the

number of inserted random instructions c for each insertion.

To do this, we first need to produce the random numbers m

and c . If the parameters are determined such that
ukba 22)(and vkb 22)1((u and v are positive

integers), m and c can be efficiently generated by a u-bit

and v-bit random number generator. Then we obtain the value

of c by abandoning the lower k bits of c . Therefore, the cost

of implementing our algorithm is very small.

F. Choosing Algorithm Parameters

According to Eqs. (1) and (2), if we select appropriate

fixed values for a and b, the mean and variance of the

cumulative delays are consequently determined by

parameter N. Because)/(dlIntN , parameter N is

determined by d, which is inversely proportional to N for a

fixed l. According to the theory of Tunstall and Benoit [7], a

larger mean of cumulative delays represents greater

performance overhead, and a greater delay variance indicates

stronger resistance against SCA. Therefore, the mean of the

delays should be as minimal as possible, thereby suggesting

that a larger d should be used. However, as d increases, delay

variance decreases, thus introducing a trade-off between

overhead and system security. Hence, we should choose a

different d for different security requirements in order to

obtain the best trade-off between overhead and SCA

resistance. In ERIST, d can be set by the setting bits of SLs in

RIICR, as described in Section II.

IV. EXPERIMENT RESULTS

A. Implementation of ERIST on ARM7

We implemented our ERIST framework based on ARM7

processor core (ARM7TDMI-S), and called such

implementation ERIST-ARM7.

In ERIST-ARM7, the random instruction generator can

produce two types of instructions: single cycle data

processing, and MUL and MLA. The data-processing

instructions are generated according to the encoding diagram

shown in Figure 5. The highest-order bit (bit 24) of op-code is

set to 0 and the rest bits (bits 21 to 23) are filled with random

numbers to ensure only single cycle data-processing

instructions, such as AND, ADD, and XOR, are generated.

Moreover, if the HPI_en bit in RIICR is set to 1, the MUL

and MLA instructions are generated according to the

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_08

(Advance online publication: 29 February 2016)

__

1110 00 0 0

31 28 27 26 25 24 23 21 20 19 18 16 15 14 12 11 4 3 2 0

cond I opcode S Rn Rd shifter_operand

0 0 00RN_3 RN_3 RN_3 RN_300000000

Fig. 5. Single cycle data-processing random instruction construct, RN_i,

represents an i-bit random number.

1110 0000 0 1001

31 28 27 24 23 22 21 20 1918 16 15 14 12 11 10 8 7 4 3 2 0

cond Mul S Rd/RdHi Rn/RdLo Rs Rm

00 0 00
RN

_1 RN_3 RN_3 RN_30 RN_3

Fig. 6. Construct of multiply and multiply-accumulate random instructions.

Fig. 7. Power simulation sequences for AES implementation on different

platforms.

encoding diagram shown in Figure 6. All the random

numbers used in ERIST-ARM7 are produced by a simple

Linear Feedback Shift Register (LFSR) called a

pseudo-random number generator (PRNG).

The other modules of ERIST-ARM7 are designed

according to the methods described in Sections II and III. We

implemented an ERIST-ARM7 core in Verilog and

synthesized it through the Synopsys Design Compiler based

on a UMC 0.18 µm standard cell process library. The results

show that 32,494 GEs are required. This is an increase of only

2,413 additional GEs compared with the original ARM core

area, which needs approximately 30,081 GEs.

 Then we performed a standard AES algorithm on our

ERIST-ARM7 core. The benchmark code and ERIST-ARM7

core were simulated together using the ModelSim HDL

simulator, which generates a stimulus wave with switching

information. The power values were measured with

PrimePower, which provides measurements in watts (W).

Figure 7 shows the power simulation sequences of the AES

implementations. We can see that the AES encryption rounds

can be identified easily when the AES codes are executed on

an original ARM7 core. Once it is executed on the

ERIST-ARM7 core, the process is disrupted and confused by

inserted random instructions that cannot be identified.

B. Counteracting Against Cross-correlation and HMM

Attacks

For cross-correlation attacks, in order to identify and

remove a random instruction, the adversary should extract the

pattern of an inserted instruction, and then match this pattern

to clock cycles in the side-channel traces by computing the

cross-correlation between them. However, in ERIST, the

inserted instruction type is the same as that for the regular

instructions, and thus it is impossible to extract a

recognizable pattern for the inserted instructions.

For HMM attacks, adversaries first have to build a Markov

model for the protected AES code, and then estimate the

emission probability functions)|Pr()(e ittti sll that

correspond to each state i . The estimated emission at time t,

denoted tl , only depends on the type of instruction executed

at time t. As indicated previously, the inserted instruction

type is the same as the regular instruction type, and thus

attackers cannot estimate the emission probability for those

states that execute the inserted instructions simply by

observing the side-channel traces l.

We mounted simulated attacks to verify our analysis. The

experiment results show that the random instructions inserted

into the AES code executed on the ERIST-ARM7 core

cannot be removed by the cross-correlation and HMM

attacks proposed in [10].

C. Simulated CPA Attack Results

Correlation power analysis (CPA) [18] is one of the most

popular SCAs. For this paper, we established a CPA attack

platform using MATLAB and C language, and performed a

simulated CPA attack against the standard AES-128

encryption algorithm executed by the ERIST-ARM7 core.

As a reference benchmark for our experiment conditions,

we presented an attack against the same AES implementation

on an original ARM7 core. Moreover, for better comparison,

we created a softRIJJD-ARM7 model in RTL according to

the method in [16] and performed the same CPA attack

against it. The instruction insertion algorithm for softRIJJD

was very similar to the plain uniform method.

The parameters for each method were chosen

appropriately for the same performance overhead across the

methods. The overheads were small so that the attacks could

be successful with a reasonable number of traces. For ERIST,

we used the parameters a = 11, b = 3, k = 3, and d = 8. For

softRIJJD, we used the parameters N = 3 and D = 5.

In our attack experiment, there were approximately 1,745

clock cycles from the synchronization point to the attacked

point when the AES code was performed on the original

ARM7. After execution on softRIJJD-ARM7 or

ERIST-ARM7, random delays were introduced. The

statistical distributions of the delays introduced in each

platform are shown in Figure 8. As can be seen, the delay

variance introduced by ERIST is much greater than that

introduced by softRIJJD with the same time overhead, which

is approximately 21% (366 cycles).

The CPA attacks were mounted in the Hamming weight

leakage model against the first AES key byte. The

intermediate values generated in the first SubByte operation

of the first encryption round were the attack target. Figure 9

shows the correlation coefficients for all the 256 key

hypotheses in the attack point on each execution platform. It

can be seen that to get significant peaks at the correct key

hypothesis (0x03), the adversary needs 50, 3500, and 40000

power traces for statistical analysis, respectively.

Figure 10 shows the correlation coefficients for all key

hypotheses, depending on the number of traces used in the

attack. Recovering the 8-bit AES subkey for ARM7 (with the

first-order success rate close to 1, similarly hereinafter)

requires approximately 40 traces, and recovering

softRIJJD-ARM7 requires approximately 3,000 traces.

ERIST-ARM7 requires more than 35,000 traces to recover

the 8-bit first key byte. Therefore, our method is significantly

more secure, even for small delay durations and for a small

number of delays. Table III lists detailed experiment results.

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_08

(Advance online publication: 29 February 2016)

__

It must be noted that ERIST needs more hardware area

than softRIJJD, mainly because an additional RIICR is used

in ERIST, which obviously increases the usability and

flexibility of our method.

V. CONCLUSIONS

We proposed a framework for a randomized instruction

insertion technique in hardware that can automatically insert

random real instructions into a cryptographic execution flow.

The proposed framework can resist the latest signal

processing and modeling attacks. Furthermore, we proposed

an instruction insertion method for controlling the generation

and insertion of the random instructions, which significantly

improved the efficiency of our countermeasure. Theoretical

analysis and experiment results showed that our

countermeasure is significantly more secure and efficient

than previous similar solutions.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in

Advances in Cryptology, CRYPTO99, Springer, 1999, pp.388–397.

[2] S. Mangard, E. Oswald, T. Popp, Power analysis attacks: revealing

the secrets of smart cards. Springer Science & Business Media, 2008.

[3] M. Barbosa and D. Page, “On the automatic construction of

indistinguishable operations,” in Cryptography and Coding, Springer,

2005, pp.233–247.

[4] C. Clavier, J.S. Coron, and N. Dabbous, “Differential power analysis

in the presence of hardware countermeasures,” in Cryptographic

Fig. 8. Delay distribution introduced by two methods in attack experiment (with 10,000 measurements).

Fig.9. Correlation coefficients for all the 256 key hypotheses in the attack point on each execution platform

Fig. 10. Correlation coefficients with increasing number of power traces used in the attack for all key hypotheses (the trace for

the correct hypothesis is highlighted).

TABLE III

DETAILED EXPERIMENT RESULTS FOR DIFFERENT METHODS

Platform

Required

gates

Hardware

overheads

Runtime

Overheads

Required

traces

ARM7 30081 0 0 40

softRIJJD-AR

M7
31986 6.33% 20.86% 3000

ERIST-ARM7 32494 8% 21.09% >35000

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_08

(Advance online publication: 29 February 2016)

__

Hardware and Embedded Systems, CHES 2000, Springer, 2000,

pp.252–263.

[5] M. Rivain,and E.Prouff, “Provably secure higher-order masking of

AES,” in Cryptographic Hardware and Embedded Systems, CHES

2010, Springer Berlin Heidelberg, 2010, pp. 413-427.

[6] N. V. eyrat-Charvillon, M. Medwed, S. Kerckhof, et al, “Shuffling

against side-channel attacks: A comprehensive study with cautionary

note,” in Advances in Cryptology–ASIACRYPT 2012, Springer Berlin

Heidelberg, 2012, pp.740-757.

[7] M. Tunstall and O. Benoit, “Efficient use of random delays in

embedded software,” in Information Security Theory and Practices.

Smart Cards, Mobile and Ubiquitous Computing Systems, Springer,

2007, pp.27–3.

[8] S. R. Eddy, “Hidden Markov models,” Current opinion in structural

biology, vol.6, no.3, pp.361-365, 1996..

[9] M. F. Hashmi, A. R. Hambarde, A. G. Keskar, “Robust Image

Authentication Based on HMM and SVM Classifiers.” Engineering

Letters, vol. 22, no. 4, pp.183-193, 2014.

[10] F. Durvaux, M. Renauld, F.X. Standaert, et al., Efficient removal of

random delays from embedded software implementation using hidden

Markov models. Berlin Heidelberg: Springer, 2013.

[11] M. Bucci, R. Luzzi, M. Guglielmo, and A. Trifiletti, “A

countermeasure against differential power analysis based on random

delay insertion,” in IEEE International Symposium on Circuits and

Systems, 2005. ISCAS 2005, IEEE, 2005, pp.3547–3550.

[12] Y. Lu, M. P. O’Neill, and J. V. McCanny, “FPGA implementation and

analysis of random delay insertion countermeasure against dpa,” in

ICECE Technology, 2008. FPT 2008, IEEE, 2008, pp.201–208.

[13] Y. Lu, M. O’Neill, J.McCanny, “Evaluation of random delay insertion

against DPA on FPGAs,” ACM Transactions on Reconfigurable

Technology and Systems (TRETS), vol.4, no.1, 2010.

[14] D. May, H.L. Muller, and N.P. Smart, “Non-deterministic

processors,” in Information Security and Privacy, Springer, 2001,

pp.115–129.

[15] P. Grabher, J. Großschädl, D. Page, “Non-deterministic processors:

FPGA-based analysis of area, performance and security,” in

Proceedings of the 4th Workshop on Embedded Systems Security.

ACM, 2009, pp.1-10.

[16] J. A. Ambrose, R. G. Ragel, and S. Parameswaran, “Randomized

instruction injection to counter power analysis attacks,” ACM

Transactions on Embedded Computing Systems (TECS), vol.11, no.3,

pp.69-78, 2012.

[17] S. Mangard, “Hardware countermeasures against dpa–a statistical

analysis of their effectiveness,” in Topics in Cryptology–CT-RSA

2004, Springer, 2004, pp.222–235.

[18] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a

leakage model,” in Cryptographic Hardware and Embedded

Systems-CHES 2004, Springer, 2004, pp.16–29.

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_08

(Advance online publication: 29 February 2016)

__

